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Abstract: This paper studies binary hypothesis testing with a single sensor that communicates with
two decision centers over a memoryless broadcast channel. The main focus lies on the tradeoff
between the two type-II error exponents achievable at the two decision centers. In our proposed
scheme, we can partially mitigate this tradeoff when the transmitter has a probability larger than
1/2 to distinguish the alternate hypotheses at the decision centers, i.e., the hypotheses under which
the decision centers wish to maximize their error exponents. In the cases where these hypotheses
cannot be distinguished at the transmitter (because both decision centers have the same alternative
hypothesis or because the transmitter’s observations have the same marginal distribution under both
hypotheses), our scheme shows an important tradeoff between the two exponents. The results in
this paper thus reinforce the previous conclusions drawn for a setup where communication is over
a common noiseless link. Compared to such a noiseless scenario, here, however, we observe that
even when the transmitter can distinguish the two hypotheses, a small exponent tradeoff can persist,
simply because the noise in the channel prevents the transmitter to perfectly describe its guess of the
hypothesis to the two decision centers.

Keywords: hypothesis testing; broadcast channel; error exponents.

1. Introduction

In Internet of Things (IoT) networks, data are collected at sensors and transmitted over
a wireless channel to remote decision centers, which decide on one or multiple hypotheses
based on the collected information. In this paper, we study simple binary hypothesis
testing with a single sensor but two decision centers. The results can be combined with
previous studies focusing on multiple sensors and a single decision center to tackle the
practically relevant case of multiple sensors and multiple decision centers. We consider a
single sensor for simplicity and because our main focus is on studying the tradeoff between
the performances at the two decision centers that can arise because the single sensor has to
send information over the channel that can be used by both decision centers. A simple, but
highly suboptimal, approach would be to time-share communication and serve each of the
two decision centers only during a part of the transmission. As we will see, better schemes
are possible, and, in some cases, it is even possible to serve each of the two decision centers
as if the other center was not present in the system.

In this paper, we follow the information-theoretic framework introduced in [1,2]. That
means each terminal observes a memoryless sequence, and depending on the underlying
hypothesisH ∈ {0, 1}, all sequences follow one of two possible joint distributions, which
are known to all involved terminals. A priori, the transmitter, however, ignores the correct
hypothesis and has to compute its transmit signal as a function of the observed source
symbols only. Decision centers observe outputs of the channel, and, combined with
their local observations, they have to make a decision on whether H = 0 or H = 1. The
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performance of the decision center is measured by its type-II error exponent, i.e., the expontial
decay in the length of the observations of the probability of deciding onH = 0 when the
true hypothesis isH = 1. As a constraint on the decision center, we impose that the type-I
error probability, i.e., the probability of decidingH = 1 when the true hypothesis isH = 0,
vanishes (at any desired speed) with increasing observation lengths. The motivation for
studying such asymmetric requirements on the two error probabilities stems, for example,
from alert systems, where the miss-detection event is much more harmful than the false-alarm
event, and, as a consequence, in our systems we require the miss-detection probability to
decay much faster than the false-alarm probability.

This problem setting has first been considered for the setup with a single sensor and a
single decision center when communication is over a noiseless link of given capacity [1,2].
For this canonical problem, the optimal error exponent has been identified in the special
cases of testing against independence [1] and testing against conditional independence [3,4].

The scheme proposed by Shimokawa–Han–Amari in [3,4] yields an achievable er-
ror exponent for all distributed hypothesis testing problems (not only testing against
conditional independence) [3,4], but it might not be optimal in general [5]. The Shimokawa–
Han–Amari (SHA) scheme has been extended to various more involved setups such as
noiseless networks with multiple sensors and a single decision center [2,6,7]; networks
where the sensor and the decision center can communicate interactively [8,9]; multi-hop
networks [10]; networks with multiple decision centers [10–13].

The works most closely related to the current paper are [10,12–16]. Specifically,
Refs [10,12–14] consider a single-sensor multi-detector system where communication is
over a common noiseless link from the sensor to all decision centers. Focusing on two
decision centers, two scenarios can be encountered here: (1) the two decision centers have
the same null and alternate hypotheses, and as a consequence, both aim at maximizing
the error exponent under the same hypothesis H; or (2) the two decision centers have
opposite null and alternate hypotheses and thus one decision center wishes to maximize
the error exponent under hypothesis H = 0 and the other under hypothesis H = 1. The
second scenario is motivated by applications where the decision centers have different
goals. Hypothesis testing for scenario 1) was studied in [10,12–14], and the results showed
a tradeoff between the exponents achieved at the two decision centers. Intuitively, the
tradeoff comes from the fact that communication from the sensor is serving both decision
centers at the same time. Scenario 2) was considered in [12,13]. In this case, a tradeoff
only occurs when the sensor’s observation alone provides no advantage in guessing the
hypothesis. Otherwise, a tradeoff-free exponent region can be achieved by the following
simple scheme: the sensor takes a tentative guess on the hypothesis based only on its local
observations. It communicates this tentative guess to both decision centers using a single
bit and then dedicates the rest of the communication using a dedicated SHA scheme only
to the decision center that wishes to maximize the error exponent under the hypothesis that
does not correspond to its guess. The other decision center simply keeps the transmitter’s
tentative guess and ignores the rest of the communication.

In this paper, we extend these previous works to memoryless broadcast channels (BC).
Hypothesis testing over BCs was already considered in [10], however, only for above
scenario 1 where both decision centers have the same null and alternate hypothesis and
in the special case of testing against conditional independence, in which case the derived
error exponents were proved to be optimal. Interestingly, when testing against conditional
independence over noisy channels, only the capacity of the channel matters but not the
properties, see [15,16]. General hypothesis testing over noisy channels is much more
challenging and requires additional tools, such as joint source-channel coding and unequal
error protection (UEP) coding [17]. The latter can, in particular, be used to specially protect
the communication of the sensor’s tentative guess, which allows one to avoid a degradation
of the performance of classical hypothesis testing schemes.

We present general distributed hypothesis testing schemes over memoryless BCs,
and we analyze the performances of these schemes with a special focus on the tradeoff in
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exponents they achieve for the two decision centers. We propose two different schemes,
depending on whether the sensor can distinguish with error probability 6= 1/2 the two
null hypotheses at the two decision centers. If a distinction is possible (because the deci-
sion centers have different null hypothesis and the sensor’s observations follow different
marginal distributions under the two hypotheses), then we employ a similar scheme as
proposed in [12,13] over a common noiseless link, but where the SHA scheme is replaced
by the UEP-based scheme for DMCs in [15]. That means, the sensor makes a tentative
guess about the hypothesis and conveys this guess to both decision centers using an UEP
mechanism. Moreover, the joint source-channel coding scheme in [15] with dedicated
codebooks is used to communicate to the decision center that aims to maximize the error
exponent under the hypothesis that does not correspond to the sensor’s tentative guess.
This scheme shows no tradeoff between the exponents achieved at the two decision centers
in various interesting cases. Sometimes, however, a tradeoff arises because even under
UEP the specially protected messages can be in error and because the decision centers can
confuse the codewords of the two different sets of codebooks. For the case where the sensor
cannot reasonably distinguish the alternate hypotheses at the two decision centers (because
both decision centers have the same alternate hypotheses or the sensor’s observations
have the same marginal observations under both hypotheses), we present a scheme similar
to [10] but again including UEP. In this scheme, a tradeoff between the exponents achieved
at the two decision centers naturally arises and mostly stems from the inherent tradeoff
in distributed lossy compression systems with multiple decoders having different side
informations.

Notation

We mostly follow the notation in [18]. Random variables are denoted by capital letters,
e.g., X, Y, and their realizations by lower-case letters, e.g., x, y. Script symbols such as
X and Y stand for alphabets of random variables, and X n and Yn for the corresponding
n-fold Cartesian products. Sequences of random variables (Xi, ..., Xj) and realizations

(xi, . . . , xj) are abbreviated by X j
i and xj

i . When i = 1, then we also use X j and xj instead of

X j
1 and xj

1.
We write the probability mass function (pmf) of a discrete random variable X as PX ;

to indicate the pmf under hypothesis H = 1, we also use QX. The conditional pmf of
X given Y is written as PX|Y, or as QX|Y when H = 1. The term D(P‖Q) stands for the
Kullback–Leibler (KL) divergence between two pmfs P and Q over the same alphabet. We
use tp(an, bn) to denote the joint type of the pair of sequences (an, bn), and cond_tp(an|bn)
for the conditional type of an given bn. For a joint type πABC over alphabet A×B × C, we
denote by IπABC (A; B|C) the conditional ßmutual information assuming that the random
triple (A, B, C) has pmf πABC; similarly for the entropy HπABC (A) and the conditional
entropy HπABC (A|B). Sometimes we abbreviate πABC by π. In addition, when πABC has
been defined and is clear from the context, we write πA or πAB for the corresponding
subtypes. When the type πABC coincides with the actual pmf of a triple (A, B, C), we omit
the subscript and simply write H(A), H(A|B), and I(A; B|C).

For a given PX and a constant µ > 0, let T n
µ (PX) be the set of µ-typical sequences

in X n as defined in [8] (Section 2.4). Similarly, T n
µ (PXY) stands for the set of jointly µ-

typical sequences. The expectation operator is written as E[·]. We abbreviate independent
and identically distributed by i.i.d.. The log function is taken with base 2. Finally, in our
justifications, we use (DP) and (CR) for “data processing inequality” and “chain rule”.

2. System Model

Consider the distributed hypothesis testing problem in Figure 1, where a transmitter
observes sequence Xn, Receiver 1 sequence Yn

1 , and Receiver 2 sequence Yn
2 . Under the

null hypothesis:

H = 0 : (Xn, Yn
1 , Yn

2 ) i.i.d. ∼ PXY1Y2 , (1)
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and under the alternative hypothesis:

H = 1 : (Xn, Yn
1 , Yn

2 ) i.i.d. ∼ QXY1Y2 , (2)

for two given pmfs PXY1Y2 and QXY1Y2 . The transmitter can communicate with the receivers
over n uses of a discrete memoryless broadcast channel (W ,V1 × V2, PV1V2|W) whereW
denotes the finite channel input alphabet and V1 and V2 the finite channel output alphabets.
Specifically, the transmitter feeds inputs

Wn = f (n)(Xn), (3)

to the channel, where f (n) denotes the chosen (possibly stochastic) encoding function

f (n) : X n →Wn. (4)

Each Receiver i ∈ {1, 2} observes the BC ouputs Vn
i , where for a given input Wt = wt,

(V1,t, V2,t) ∼ ΓV1V2|W(·, ·|wt), t ∈ {1, . . . , n}. (5)

Based on the sequence of channel outputs Vn
i and the source sequence Yn

i , Receiver i
decides on the hypothesisH. That means it produces the guess

Ĥi = g(n)(Vn
i , Yn

i ), (6)

for a chosen decoding function

g(n)i : Vn
i ×Yn

i → {0, 1}. (7)

ΓV1V2|W

Figure 1. Hypothesis testing over a noisy BC.

There are different possible scenarios regarding the requirements on error probabilities.
We assume that each receiver is interested in only one of the two exponents. For each
i ∈ {1, 2}, let hi ∈ {0, 1} be the hypothesis whose error exponent Receiver i wishes to
maximize, and h̄i the other hypothesis, i.e., h̄i ∈ {0, 1} and hi 6= h̄i. (The values of h1 and h2
are fixed and part of the problem statement.) We then have:

Definition 1. An exponent pair (θ1, θ2) is said to be achievable over a BC, if for each ε1, ε2 ∈ (0, 1)
and sufficiently large blocklengths n, there exist encoding and decoding functions ( f (n), g(n)1 , g(n)2 ) such
that:

α1,n
∆
= Pr[Ĥ1 = h1|H = h̄1], α2,n

∆
= Pr[Ĥ2 = h2|H = h̄2], (8)

β1,n
∆
= Pr[Ĥ1 = h̄1|H = h1], β2,n

∆
= Pr[Ĥ2 = h̄2|H = h2], (9)
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satisfy

αi,n ≤ εi, i ∈ {1, 2}, (10)

and

− lim
n→∞

1
n

log βi,n ≥ θi, i ∈ {1, 2}. (11)

Definition 2. The fundamental exponents region E is the set of all exponent pairs (θ1, θ2) that
are achievable.

Remark 1. Notice that both α1,n and β1,n depend on the BC law ΓV1V2|W only through the con-
ditional marginal distribution ΓV1|W . Similarly, α2,n and β2,n only depend on ΓV2|W . As a
consequence, also the fundamental exponents region E depends on the joint laws PXY1Y2 and QXY1Y2

only through their marginal laws PXY1 , PXY2 , QXY1 , and QXY2 .

Remark 2. As a consequence to the preceding Remark 1, when PX = QX , one can restrict attention
to a scenario where both receivers aim at maximizing the error exponent under hypothesisH = 1,
i.e., h1 = h2 = 1. In fact, under PX = QX, the fundamental exponents region E for arbitrary h1
and h2 coincides with the fundamental exponents region E for h′1 = 1 and h′2 = 1 if one exchanges
pmfs PXY1 and QXY1 in case h1 = 0 and one exchanges pmfs PXY2 and QXY2 in case h2 = 0.

To simplify the notation in the sequel, we use the following shorthand notations for
the pmfs PXY1Y2 and QXY1Y2 . For each i ∈ {1, 2}:

if h̄i = 0 =⇒
(

pi
XY1Y2

:= PXY1Y2 and qi
XY1Y2

:= QXY1Y2

)
(12a)

and
if h̄i = 1 =⇒

(
pi

XY1Y2
:= QXY1Y2 and qi

XY1Y2
:= PXY1Y2

)
. (12b)

We propose two coding schemes yielding two different exponent regions, depending
on whether

∀x ∈ X : p1
X(x) = p2

X(x), (13)

or
∃x ∈ X : p1

X(x) 6= p2
X(x). (14)

Notice that (13) always holds when h1 = h2. In contrast, given (14), then obviously
h1 6= h2.

3. Results on Exponents Region

Before presenting our main results, we recall the achievable error exponent over a
discrete memoryless channel reported in [15] (Theorem 1).

3.1. Achievable Exponent for Point-to-Point Channels

Consider a single-receiver setup with only Receiver 1 that wishes to maximize the
error exponent under hypothesis h1 = 1. For simplicity then, we drop the user index 1 and
simply call the receiver’s source observation Yn and its channel outputs Vn.

Theorem 1 (Theorem 1 in [15]). Any exponent θ satisfying the following condition is achievable:

θ ≤ max min{θstandard(PS|X), θdec(PS|X , PT , PW|T), θmiss(PS|X , PT , PW|T)}, (15)

where the maximization is over pmfs PS|X, PT , and PW|T such that the joint law PSTWVXY :=
PXYPS|XPT PW|T PV|W satisfies

I(S; X|Y) ≤ I(W; V|T), (16)
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and where the exponents in (15) are defined as:

θstandard(PS|X) := min
P̃SXY :

P̃SX=PSX
P̃SY=PSY

D(P̃SXY‖PS|XQXY), (17)

θdec(PS|X , PT , PW|T) := min
P̃SXY :

P̃SX=PSX
P̃Y=PY

HP(S|Y)≤HP̃(S|Y)

D(P̃SXY‖PS|XQXY)− I(S; X|Y) + I(W; V|T), (18)

θmiss(PS|X , PT , PW|T) := D(PY‖QY) +EPT

[
D
(

PV|T‖ΓV|W=T
)]
− I(S; X|Y) + I(W; V|T). (19)

Here, all mutual information terms are calculated with respect to the joint pmf PSTWVXY
defined above.

The exponent in Theorem 1 is obtained by the following scheme, which is also depicted
in Figure 2.

Wn = Wn(m)

Wn = Tn

Dec. and Reconstruct Yes

No

Figure 2. Coding and testing scheme for hypothesis testing over a DMC.

The transmitter attempts to quantize the source sequence Xn using a random codebook
consisting of codewords {Sn(m, `)}. If the quantization fails because no codeword is jointly
typical with the source sequence, then the transmitter applies the UEP mechanism in [17]
by sending an IID PT-sequence Tn over the channel. Otherwise, it sends the codeword
Wn(m) for m indicating the first index of the Sn(m, `) codeword that is jointly typical with
its source observation Xn. The receiver jointly decodes the channel and source codeword
by verifying the existence of indices (m′, `′) such that Wn = Wn(m′) is jointly typical with
its channel outputs Vn and there is no other codeword Sn(m′, ˜̀) with smaller conditional
empirical entropy given Yn than Sn(m′, `′). If the decoded codeword Sn(m′, `′) is jointly
typical with the receiver’s observation Yn, then it produces Ĥ = 0, and otherwise Ĥ = 1.

The three competing type-II error exponents in Theorem 1 can be understood in view
of this coding scheme as follows. Exponent θstandard indicates the event that a random
codeword Sn(m, `) is jointly typical with the transmitter’s observation Xn and with the
receiver’s observation Yn while being under H = 1. This is also the error exponent in
Han’s scheme [2] over a noiseless communication link and does not depend on the channel
law ΓV|W . Exponent θdec is related to the joint decoding that checks the joint typicality
of the source codeword, as well as of the channel codeword, and applies a conditional
minimum entropy decoder. A similar error exponent is observed in the SHA scheme [3,4]
over a noiseless link if the mutual information I(W; V|T) is replaced by the rate of the link.
The third exponent θmiss finally indicates an event where the transmitter sends Tn (so as
to indicate the receiver to decide for Ĥ = 1) but the receiver detects a channel codeword
Wn(m′) and a corresponding source codeword Sn(m′, `′). This exponent is directly related
to the channel transition law ΓV|W and not only to the mutual information of the channel
and does not occur when transmission is over a noiseless link. Interestingly, it is redundant
in view of exponent θdec whenever QXY = PXQY because in this case the minimization
in (18) evaluates to D(PY‖QY). In this special case, the exponent can also be shown to be
optimal, see [15].
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We now present our achievable exponents region, where we distinguish the two cases
(1) h1 6= h2 and PX 6= QX ; and (2) (h1 = h2) or PX = QX .

3.2. Achievable Exponents Region When h1 6= h2 and PX 6= QX

Theorem 2. If h1 6= h2 and PX 6= QX, i.e., (14) holds, then all error exponent pairs (θ1, θ2)
satisfying the following condition are achievable:

θi ≤ min{θstandard,i θdec,i, θcross,i, θmiss,i}, i ∈ {1, 2}, (20)

where the union is over pmfs pi
S|X , pT , pi

Ti |T
, and pi

W|Ti
, for i ∈ {1, 2}, so that the joint pmfs p1, p2

defined through (12) and

pi
SXY1Y2TTiWV1V2

:= pi
S|X · p

i
XY1Y2

· pT · pi
Ti |T · p

i
W|TTi

· ΓV1V2|W , i ∈ {1, 2}, (21)

satisfy constraints
Ipi (S; X|Yi) < Ipi (W; Vi|T, Ti), i ∈ {1, 2}, (22)

and where the exponents in (20) are defined as follows, where we set q1 = p2 and q2 = p1:

θstandard,i := min
P̃SXYi :

P̃SX=pi
SX

P̃SYi=pi
SYi

D(P̃SXYi‖pi
S|Xqi

XYi
), (23)

θdec,i := min
P̃SXYi :

P̃SX=pi
SX

P̃Yi=pi
Yi

Hpi (S|Yi)≤HP̃(S|Yi)

D(P̃SXYi‖pi
S|Xqi

XYi
)− Ipi (S; X|Yi) + Ipi (W; Vi|T, Ti), (24)

θmiss,i := D(pi
Yi
‖qi

Yi
) +EpT

[
D
(

pi
Vi |T‖ΓVi |W=T

)]
− Ipi (S; X|Yi) + Ipi (W; Vi|T, Ti), (25)

θcross,i := min
P̃SXYi :

P̃Yi=pi
Yi

Hpi (S|Yi)≤HP̃(S|Yi)

EP̃SX

[
D
(

P̃Yi |XS‖qi
Yi |X

)]
+ min

P̃TTiW :
P̃TW=qi

TW
P̃TTi=pi

TTi

EP̃TTiW

[
D(pi

Vi |TTi
‖ΓVi |W)

]

− Ipi (S; X|Yi) + Ipi (W; Vi|T, Ti). (26)

Proof. See Appendix A.

In Theorem 2, the exponent triple θstandard,1, θdec,1, θmiss,1 can be optimized over the pmfs
p1

S|X, p1
T1|T

and p1
W|TT1

and independently thereof the exponent triple θstandard,2, θdec,2, θmiss,2

can be optimized over the pmfs p2
S|X, p2

T2|T
and p2

W|T,T2
. The pmf pT is common to both

optimizations. However, whenever the exponents θcross,1 and θcross,2 are not active, Theorem 2
depends only on pi

S|X, pi
Ti

andpi
W|Ti

, for i = 1, 2, and there is thus no tradeoff between the two
exponents θ1 and θ2. In other words, the same exponents θ1 and θ2 can be attained as in a
system where the transmitter communicates over two individual DMCs ΓV1|W and ΓV2|W to the
two receivers, or equivalently each receiver achieves the same exponent as if the other receiver
was not present in the system.

The scheme achieving the exponents region in Theorem 2 is described in detail in
Section 4 and analyzed in Appendix A. The main feature is that the sensor makes a
tentative decision onH and conveys this decision to both receivers through its choice of the
codebooks and a special coded time-sharing sequence indicating this choice. The receiver
that wishes to maximize the error exponent corresponding to the hypothesis guessed at
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the sensor directly decides on this hypothesis. The other receiver should compare its
own observation to a quantized version of the source sequence observed at the sensor.
The sensor uses the quantization and binning scheme presented in [15] tailored to this
latter receiver using either coded time-sharing sequence Tn

1 and codebooks {Sn(1; m, `)}
and {Wn(1; m)} or coded time-sharing sequence Tn

2 and codebooks {Sn(2; m, `)} and
{Wn(2; m)}, respectively. The overall scheme is illustrated in Figure 3.

V n
1

Y n
1Rx 1

Sn(1;m′, ℓ′)

Quantize 1
Decode and Reconstruct 1 Test 1

p1SX

Sn(1;m, ℓ)
Wn = Wn(1;m)

Decode and Reconstruct 2

Fail

Fail

p2SX
Wn = Wn(2;m)

Figure 3. Coding and testing scheme for hypothesis testing over a BC.

Exponents θstandard,i, θdec,i, and θmiss,i have similar explanations as in the single-user
case. Exponent θcross,i corresponds to the event that the transmitter sends a codeword
from {W(j; m)}, for j = 3− i, but Receiver i decides that a codeword from {W(i; m)} was
sent and a source codeword S(i; m, `) satisfies the minimum conditional entropy condition
and the typicality check with the observed source sequence Yn

i . Notice that setting Ti as a
constant decreases the error exponent θcross,i.

For the special case where the BC consists of a common noiseless link, Theorem 2
has been proved in [12,13]. (More precisely, [12] considers the more general case with
K ≥ 2 receivers and M ≥ K hypotheses.) In this case, the exponents (θmiss,1, θcross,1) and
(θmiss,2, θcross,2) are not active and there is no tradeoff between θ1 and θ2.

3.3. Achievable Exponents Region for h1 = h2 or PX = QX

Define for any pmfs PT , PSU1U2|XT and function

f : S × U1 ×U2 ×X → W (27)

the joint pmfs

pi
SU1U2XY1Y2TV1V2

:= PSU1U2|XT · pi
XY1Y2

· PT · ΓV1V2|SU1U2X , i ∈ {1, 2}, (28)

and

ΓV1V2|SU1U2X := ΓV1V2|W(v1, v2| f (s, u1, u2, x)), ∀s ∈ S , u1 ∈ U1, u2 ∈ U2, x ∈ X , (29)
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and for each i ∈ {1, 2}, the four exponents

θstandard,i := min
P̃SUi XYi TVi

:

P̃SUi XT=pi
SUi XT

P̃SUiYi TVi
=pi

SUiYi TVi

D
(

P̃SUiXYiTVi

∥∥∥pi
SUi |Xqi

XYi
PTΓVi |SU1U2X

)
, (30a)

θa
dec,i := min

P̃SUi XYi TVi
:

P̃SUi XT=pi
SUi XT

P̃Yi TVi
=pi

Yi TVi
Hpi (S,Ui |Yi ,T,Vi)≤HP̃(S,Ui |Yi ,T,Vi)

D
(

P̃SUiXYiTVi

∥∥∥pi
SUi |Xqi

XYi
PTΓVi |SU1U2X

)

− Ipi (S, Ui; X|T) + Ipi (S, Ui; Yi, Vi|T), (30b)

θb
dec,i := min

P̃SUi XYi TVi
:

P̃SUi XT=pi
SUi XT

P̃SYi TVi
=pi

SYi TVi
Hpi (Ui |S,Yi ,T,Vi)≤HP̃(Ui |S,Yi ,T,Vi)

D
(

P̃SUiXYiTVi

∥∥∥pi
SUi |Xqi

XYi
PTΓVi |SU1U2X

)

− Ipi (Ui; X|S, T) + Ipi (Ui; Yi, Vi|S, T), (30c)

θmiss,i := EPT

[
D
(

pi
YiVi |T

∥∥∥qi
Yi

ΓVi |W=T

)]
− Ipi (S, Ui; X|T) + Ipi (S, Ui; Yi, Vi|T). (30d)

Theorem 3. If h1 = h2 or PX = QX, i.e., (13) holds, then the union of all nonnegative error
exponent pairs (θ1, θ2) satisfying the following conditions is achievable:

θi ≤ min
{

θstandard,i, θa
dec,i, θb

dec,i, θmiss,i

}
, i ∈ {1, 2}, (31a)

θ1 + θ2 ≤ min
{

θstandard,1 + θstandard,2, θstandard,1 + θa
dec,2, θstandard,1 + θb

dec,2,

θstandard,2 + θa
dec,1, θstandard,2 + θb

dec,1, θmiss,1 + θmiss,2

}
− Ip1(U1; U2|S, T), (31b)

θ1 + θ2 ≤ min
{

θa
dec,1, θb

dec,1

}
+ min

{
θa

dec,2, θb
dec,2

}
− 2Ip1(U1; U2|S, T), (31c)

where the union is over pmfs PT , PSU1U2|XT and functions f as in (27) so that the pmfs (28) and (29)
satisfy for i ∈ {1, 2}:

Ipi (S, Ui; X|T) ≤ Ipi (S, Ui; Yi, Vi|T), (32a)

Ipi (Ui; X|S, T) ≤ Ipi (Ui; Yi, Vi|S, T), (32b)

Ip1(S, U1; X|T) + Ip1(S, U2; X|T) + Ip1(U1; U2|S, T)

≤ Ip1(S, U1; Y1, V1|T) + Ip2(S, U2; Y2, V2|T), (32c)

Ip1(U1; X|S, T) + Ip1(U2; X|S, T) + Ip1(U1; U2|S, T)

≤ Ip1(U1; Y1, V1|S, T) + Ip2(U2; Y2, V2|S, T), (32d)

Ip1(U1; X|S, T) + Ip1(S, U2; X|T) + Ip1(U1; U2|S, T)

≤ Ip1(U1; Y1, V1|S, T) + Ip2(S, U2; Y2, V2|T), (32e)

Ip1(S, U1; X|T) + Ip1(U2; X|S, T) + Ip1(U1; U2|S, T)

≤ Ip1(S, U1; Y1, V1|T) + Ip2(U2; Y2, V2|S, T), (32f)

Proof. The coding and testing scheme achieving these exponents is described in Section 5.
The analysis of the scheme is similar to the proof of [15] (Theorem 4) and omitted for
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brevity. In particular, error exponent θstandard,i corresponds with the event that Receiver
i decodes the correct cloud and satellite codewords but wrongly decides on Ĥi = 0. In
contrast, error exponents θa

dec,i and θb
dec,i correspond to the events that Receiver i wrongly

decides on Ĥi = 0 after wrongly decoding both the cloud center and the satellite or only
the satellite. Error exponent θmiss,i corresponds to the miss-detection event. Due to the
implicit rate constraints in (46), the final constraints in (31) are obtained by eliminating
the rates R0, R1, R2 by means of Fourier–Motzkin elimination. Notice that in constraint
(31c), the mutual information Ip1(U1; U2|S, T) is multiplied by a factor 2, whereas in (31b),
it appears without a factor. The reason is that the error analysis includes union bounds
over the codewords in a bin and when wrongly decoding the satellite codewords (which
is the case of exponents θa

dec,i and θb
dec,i) then the union bound is over pairs of codewords,

whereas under correct decoding, it is over single codewords. In the former case, we have
the factor 22nR′i in the error probability, and, in the latter case, the factor 2nR′i . The auxiliary
rates R′1 and R′2 are then eliminated using the Fourier–Motzkin elimination algorithm.

For each i ∈ {1, 2}, exponents θstandard,i, θa
dec,i, θb

dec,i, and θmiss,i have the same form as
the three exponents in [15] (Theorem 1) for the DMC. There is, however, a tradeoff between
the two exponents θ1 and θ2 in the above theorem because they share the same choice of
the auxiliary pmfs PT and PSU1U2|XT and the function f . In [10], the above setup is studied
in the special case of testing against conditional independence, and the mentioned tradeoff
is illustrated through a Gaussian example.

4. Coding and Testing Scheme When p1
X 6= p2

X

Fix µ > 0, a sufficiently large blocklength n, auxiliary distributions pT , p1
T1|T

and p2
T2|T

overW , conditional channel input distributions p1
W|TT1

and p2
W|TT2

, and conditional pmfs

p1
S|X and p2

S|X over a finite auxiliary alphabet S such that for each i ∈ {1, 2}:

Ipi (S; X|Yi) < Ipi (W; Vi|T, Ti). (33)

The mutual information in (33) is calculated according to the joint distribution:

pi
SXY1Y2TTiWV1V2

= pi
S|X · p

i
XY1Y2

· pT · pi
Ti |T · p

i
W|TTi

· ΓV1V2|W . (34)

For each i ∈ {1, 2}, if Ipi (S; X) < Ipi (W; Vi|T, Ti), choose rates

Ri := Ipi (S; X) + µ, (35)

R′i := 0. (36)

If Ipi (S; X) ≥ Ipi (W; Vi|T, Ti), then choose rates

Ri := Ipi (W; Vi|T, Ti)− µ, (37)

R′i := Ipi (S; X)− Ipi (W; Vi|T, Ti) + 2µ. (38)

Again, all mutual informations in (35)–(38) are calculated with respect to the pmf
in (34).

Code Construction: Generate a sequence Tn = (T1, . . . , Tn) by independently drawing
each component Tk according to pT . For each i ∈ {1, 2}, generate a sequence Tn

i =
(Ti,1, . . . , Ti,n) by independently drawing each Ti,k according to pi

Ti |T
(.|t) when Tk = t. In

addition, construct a random codebook

C i
W =

{
Wn(i; m) : m ∈ {1, ..., b2nRic}

}
(39)
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superpositioned on (Tn, Tn
i ) where the k-th symbol Wk(i; m) of codeword Wn(i; m) is

drawn independently of all codeword symbols according to pi
W|TTi

(·|t, ti) when Tk = t and
Ti,k = ti. Finally, construct a random codebook

C i
S = {Sn(i; m, `) : m ∈ {1, . . . , b2nRic}, ` ∈ {1, . . . , b2nR′ic}}, i ∈ {1, 2}, (40)

by independently drawing the k-th component Sk(i; m, `) of codeword Sn(i; m, `) according
to the marginal pmf pi

S.
Reveal all codebooks and the realizations tn, tn

1 , tn
2 of the sequences Tn, Tn

1 , Tn
2 to

all terminals.
Transmitter: Given source sequence Xn = xn, the transmitter looks for indices (i, m, `) ∈

{1, 2} × {1, . . . , b2nR1c} × {1, . . . , b2nR′ic} such that codeword sn(i; m, `) from codebook
C i

S satisfies

(sn(i; m, `), xn) ∈ T n
µ/2(pi

SX). (41)

and the corresponding codeword wn(i; m) from codebook C i
W satisfies

(tn, tn
i , wn(i; m)) ∈ T n

µ/2(pi
TTiW). (42)

(Notice that when µ is sufficiently small, then Condition (41) can be satisfied for at
most one value i ∈ {1, 2}, because p1

X 6= p2
X .) If successful, the transmitter picks uniformly

at random one of the triples (i, m, `) that satisfy (41), and it sends the sequence wn(i; m) over
the channel. If no triple satisfies Condition (41), then the transmitter sends the sequence tn

over the channel.
Receiver i ∈ {1, 2}: Receives vn

i and checks whether there exist indices (m′, `′) such
that the following three conditions are satisfied:

1.

(tn, tn
i , wn(i; m′), vn

i ) ∈ T n
µ (pi

TTiWVi
), (43)

2.

Htp(sn(i;m′ ,`′),yn
i )
(S|Yi) = min

˜̀
Htp(sn(i;m′ , ˜̀),yn

i )
(S|Yi), (44)

3.

(sn(i; m′, `′), yn
i ) ∈ T n

µ (pi
SYi

). (45)

If successful, it declares Ĥi = h̄i. Otherwise, it declares Ĥi = hi.
Analysis: See Appendix A.

5. Coding and Testing Scheme When p1
X = p2

X

In this case, the scheme is based on hybrid source-channel coding. Choose a large
positive integer n, auxiliary alphabets S , U1, and U2, and a function f as in (27).

Choose an auxiliary distribution PT overW , and a conditional distribution PSU1U2|XT
over S × U1 ×U2 so that for i ∈ {1, 2} inequalities (32) are satisfied with strict inequality.

Then, choose a positive µ and rates R0, R1, R2 so that

R0 = Ip1(S; X|T) + µ, (46a)

Ri > Ip1(Ui; X|S, T), i ∈ {1, 2}, (46b)

R1 + R2 > Ip1(U1; X|S, T) + Ip1(U2; X|S, T) + Ip1(U1; U2|S, T), (46c)
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and

R0 + Ri<Ipi (S, Ui; Yi, Vi|T), (46d)

Ri<Ipi (Ui; Yi, Vi|S, T). (46e)

Generate a sequence Tn i.i.d. according to PT and construct a random codebook

CS =
{

Sn(m0) : m0 ∈ {1, ..., b2nR0c}
}

superpositioned on Tn where each codeword is drawn independently according to p1
S|T

conditioned on Tn. Then, for each index m0 and i ∈ {1, 2}, randomly generate a codebook

CUi (m0) =
{

Un
i (m0, mi) : mi ∈ {1, ..., b2nRic}

}
superpositioned on (Tn, Sn(m0)) by drawing each entry of the n-length codeword Un

i (m0, mi)
i.i.d. according to the conditional pmf p1

Ui |ST(·|Sk(m0), T) where Sk(m0) denotes the k-th
symbol of Sn(m0). Reveal the realizations of the codebooks and the sequence Tn to all
terminals.

Transmitter: Given that it observes the source sequence Xn = xn, the transmitter looks
for indices (m0, m1, m2) that satisfy

(sn(m0), un
1 (m0, m1), un

2 (m0, m2), xn, tn) ∈ T n
µ/2

(
p1

SU1U2XT

)
. (47)

If successful, it picks one of these indices uniformly at random and sends the codeword
wn over the channel, where

wk = f (sk(m0), u1,k(m0, m1), u2,k(m0, m2), xk), k ∈ {1, . . . , n}, (48)

and where (sk(m0), u1,k(m0, m1), u2,k(m0, m2)) denote the k-th components of codewords
(sn(m0), un

1 (m0, m1), un
2 (m0, m2)). Otherwise, it sends the sequence of inputs tn over the

channel.
Receiver i ∈ {1, 2}: After observing Vn

i = vn
i and Yn

i = yn
i , Receiver i ∈ {1, 2} looks for

indices m′0 ∈ {1, . . . , b2nR0c} and m′i ∈ {1, . . . , b2nRic} that satisfy the following conditions:

1.

(sn(m′0), un
i (m

′
0, m′i), yn

i , tn, vn
i ) ∈ T n

µ (pi
SUiYiTVi

). (49)

2.

Htp(sn(m′0),u
n
i (m

′
0,m′i),y

n
i ,tn ,vn

i )
(S, Ui|Yi, T, Vi)

= min
m̃0,m̃i

Htp(sn(m̃0),un
i (m̃0,m̃i),yn

i ,tn ,vn
i )
(S, Ui|Yi, T, Vi), (50)

If successful, Receiver i declares Ĥi = h̄i. Otherwise, it declares Ĥi = hi.
Analysis: Similar to [15] (Appendix D) and omitted.

6. Summary and Conclusions

The paper proposed and analyzed general distributed hypothesis testing schemes both
for the case where the sensor can distinguish the two null hypotheses and where it cannot.
Our general schemes recover all previously studied special cases. Moreover, our schemes
illustrate a similar phenomenon for setups with common noisefree communication links
from the sensor to all decision centers: while a tradeoff arises when the transmitter cannot
distinguish the alternate hypotheses at the two decision centers, such a tradeoff can almost
completely be mitigated when the transmitter can distinguish the alternate hypotheses. In
contrast to the noise-free link scenario, under a noisy broadcast channel model, a tradeoff
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can still arise in this case because decision centers can confuse the decision taken at the
transmitter, and thus misinterpret to whom the communication is dedicated.

Interesting directions for future research include information-theoretic converse results
and extensions to multiple sensors or more than two decision centers.
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Appendix A. Proof of Theorem 2

The proof is based on the scheme of Section 4. Fix a choice of blocklength n, the small
positive µ and the (conditional) pmfs pT , p1

T1|T
, p2

T2|T
, p1

W|TT1
, p2

W|TT2
, p1

S|X and p2
S|X so

that (22) holds. Assume that Ip1(S; X) ≥ Ip1(W; V1|T, T1) and Ip2(S; X) ≥ Ip2(W; V2|T, T2),
in which case R1, R2, R′1, R′2 are given by (37) and (38). Additionally, set for convenience
of notation:

pi
S′(s) = pi

S(s), ∀s ∈ S , (A1)

pi
W ′ |TTi

(w|t, ti) = pi
W|TTi

(w|t, ti), ∀t, ti, w ∈ W . (A2)

The analysis of type-I error probability is similar as in [15] (Appendix A). The main
novelty is that because p1

X(x) 6= p2
X(x) for some x ∈ X , for sufficiently small values of

µ > 0, the source sequence cannot lie in both Tµ/2(p1
X) and Tµ/2(p2

X). Details are omitted.
Consider the type-II error probability at Receiver 1 averaged over all random code-

books. Define the following events for i ∈ {1, 2}:

ETx,i(m, `) : {(Sn(i; m, `), Xn) ∈ T n
µ/2(pi

SX),

(Tn, Tn
i , Wn(i; m)) ∈ T n

µ/2(pi
TTiW), Wn(i; m)) is sent}, (A3)

ERx,i(m′, `′) : {(Sn(i; m′, `′), Yi
n) ∈ T n

µ (pi
SYi

),

(Tn, Tn
i , Wn(i; m′), Vn

i ) ∈ T n
µ (pi

TTiWVi
),

Htp(Sn(i;m′ ,`′),Yn
i )
(S|Yi) = min

l̃
Htp(Sn(i;m′ , ˜̀),Yn

i )
(S|Yi)}. (A4)

Notice that

EC [β1,n] = Pr[Ĥ1 = 0|H = h1] ≤ Pr

 ⋃
m′ ,`′
ERx,1(m′, `′)

∣∣∣∣∣H = h1

. (A5)
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Above probability is upper bounded as:

Pr

 ⋃
m′ ,`′
ERx,1(m′, `′)

∣∣H = h1


≤ Pr

 ⋃
m′ ,`′
ERx,1(m′, `′)

 ∩(⋃
m,`

ETx,1(m, `)

)∣∣∣∣∣H = h1


+ Pr

 ⋃
m′ ,`′
ERx,1(m′, `′)

 ∩(⋂
m,`

E c
Tx,1(m, `)

)
∩
(⋃

m,`

ETx,2(m, `)

)∣∣∣∣∣H = h1


+ Pr

 ⋃
m′ ,`′
ERx,1(m′, `′)

 ∩(⋂
m,`

E c
Tx,1(m, `)

)
∩
(⋂

m,`

E c
Tx,2(m, `)

)∣∣∣∣∣H = h1

. (A6)

The sum of above probabilities can be upper bounded by the sum of the probabilities
of the following events:

B1 : {∃(m, `) s.t. (ETx,1(m, `) and ERx,1(m, `))}, (A7)

B2 :
{
∃(m, `, `′) with ` 6= `′ s.t.

(
ETx,1(m, `) and ERx,1(m, `′)

)}
,

(A8)

B3 :
{
∃(m, m′, `, `′) with ` 6= `′ and m 6= m′

s.t.
(
ETx,1(m, `) and ERx,1(m′, `′)

)}
, (A9)

B4 :
{
∀(m, `) E c

Tx,1(m, `)
}

∩
{
∃(m, m′, `, `′) s.t. ETx,2(m, `) ∩ ERx,1(m′, `′)

}
, (A10)

B5 :
{
∀(m, `) E c

Tx,1(m, `) and E c
Tx,2(m, `)

}
∩
{
∃(m′, `′) s.t. ERx,1(m′, `′)

}
. (A11)

Thus, we have

EC
[
β1,n

]
≤

5

∑
i=1

Pr
[
Bi
∣∣H = h1

]
. (A12)

The probabilities of events B1, B2, B3 and B5 can be bounded following similar steps
to [15] (Appendix A). This yields:

Pr
[
B1
∣∣H = h1

]
≤ 2−n(θµ,standard,1−δ1(µ)), (A13)

Pr
[
B2
∣∣H = h1

]
≤ 2−n(θµ,dec,1−δ2(µ)), (A14)

Pr
[
B3
∣∣H = h1

]
≤ 2−n(θµ,dec,1−δ3(µ)), (A15)

Pr
[
B5
∣∣H = h1

]
≤ 2−n(θµ,miss,1−δ5(µ)), (A16)

for some functions δ1(µ), δ2(µ), δ3(µ) and δ5(µ) that go to zero as n goes to infinity and
µ→ 0, and where we define:
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θstandard,i := min
P̃SXYi

:

|πSX−pi
SX |<µ/2

|πSYi
−pi

SYi
|<µ

D(πSXYi‖pi
S|Xqi

XYi
), (A17)

θdec,i := min
P̃SXYi

:

|πSX−pi
SX |<µ/2

|πYi
−pi

Yi
|<µ

Hpi (S|Yi)≤Hπ(S|Yi)

D(πSXYi‖pi
S|Xqi

XYi
)− Ipi (S; X|Yi) + Ipi (W; Vi|T, Ti), (A18)

θmiss,i := D(pi
Yi
‖qi

Yi
) +EpT

[
D
(

pi
Vi |T‖ΓVi |W=T

)]
− Ipi (S; X|Yi) + Ipi (W; Vi|T, Ti).

(A19)

Consider event B4:

Pr
[
B4|H = h1

]
≤ ∑

m,`
∑

m′ ,`′
Pr
[
(Sn(2; m, `), Xn) ∈ T n

µ/2(p2
SX), (Tn, Wn(2; m)) ∈ T n

µ/2(p2
TW),

Wn(2; m) is sent, (Sn(1; m′, `′), Yn
1 ) ∈ T n

µ (p1
SY1

),

(Tn, Tn
1 , Wn(1; m′), Vn

1 ) ∈ T n
µ (p1

TT1WV1
)

Htp(Sn(1;m′ ,`′),Yn
1 )
(S|Y1) = min

˜̀
Htp(Sn(1;m′ , ˜̀),Yn

1 )
(S|Y1)

∣∣H = h1

]
(a)
≤ ∑

m,`
∑

m′ ,`′
Pr
[
(Sn(2; m, `), Xn) ∈ T n

µ/2(p2
SX), (Sn(1; m′, `′), Yn

1 ) ∈ T n
µ (p1

SY1
),

Htp(Sn(1;m′ ,`′),Yn
1 )
(S|Y1) = min

˜̀
Htp(Sn(1;m′ , ˜̀),Yn

1 )
(S|Y1)

∣∣H = h1

]
· Pr

[
(Tn, Tn

1 , Wn(1; m′), Vn
1 ) ∈ T n

µ (p1
TT1WV1

),

(Tn, Wn(2; m)) ∈ T n
µ/2(p2

TW)
∣∣

Wn(2; m) is sent, H = h1

]
(b)
≤ 2n(R1+R′1+R2+R′2) · max

πSS′XY1
:

|πSX−p2
SX |<µ/2

|πS′Y1
−p1

SY1
|<µ

Hπ(S′ |Y1)≤Hπ(S|Y1)

2−n
(

D
(

πSS′XY1
‖p2

S p1
S′ q

1
XY1

)
−µ
)

· max
πTT1W′WV1

:

|πTW−p2
TW |<µ/2

|πTT1W′V1
−p1

TT1WV1
|<µ

2
−n
(

D
(

πTT1W′WV1
‖pT p1

T1 |T
p1

W′ |TT1
p2

W|TΓV1 |W

)
−µ

)
, (A20)

where (a) holds because the channel code is drawn independently of the source code and
(b) holds by Sanov’s theorem.
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Define

θ̃µ,cross,1 := min
πSS′XY1

:

|πSX−p2
SX |<µ/2

|πS′Y1
−p1

SY1
|<µ

Hπ(S′ |Y1)≤Hπ(S|Y1)

D
(

πSS′XY1
‖p2

S p1
S′q

1
XY1

)

+ min
πTT1W′WV1

:

|πTW−p2
TW |<µ/2

|πTT1W′V1
−p1

TT1WV1
|<µ

D
(

πTT1W ′WV1
‖pT p1

T1|T p1
W ′ |TT1

p2
W|TΓV1|W

)

− R1 − R2 − R′1 − R′2 − 2µ, (A21)

and notice that

θ̃µ,cross,1

((37)&(38))
= min

πSS′XY1
:

|πSX−p2
SX |<µ/2

|πS′Y1
−p1

SY1
|<µ

Hπ(S′ |Y1)≤Hπ(S|Y1)

D
(

πSS′XY1
‖p2

S p1
S′q

1
XY1

)

+ min
πTT1W′WV1

:

|πTW−p2
TW |<µ

|πTT1W′V1
−p1

TT1WV1
|<µ

D
(

πTT1W ′WV1
‖pT p1

T1|T p1
W ′ |TT1

p2
W|TΓV1|W

)

−Ip1(S; X)− Ip2(S; X)− 4µ

(c)
= min

πSS′XY1
:

|πSX−q1
SX |<µ/2

|πS′Y1
−p1

SY1
|<µ

Hπ(S′ |Y1)≤Hπ(S|Y1)

D
(

πSS′XY1
‖q1

S p1
S′q

1
XY1

)

+ min
πTT1W′WV1

:

|πTW−q1
TW |<µ

|πTT1W′V1
−p1

TT1WV1
|<µ

D
(

πTT1W ′WV1
‖pT p1

T1|T p1
W ′ |TT1

q1
W|TΓV1|W

)

−Ip1(S; X)− Iq1(S; X)− 4µ

(CR)
= min

πSS′XY1
:

|πSX−q1
SX |<µ/2

|πS′Y1
−p1

SY1
|<µ

Hπ(S′ |Y1)≤Hπ(S|Y1)

[
D
(

πSXY1‖q
1
S|Xq1

XY1

)
+EπSXY1

[
D(πS′ |SXY1

‖p1
S′)
]]

−Ip1(S; X)

+ min
πTT1W′WV1

:

|πTW−q1
TW |<µ

|πTT1W′V1
−p1

TT1WV1
|<µ

[
D(πTT1W ′W‖p1

TT1
p1

W ′ |TT1
q1

W|T)

+ETT1W ′W

[
D(πV1|TT1W ′W‖πV1|TT1

) + D(πV1|TT1
‖ΓV1|W)

]]
−4µ
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(DP)
≥ min

πSS′XY1
:

|πSX−q1
SX |<µ/2

|πS′Y1
−p1

SY1
|<µ

Hπ(S′ |Y1)≤Hπ(S|Y1)

[
D
(

πSXY1‖q
1
S|Xq1

XY1

)
+EπY1

[
D(πS′ |Y1

‖p1
S′)
]]
− Ip1(S; X)

+ min
πTT1W′WV1

:

|πTW−q1
TW |<µ

|πTT1W′V1
−p1

TT1WV1
|<µ

[
EπTT1W′

[
D(πV1|TT1W ′‖πV1|TT1

) + D(πV1|TT1
‖ΓV1|W)

]

−4µ

(d)
= min

πSXY1
:

|πY1
−p1

Y1
|<µ

Hp1 (S|Y1)≤Hπ(S|Y1)

Eq1
XS

[
D
(

πY1|XS‖q1
Y1|X

)]
+ Ip1(S; Y1)− Ip1(S; X)

+Ip1(V1; W|T, T1) + min
πTT1WV1

:
|πTW−q1

TW |<µ

|πTT1V1−p1
TT1V1

|<µ

EπTT1W

[
D(p1

V1|TT1
‖ΓV1|W)

]
− δ3(µ)

= θµ,cross,1 − δ4(µ) (A22)

for a function δ4(µ) that goes to zero as µ→ 0 and

θµ,cross,1 := min
πSXY1

:
|πY1
−p1

Y1
|<µ

Hp1 (S|Y1)≤Hπ(S|Y1)

Eq1
XS

[
D
(

πY1|XS‖q1
Y1|X

)]
+ Ip1(S; Y1)− Ip1(S; X)

+Ip1(V1; W|T, T1) + min
πTT1WV1

:
|πTW−q1

TW |<µ

|πTT1V1−p1
TT1V1

|<µ

EπTT1W

[
D(p1

V1|TT1
‖ΓV1|W)

]
. (A23)

Here, (c) holds because the condition p1
X 6= p2

X implies that h1 = h̄2 and thus p2 = q1,
and (d) holds by the constraints in the minimizations.

Combining (A20), (A21) and (A22) establishes:

Pr
[
B4
∣∣H = h1

]
≤ 2−n(θµ,cross,1−δ3(µ)). (A24)

Considering (A12)–(A16) and (A24), we get:

EC
[
β1,n

]
≤ max{2−n(θµ,standard,1−δ1(µ)), 2−n(θµ,dec,1−δ2(µ)), 2−n(θµ,dec,1−δ′2(µ)), 2−n(θµ,cross,1−δ3(µ)), 2−n(θµ,miss,1−δ4(µ))}. (A25)

By standard arguments and successively eliminating the worst half of the codewords
with respect to α1,n and the exponents θµ,standard,1, θµ,dec,1, θµ,cross,1 and θµ,miss,1, it can be
shown that there exists at least one codebook for which

α1,n < ε, (A26)

β1,n ≤ 32 ·max{2−n(θµ,standard,1−δ1(µ)), 2−n(θµ,dec,1−δ2(µ)), 2−n(θµ,dec,1−δ′2(µ)), 2−n(θµ,cross,1−δ3(µ)), 2−n(θµ,miss,1−δ4(µ))}. (A27)
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Letting µ → 0 and n → ∞, we get θµ,standard,1 → θstandard,1, θµ,dec,1 → θdec,1,
θµ,cross,1 → θcross,1 and θµ,miss,1 → θmiss,1. A similar bound can be found for θ2. This
concludes the proof.

References
1. Ahlswede, R.; Csiszár, I. Hypothesis testing with communication constraints. IEEE Trans. Inf. Theory 1986, 32, 533–542. [CrossRef]
2. Han, T.S. Hypothesis testing with multiterminal data compression. IEEE Trans. Inf. Theory 1987, 33, 759–772. [CrossRef]
3. Shimokawa, H.; Han, T.; Amari, S.I. Error bound for hypothesis testing with data compression. In Proceedings of the 1994 IEEE

International Symposium on Information Theory, Trondheim, Norway, 27 June–1 July 1994; p. 114.
4. Shimokawa, H. Hypothesis Testing with Multiterminal Data Compression. Master’s Thesis, University of Tokyo,

Tokyo, Janpan, 1994.
5. Weinberger, N.; Kochman, Y. On the reliability function of distributed hypothesis testing under optimal detection. IEEE Trans.

Inf. Theory 2019, 65, 4940–4965. [CrossRef]
6. Rahman, M.S.; Wagner, A.B. On the optimality of binning for distributed hypothesis testing. IEEE Trans. Inf. Theory 2012, 58,

6282–6303. [CrossRef]
7. Zhao, W.; Lai, L. Distributed testing against independence with multiple terminals. In Proceedings of the 2014 52nd Annual

Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 30 September–3 October 2014;
pp. 1246–1251.

8. Xiang, Y.; Kim, Y.H. Interactive hypothesis testing against independence. In Proceedings of the 2013 IEEE International
Symposium on Information Theory, Istanbul, Turkey, 7–12 July 2013; pp. 2840–2844.

9. Katz, G.; Piantanida, P.; Debbah, M. Collaborative distributed hypothesis testing with general hypotheses. In Proceedings of the
2016 IEEE International Symposium on Information Theory (ISIT), Barcelona, Spain, 10–15 July 2016; pp. 1705–1709.

10. Salehkalaibar, S.; Wigger, M.; Timo, R. On hypothesis testing against independence with multiple decision centers. IEEE Trans.
Commun. 2018, 66, 2409–2420. [CrossRef]

11. Salehkalaibar, S.; Wigger, M.; Wang, L. Hypothesis testing over the two-hop relay network. IEEE Trans. Inf. Theory 2019, 65,
4411–4433. [CrossRef]

12. Escamilla, P.; Wigger, M.; Zaidi, A. Distributed hypothesis testing with concurrent detection. In Proceedings of the 2018 IEEE
International Symposium on Information Theory (ISIT), Vail, CO, USA, 17–22 June 2018.

13. Escamilla, P.; Wigger, M.; Zaidi, A. Distributed hypothesis testing: Cooperation and concurrent detection. IEEE Trans. Inf. Theory
2020, 66, 7550–7564. [CrossRef]

14. Tian, C.; Chen, J. Successive refinement for hypothesis testing and lossless one-helper problem. IEEE Trans. Inf. Theory 2008, 54,
4666–4681. [CrossRef]

15. Salehkalaibar, S.; Wigger, M. Distributed hypothesis testing based on unequal error protection codes. IEEE Trans. Inf. Theory 2020,
66, 4150–4182. [CrossRef]

16. Sreekumar, S.; Gündüz, D. Distributed hypothesis testing over discrete memoryless channels. IEEE Trans. Inf. Theory 2020, 66,
2044–2066. [CrossRef]

17. Borade, S.; Nakiboglu, B.; Zheng, L. Unequal error protection: An information-theoretic perspective. IEEE Trans. Inf. Theory 2009,
55, 5511–5539. [CrossRef]

18. El Gamal, A.; Kim, Y.H. Network Information Theory; Cambridge University Press: Cambridge, MA, USA, 2011.

http://doi.org/10.1109/TIT.1986.1057194
http://dx.doi.org/10.1109/TIT.1987.1057383
http://dx.doi.org/10.1109/TIT.2019.2910065
http://dx.doi.org/10.1109/TIT.2012.2206793
http://dx.doi.org/10.1109/TCOMM.2018.2798659
http://dx.doi.org/10.1109/TIT.2019.2897698
http://dx.doi.org/10.1109/TIT.2020.3019654
http://dx.doi.org/10.1109/TIT.2008.928951
http://dx.doi.org/10.1109/TIT.2020.2993172
http://dx.doi.org/10.1109/TIT.2019.2953750
http://dx.doi.org/10.1109/TIT.2009.2032819

	Introduction
	System Model
	Results on Exponents Region
	Achievable Exponent for Point-to-Point Channels
	Achievable Exponents Region When h1 =h2 and PX=QX
	Achievable Exponents Region for h1=h2 or PX=QX

	Coding and Testing Scheme When pX1 =pX2
	Coding and Testing Scheme When pX1 = pX2
	Summary and Conclusions
	Proof of Theorem 2
	References

