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Multifidelity Surrogate Modeling for Time-Series Outputs* 

Baptiste Kerleguer\dagger  
 

Abstract. This paper considers the surrogate modeling of a complex numerical code in a multifidelity frame- 
work when the code output is a time series and two code levels are available:  a high-fidelity and 
expensive code level and a low-fidelity and cheap code level. The goal is to emulate a fast-running 
approximation of the high-fidelity code level. An original Gaussian process regression method is 
proposed that uses an experimental design of the low- and high-fidelity code levels. The code output 
is expanded on a basis built from the experimental design. The first coefficients of the expansion 
of the code output are processed by a cokriging approach. The last coefficients are processed by a 
kriging approach with covariance tensorization. The resulting surrogate model provides a predictive 
mean and a predictive variance of the output of the high-fidelity code level. It is shown to have 
better performance in terms of prediction errors than standard dimension reduction techniques. 
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1. Introduction. Advances in scientific modeling have led to the development of complex 
and computationally expensive codes. To solve the problem of computation time for tasks such 
as optimization or calibration of complex numerical codes, surrogate models are used. The 
surrogate modeling approach consists in building a surrogate model of a complex numerical 
code from a data set computed from an experimental design. A well-known method to build 
surrogate models is Gaussian process (GP) regression. This method, also called kriging, was 
originally proposed by [16] for geostatistics. This method has subsequently been used for 
computer experiments and in particular in the field of uncertainty quantification (UQ); see 
[32, 34]. 

It is common for complex codes to have different versions that are more or less accurate and 
more or less computationally expensive. The particular case that interests us is when codes are 
hierarchical; i.e., they are classified according to their computational cost and their accuracy. 
The more accurate the code, the more expensive it is. The autoregressive scheme presented 
by [14] is the first major result in the field of multifidelity GP regression. This technique has 
been amended by [21] in order to reduce the overall cokriging problem to several independent 
kriging problems. The papers [10, 29] present different application cases, and [9] is a synthesis 
of the use of multifidelity for surrogate modeling. In [22], the author introduces objective 
prior for the hyperparameters of the autoregressive model. 
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New methods for multifidelity surrogate modeling have been introduced. In particular, 
deep GPs have been proposed to solve cases where the interactions between code levels are 
more complex [27]. This type of methods can deal with UQ [4], but they are time consuming 
and do not scale up the dimension of outputs. Neural networks have also been used to emulate 
multifidelity computer codes. In particular, the method proposed in [23] is a neural network 
method with an AR(1)-based model and is scalable to high-dimensional outputs. However, 
UQ is not taken into account in this method. 

Among the codes with high-dimensional outputs, we are interested in those whose outputs 
are functions of one variable. When they are sampled, such outputs are called time series. 
Previous work has solved the problem of functional outputs only in the single-fidelity case. 
Two methods have been considered to solve the single-fidelity problem: reduce the dimension 
of the outputs [25] or adapt the covariance kernel [30]. In the context of dimension reduction, 
surrogate models generally neglect the UQ of the dimension reduction, which can be prob- 
lematic for the quantification of prediction uncertainty. Moreover, large data sets (containing 
many low-fidelity data) lead to ill-conditioned covariance matrices that are difficult to invert. 
As proposed in [28], it is possible to strongly constrain the covariance kernel, which makes 
it possible to improve the estimation compared to the dimension reduction method. How- 
ever, this method implies that the covariance must be separable, which reduces the use cases. 
Knowing that the AR(1) multifidelity model for GP regression uses cokriging, [26] presents 
an interesting approach for cokriging in the context of functional outputs, which is based on 
dimension reduction. An approach to multifidelity with functional outputs is presented in [11] 
for multivariate Hilbert space valued random fields. 

In this work, we introduce an original approach to the construction of a surrogate model 
in the framework of hierarchical multifidelity codes with time-series outputs. The main idea is 
to combine a reduction method of the output dimension that fits well with the autoregressive 
model of multifidelity cokriging and a special single-fidelity method that allows to treat time- 
series output by GP regression with covariance tensorization. We address the case of one 
high-fidelity code and one low-fidelity code. 

In section 2, we present the problem of multifidelity surrogate model for time-series out- 
puts. Then we present our model to solve this problem. 

The following three sections present the three parts of the method. In section 3, we present 
the method to reduce the dimension. Section 4 presents the multifidelity regression method 
for scalar outputs. The GP regression with the tensorized covariance method is presented in 
section 5. 

In section 6, we find the calculation of the posterior mean and variance of the model. 
This section is divided into two subsections: one where we make the assumption that the 
orthogonal part is zero and one where we relax this assumption. In each subsection, we 
use two different constructions: the Dirac distribution and the cross-validation--based (CVB) 
method of dimension reduction. 

The results presented in the numerical example in section 7 confirm that the processing 
of the orthogonal part is important. In this example, we test the different methods presented 
in the paper as well as neural network state-of-the-art multifidelity methods, and we assess 
their performance in terms of prediction errors and UQ. 
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2. The AR(1) multifidelity model with tensorized covariance and projection. The auto- 
regressive multifidelity model has been introduced by [14]. The authors in [21] have simplified 
the computation. We present our AR model in section 4. In parallel, GP regression has been 
used with covariance tensorization in [30] and improved in [3, 28]. This method allows to 
extend GP regression to time-series outputs. We have exploited this method to build our own 
methodology for time-series regression, and we present it in section 5. 

Let us consider a complex numerical code where the input is a point \bfitx Q, with Q being 
a domain in \BbbR d and the output a function of a one-dimensional variable. We are interested 
in hierarchical codes, which means that there are several code levels that can be classified 
according to their fidelity. In this work, we focus on only two code levels: a high-fidelity 
code and a low-fidelity code. In what follows, H represents the high-fidelity code and L the 

low-fidelity code, and the generic notation is F \in \{ H, L\} . For any given input \bfitx , we can 

run the F code and observe the data z\mathrm{F}(\bfitx , t) for all t in a fixed regular grid \{ tu, u = 1, . . . , 

Nt\} in [0, 1]. However, the cost of the code allows only a limited number of code calls. 

This induces the use of the experimental design D\mathrm{F} = \{ \bfitx (1), . . . , \bfitx (N\mathrm{F} )\} . N\mathrm{F} is the 
number of observations 
of the code F. The Nt \times N\mathrm{F} matrix containing the observations for \bfitx \in D\mathrm{F} is \bfitZ \mathrm{F} . 
Our 
goal is to predict the values of (zH(\bfitx , tu))u=1,...,Nt 

H 
\mathrm{o}\mathrm{b}\mathrm{s} 

L 
\mathrm{o}\mathrm{b}\mathrm{s} ) for a point \bfitx \in Q with 

the quantification of the prediction uncertainty. We model the prior knowledge of the code 

output (zL, zH) as a GP (ZL, ZH). We denote by \scrZ \mathrm{F} the random vector containing the random 
variables (Z\mathrm{F}(\bfitx (i), tu))u=1,...,N . The combination of \scrZ L and \scrZ H is \scrZ . 

 

2.1. Decomposition. We recall that (ZL, ZH) is a stochastic process. The temporal grid 

is tu u\in \{ 1,...,Nt\} . We assume a hierarchical model. First, we define a model for the basis, 
determined by an orthogonal matrix \bfGamma , in the space \BbbR Nt of the time-series outputs. Second, 
given the basis, we propose a model for the \bfitx -dependent coefficients of the decomposition of 
(ZL, ZH) onto this basis. 

Without prior knowledge, the matrix \bfGamma is assumed to have a noninformative distribution 

in the orthogonal group ONt , the group of Nt \times Nt orthogonal matrices. 
Projection. Let N be an integer, smaller than the time dimension Nt. Let \bfGamma be an orthog- 

onal matrix; as presented in section 3, the columns of \bfGamma are \{ \Gamma i\} i=1,\cdot \cdot \cdot ,Nt . As 
discussed in subsection 6.1.3, the full computation of all Nt surrogate models may not give good 
results. 

This leads to the idea of the introduction of the orthogonal subspaces SN and S\bot , where 

S = span\{ \Gamma 1, . . . , \Gamma N \} and S\bot = span\{ \Gamma N+1, . . . , \Gamma N \} . 
With a given basis \bfGamma , it is possible to decompose the code outputs. The decomposition 

over the basis \bfGamma gives us coefficients. We decompose ZH and ZL over the subspace SN 
rest are denoted Z\bot and Z\bot . Consequently, we get 

. The 

H L 
 

(2.1) ZL(\bfitx , tu) = Z  (\bfitx , tu) + Z\bot (\bfitx , tu) = 
\sum 

Ai,L(\bfitx )\Gamma i(tu) + Z\bot (\bfitx , tu) 

 
and 

L L L 
i=1 

 
(2.2) ZH(\bfitx , tu) = Z (\bfitx , tu) + Z\bot (\bfitx , tu) = 

\sum 
Ai,H(\bfitx )\Gamma i(tu) + Z\bot (\bfitx , tu). 

 

 

u=1,...,Nt 

i=1 

 

given (\bfitZ  , \bfitZ  

H 
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\left\{ 

Ai,H(\bfitx )  =  \rho i,L(\bfitx )A\~i,L( \b f i t x ) + \delta i(\bfitx ), 

i,L i,L 

We are able to describe the code outputs with the basis \bfGamma N = \{ \Gamma i\} i=1,...,N of SN , the 
coefficients Ai,H and Ai,L, and the orthogonal parts Z\bot and Z\bot . Let (\alpha i,\mathrm{F}(\bfitx ))N

 be the 

\BbbR Nt -valued function: 
L H i=1 

N 

(2.3) \alpha i,\mathrm{F}(\bfitx ) = z\ ma thr m{F}(\bfitx , tu ) \ Ga mma i(tu). 
u=1 

We denote by \alpha \ mat hr m{F }  the 1 \times  NF  row vector (\alpha i,\ mat h r m{F }(\bfitx (j)))NF      that contains the available data.  The 
full data set is \alpha = (\alpha L, \alpha H). The expression of the posterior of \alpha i,\mathrm{F} is given in section 4. 

We will use the method presented in section 4 for all i \leq N . Given \bfGamma , 

 

(2.4) 

 
where 

A\~i,L( \ b f i t x ) \bot \delta i(\bfitx ), 

\rho i,L(\bfitx ) =  g (\bfitx )\beta i,\rho L , 

[\delta i(\bfitx )| \bfGamma , \beta i,H, \sigma i,H] \sim \scrG \scrP 
\bigl( 

f T (\bfitx )\beta i,H, \sigma 2 ri,H(\bfitx , \bfitx \prime )
\bigr) 

 

and A\~i,L(\bfitx ) is a GP conditioned by \alpha L. Its distribution is the one of [Ai,L(\bfitx )| \bfGamma , \scrA L 

= 

\alpha L, \beta L, \sigma L], where the law of [Ai,L(\bfitx )| \bfGamma , \beta i,L, \sigma i,L] is of the form 

(2.5) [Ai,L(\bfitx )| \bfGamma , \beta i,L, \sigma i,L] \sim \scrG \scrP 
\bigl( 

f T (\bfitx )\beta i,L, \sigma 2 ri,L(\bfitx , \bfitx \prime )
\bigr) 

. 

gi are vectors of q regression functions, fi,\mathrm{F}(\bfitx ) are vectors of p\mathrm{F} regression functions, ri,\mathrm{F}(\bfitx , \bfitx \prime 

) are correlation functions, \beta i,\mathrm{F} are p\mathrm{F}-dimensional vectors, \beta i,\rho L are q-dimensional vectors, 
and 

2 
i,\mathrm{F} are positive real numbers. 

For the orthogonal part projected onto S\bot , the method is different. The hypothesis is 
that the projection Z\bot (\bfitx , tu) of ZL(\bfitx , tu) has a negligible influence on the projection Z\bot (\bfitx , 
tu) 

L H 

of ZH(\bfitx , tu). Our assumption is that Z\bot (\bfitx , tu) is a GP with a tensorized covariance. The 
method we will use on Z\bot (\bfitx , tu) is described in section 5. 

Note that the value N = 0 corresponds to full single fidelity; in this case, we use only GP 
regression with covariance tensorization as in section 5. For N = NL, the dimension reduction 

is minimal, and cokriging is applied to all pairs (Ai,L, Ai,H) for i \leq NL. We will see in section 
7 that the optimal N is in fact positive but smaller than NL. 

3. The basis \bfGamma . In this section, we present different models for the random orthogonal 
matrix \bfGamma . Its law depends on the available information. If we have access to a lot of infor- 
mation based on the output of our code, we can use a Dirac distribution concentrated on one 
orthogonal matrix \bfitgamma (it is a form of plug-in method). In contrast, the least informative law 
is the uniform law, i.e., the Haar measure over the group of orthogonal matrices. In order to 
make the best use of the available information, i.e., the known results of the code, an empirical 
law can be used. 

3.1. Dirac distribution. We can choose the distribution of the random matrix \bfGamma as a 
Dirac distribution concentrated on a well-chosen orthogonal matrix \bfitgamma . This matrix is chosen 

\sigma  

, 
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\times  

I \b ig l( N
L

\bigr)  [J1,...,Jk ] 

k 

when the basis is known a priori or if the basis can be efficiently estimated from the observed 
code outputs. Motivated by the remark below (2.1), the matrix \bfitgamma can be computed using the 
singular value decomposition (SVD) of the code outputs. 

The general idea is to choose subsets D\ ~  \mathrm{F} \subset D\mathrm{F} of size N\~ \ m a t h r m { F }  and to apply an 
SVD on 

the Nt (N\ ~ H + N\ ~ L ) matrix \bfitZ \~ 
\mathrm{o}\mathrm{b}\mathrm{s} that contains the observed values (zH(\bfitx , tu))u=1,...,Nt 

\bfitx \in D\ ~  
H 

and 

(zL(\bfitx , tu))u=1,...,Nt . The SVD gives 
\bfitx \in D\ ~  

L 

 

(3.1) 

The choice of \bfitgamma is \bfitU \~ . 

 

 

\bfitZ \~ 

 

 

= \bfitU \~ \bfLambda \~ \bfitV \~ T 
. 

The first idea is to mix all available data, high- and low-fidelity: D\ ~  H = DH and D\ ~  L = DL. 

However, we typically have that NL \gg NH, so the basis is mainly built from the low-fidelity 
data. In addition, the small differences in the data between high- and low-fidelity code outputs 
that would be useful to build the basis have negligible impact because they are overwhelmed 
by the low-fidelity data. This method is not appropriate in our framework. 

We have to choose between high- and low-fidelity. High-fidelity has the advantage of being 
closer to the desired result. However, it is also almost impossible to validate the chosen \bfitgamma 

because the high-fidelity data size NH is small. The low-fidelity data set is larger; hence, 
the estimation of \bfitgamma is more robust. In order to choose \bfitgamma , we therefore suggest to use the 

low-fidelity data and to calculate the SVD with D\ ~  H = \emptyset and D\ ~  L = DL. 

3.2. Uniform distribution. We can choose a random matrix \bfGamma using the Haar measure 

on the orthogonal group ONt , the group of Nt \times Nt orthogonal matrices. This is the 
uniform orthogonal matrix law. 

To generate a random matrix from the Haar measure over ONt , one can first generate 

an Nt \times Nt matrix with independent and identically distributed coefficients with the reduced 
normal distribution, then apply the Gram--Schmidt process onto the matrix. As shown in [5], 
this generator produces a random orthogonal matrix with the uniform orthogonal matrix law. 
This method completely ignores the available data and is not appropriate in our framework. 

3.3. CVB distribution. The downside of the Dirac distribution is that the uncertainties 
on the basis estimation are not taken into account. A CVB method to assess the uncertainty 
estimation is therefore considered. 

The proposed method uses only the low-fidelity data because it is assumed that there are 

too few high-fidelity data to implement this method, so D\ ~  H = \emptyset . For the construction of the 
basis, we try to have different sets to evaluate the basis in order to have empirical estimates of 

the moments of the basis vectors. Let k be a fixed integer in \{ 1, . . . , NL\} . Let I = \{ J1, 

. . . , Jk\} be a random set of k elements in \{ 1, . . . , NL\} , with uniform distribution 

over the subsets of k elements in \{ 1, . . . , NL\} . The empirical distribution for the 

matrix \bfGamma is defined as follows: For any bounded function f : ONt \rightarrow \BbbR , 

 1  
(3.2) \BbbE [f (\bfGamma )] = 

 

\sum   

f (\bfitU \~ ), 

\mathrm{o}\mathrm{b}\mathrm{s} 

\{ j1,...,jk \} \subset \{ 1,...,NL\}  
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where \bfitU \~ 
[J ,...,J ]  is the matrix of the left singular vectors of the SVD of (zL(\bfitx (i), 

tu)) u\in {1,...,Nt} 
i\in {1,...,NL}\{J1,...,Jk } 

in section 7. 

. This distribution depends on the choice of k, which will be discussed 

4. Multifidelity coefficients Ai. In this section, we want to build a surrogate model of a 

code \alpha H(\bfitx ) whose input \bfitx is in Q c \BbbR d and whose scalar output is in \BbbR . The construction 
of a surrogate model for complex computer code is difficult because of the lack of available 
experimental outputs.  We consider the situation in which a cheaper and approximate code 
\alpha L(\bfitx ) is available. In this section, we apply the regression method presented by [14], reviewed 
in [8], and improved in [21]. 

We model the prior knowledge of the code output (\alpha L, \alpha H) as a GP (AL, AH). The vector 
containing the values of \alpha \mathrm{F}(\bfitx ) at the points of the experimental design D\mathrm{F} are denoted by 

\alpha \mathrm{F}, and A\mathrm{F} is the Gaussian vector containing A\mathrm{F}(\bfitx ), \bfitx ∈ D\mathrm{F}. The combination of AL 

and AH is A. So is \alpha , the combination of \alpha L and \alpha H. We present the recursive model of 

multifidelity introduced by [21]. The experimental design is constructed such that DH c DL. 
We assume that the low-fidelity code is computationally cheap and that we have access to a 

large experimental design for the low-fidelity code, i.e., NL \gg NH. 
We consider the hierarchical model introduced by [21], 

 
\left\{ 

AH(\bfitx )  =  \rho L(\bfitx )A\~L( \ b f i t x  ) + \delta (\bfitx ), 

 

 

where ⊥ means independence, T stands for the transpose, 

(4.2) [\delta (\bfitx )|\beta H ,  \sigma H ] ~ 5P 
\bigl( 

f T (\bfitx )\beta H, \sigma 2 rH(\bfitx , \bfitx r)
\bigr) 

, 

and A\~L( \bfitx ) is a GP conditioned by the values \alpha L. Its distribution is the one of [AL(\bfitx )|AL = 
\alpha , \beta L, \sigma L] with 

(4.3) [AL(\bfitx )|\beta L, \sigma L] ~ 5P 
\bigl( 

f T (\bfitx )\beta L, \sigma 2 rL(\bfitx , \bfitx r)
\bigr) 

. 

Therefore, the distribution of A\~L( \b f i t x ) is Gaussian with mean \mu A\~ (\bfitx ) and variance \sigma 2 
AL 

(\bfitx ): 

 

(4.4) \mu \~ (\bfitx ) =f T (\bfitx )\beta L + rT (\bfitx )C—1 
\bigl( 

\alpha L — FL \beta L
\bigr) 

, 
 

(4.5) \sigma 2 
(\bfitx ) =\sigma 2(rL(\bfitx , \bfitx ) — rT (\bfitx )C—1rL(\bfitx )). 

 
Here 

- 5P means a GP; 
- gL(\bfitx ) is a vector of qL regression functions; 
- f\mathrm{F}(\bfitx ) are vectors of p\mathrm{F} regression functions; 

- r\mathrm{F}(\bfitx , \bfitx r) are correlation functions; 

(4.1) A\~L(\bfitx ) \delta (\bfitx ), 
\rho L(\bfitx ) = gT (\bfitx )\beta \rho , 

L 
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i=1 

i,j=1 

\mathrm{F} 

AH 

H 

× 

t 

AH L \rho  A\~
L H H H H 

- \beta \mathrm{F} are p\mathrm{F}-dimensional vectors; 
2 

\mathrm{F} are positive real numbers; 

- \beta \rho is a q-dimensional vector of adjustment parameters; 
- C\mathrm{F} = (r\mathrm{ F}(\bfitx (i), \bfitx (j)))N\mathrm{F}

 

- r\mathrm{F}(\bfitx ) = (r\mathrm{F}(\bfitx , \bfitx (i)))N\mathrm{F}
 

is the N\mathrm{F} × N\mathrm{F} correlation matrix of A\mathrm{F}; 
is the N\mathrm{F}-dimensional vector of correlations between A\mathrm{F}(\bfitx ) 

and A\mathrm{F}; 

- F\mathrm{F} is the N\mathrm{F} × p\mathrm{F} matrix containing the values of f T (\bfitx ) for \bfitx ∈ D\mathrm{F}. 

For \bfitx ∈ Q, the conditional distribution of AH(\bfitx ) is 

(4.6) 
\bigl[ 

AH(\bfitx )|A = \alpha , \beta , \beta \rho , \sigma 2
\bigr] 

~ N 
\bigl( 

\mu A 
 
(\bfitx ), \sigma 2 (\bfitx )

\bigr) 
, 

where \beta = (\beta T , \beta T )T is the pH + pL-dimensional vector of regression parameters, \sigma 2 = (\sigma 2 , \sigma 2 ) 
H L L H 

are the variance parameters 
 

\mu A (\bfitx ) =gT (\bfitx )\beta \rho \mu \~ (\bfitx ) + f T (\bfitx )\beta H 
H L AL H 

(4.7) + rT (\bfitx )C—1 
\bigl( 

\alpha H — \rho L(DH) ⊙ \alpha L(DH) — FH \beta H
\bigr) 

, 
H H 

and 

(4.8) \sigma 2  (\bfitx ) = 
\bigl( 

gT (\bfitx )\beta 
\bigr) 2 

\sigma 2 (\bfitx ) + \sigma 2 
\bigl( 

1 — rT (\bfitx )C—1r (\bfitx )
\bigr) 

. 

The notation ⊙ is the element by element matrix product, \rho L(DH) is the NH-dimensional 

vector containing the values of \rho L(\bfitx ) for \bfitx ∈ DH, and \alpha L(DH) is the NH-dimensional vector 
containing the values of \alpha L(\bfitx ) at the points of DH. 

The prior distributions of the parameters \beta and \sigma are given in Appendix A. The hyper- 
parameters of the covariance kernels rL and rH can be estimated by maximum likelihood or 
by leave-one-out (LOO) cross validation [2]. The nested property of the experimental design 

sets DH c DL is not necessary to build the model, but it is simpler to estimate the parameters 
with this assumption [36]. Moreover, the ranking of codes and the low computer cost of the 
low-fidelity code allow for a nested design for practical applications. 

5. The orthogonal part Z⊥. In this subsection, we address GP regression for a simple- 
fidelity code with time-series output. For the calculation of surrogate models with functional 
outputs, there are two different techniques. The simplest ones are dimension reduction tech- 
niques as presented in [1, 25]. An alternative is presented here; this method is GP regression 
with covariance tensorization. The method is presented in [30] and the estimation of the 
hyperparameters is from [28]. 

In this section and the following ones, we consider that the output is a time-dependent 

function observed on a fixed time grid {tu}u=1,··· ,Nt , with Nt \gg 1, which is called a time series. 
The experimental design in a times-series output case is very different from a scalar output 

case. In particular, for a value \bfitx in the experimental design D, all the tu for u = 1, · · · , Nt 
are in the experimental design. The Nt Nx matrix containing the observations is \bfitZ \mathrm{o}\mathrm{b}\mathrm{s} = 
(z(\bfitx (i), tu))u=1,...,N . In GP regression, we model the prior knowledge of the code output as 

i=1,...,Nx 

a GP Z(\bfitx , tu) with \bfitx ∈ Q and u = 1, . . . , Nt with a covariance function C given by (5.2) and 
a mean function \mu given by (5.1). We focus our attention to the case Nt > Nx. We assume 

- \sigma  

H 
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× 

that the covariance structure can be decomposed into two different functions representing 
the correlation in \bfitx and the correlation in t. If we choose well both functions, the kriging 
calculation is possible [28, 30]. 

In the following, we present a simplification of the method proposed in [28]. The a priori 
BbbR Nt -valued mean function is assumed to be of the form 

(5.1) \mu (\bfitx ) = Bf (\bfitx ), 

where f (\bfitx ) is a given \BbbR M -valued function and B ∈ \scrM N xM (\BbbR ) is to be estimated. We define 
by F the Nx M matrix [f T (\bfitx (i))]i=1,...,N . 

r 
The a priori covariance function C(tu, tu\prime , \bfitx , \bfitx ) can be expressed with the Nt × Nt matrix 

Rt and the correlation function Cx : Q × Q → [0, 1] with Cx(\bfitx , \bfitx ) = 1: 

(5.2) C(tu, tu\prime , \bfitx , \bfitx ) = Rt(tu, tu\prime )Cx(\bfitx , \bfitx ). 

The covariance in time is expressed as a matrix because the temporal grid is finite and fixed. 
The covariance ``matrix"" (here a tensor) of (Z(\bfitx (j), tu))u=1,...,N is 

j=1,...,Nx 

(5.3) R = Rt \otimes Rx, 

with (Rx)k,l = Cx(\bfitx (k), \bfitx (l)) k, l = 1, . . . , Nx. \otimes is the Kronecker product described in [33, 
section 4.5.5]. 

If Rx and Rt are not singular, then the a posteriori distribution of the \BbbR Nt -valued process 
Z given the covariance functions and the observations \bfitZ \mathrm{o}\mathrm{b}\mathrm{s} is Gaussian, 

(5.4) (Z(\bfitx , tu))u=1,...,N |Rt, Cx, \bfitZ \mathrm{o}\mathrm{b}\mathrm{s} ~ 5P(\mu ٨(\bfitx ), R٨(\bfitx , \bfitx r)Rt), 

with the Nt-dimensional posterior mean, 

(5.5) \mu ٨(\bfitx ) = \bfitZ \mat hrm{o}\ mat hrm{b}\ mat hrm{s}R—1rx(\bfitx ) + B٨u(\bfitx ), 

where rx(\bfitx ) is the Nx-dimensional vector (Cx(\bfitx , \bfitx (j)))j=1,...,N . The posterior covariance 

function R٨(\bfitx , \bfitx r) is 

(5.6) R٨(\bfitx , \bfitx r) = c٨(\bfitx , \bfitx r)(1 + v٨(\bfitx , \bfitx r)) . 

The functions that are used in the regression are 

 
\left\{ 

u(\bfitx ) = f (\bfitx ) — F T R—1rx(\bfitx ), 

(5.7) c (\bfitx , \bfitx r) = C (\bfitx , \bfitx r) r (\bfitx )T R—1r (\bfitx r), 

, 
v٨(\bfitx , \bfitx r) = u(\bfitx )T (F T R—1F )—1u(\bfitx r)c—1(\bfitx , \bfitx r), 

and 

(5.8) B٨ = \bfitZ \mathrm{o}\mathrm{b}\mathrm{s}R—1F (F T R—1F )—1. 
x x 
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2 

d 

xi 

x 

Nx 

· 

H 

H 

H 

t x 

Nx j=1 u,j 

٨ \mathrm{o}\mathrm{b}\mathrm{s} 

٨ \mathrm{o}\mathrm{b}\mathrm{s} 

and u = 1, . . . , Nt. 

k=1 

 

The correlation function Cx is assumed to be a Mat\'ern 5 kernel with a tensorized form 
(see [34, Chapter 4]), 

 

(5.9) Cx(\bfitx , \bfitx r) = 

 

i

\prod 

=1 

 
\biggl( 

1 + 

 

√
5|xi — xir| 

 

\ell xi 

 

5|xi — xir|2 
\biggr) 

 
 

 

 

 
exp 

 

\biggl( 

—

 √
5|xi — xir| 

\biggr) 
 

 

 

with \ell \bfitx = (\ell x1 , . . . , \ell xd ) the vector of correlation lengths. Other choices are of course possible. 

Rt is estimated using R—1 and the observations \bfitZ \mathrm{o}\mathrm{b}\mathrm{s} by maximum likelihood, as in [28], 

 
(5.10) R\widehat = 

\Bigl( 
\bfitZ 

 

— \bfitZ \^
\Bigr) 

R—1 
\Bigl( 

\bfitZ  — \bfitZ \^
\Bigr) T 

, 

where \bfitZ \^ is the Nt × Nx matrix of empirical means Z\ ^u, i  =  1  
\sum Nx (\bfitZ \mathrm{o}\mathrm{b}\mathrm{s}) ∀i = 1, . . . , Nx 

It remains only to estimate the vector of correlation lengths \ell \bfitx = (\ell x1 , . . . , \ell xd ) to determine 

the function Cx. As presented in [28], the maximum likelihood estimation is not well defined 
for \ell \bfitx . Indeed the approximation of Rt by (5.10) is singular because Nx < Nt. In fact, we 
do not need to invert Rt, as seen in (5.4)--(5.8). The method generally used to estimate the 
correlation lengths is cross validation and, in our case, LOO. The LOO mean square error 
that needs to be minimized is 

(5.11) \varepsilon 2(\ ell \bfitx ) = 
\sum 

 
 

 

 \mu (—k)(\bfitx (k)|\bfitZ 
(—k), \bfitl \bfitx ) — \bfitZ \mathrm{o}\mathrm{b}\mathrm{s}(\bfitx (k))  2, 

where \mu (—k)(\bfitx (k)|\bfitZ (—k), \bfitl \bfitx ) is the \BbbR Nt -valued prediction mean obtained with the correlation 
length vector \bfitl \bfitx , using all observations except the kth, at the point \bfitx (k) and   is the 
Euclidean norm in \BbbR Nt. We can use an expression of \varepsilon 2(\bfitl \bfitx ) that does not require multiple 
regression, as in [2, 6]. For more detail, see Appendix B. 

6. Posterior law of the multifidelity model. This section is divided into two parts. The 

first part presents truncation in which Z⊥ is neglected. The second part presents the compu- 

tation without neglecting Z⊥. 

6.1. With truncation. The goal of this section is to calculate the posterior distribution 

of ZH(\bfitx , tu), where Z⊥ is null. The equations are computed with N = Nt, and a discussion 
about the value of N is proposed in subsection 6.1.3. The problem can be split into two parts: 
the multifidelity regression of the basis coefficients knowing \bfGamma and the integration with respect 
to the distribution of \bfGamma . The Dirac and CVB distributions described in section 3 can be used 
to define the law of \bfGamma . 

Multifidelity surrogate modeling of the coefficients. By applying the model proposed in 
section 4, we can therefore deduce the prediction mean and variance. Their expressions are 
given in Appendix D.1. 

6.1.1. Dirac law of \bfGamma . Here we assume that the law of \bfGamma is Dirac at \bfitgamma . Consequently, the 
posterior distribution of ZH(\bfitx , t) is Gaussian. In order to characterize the law of ZH(\bfitx , tu), it 
is necessary and sufficient to compute its mean and variance. 

3\ell 2 \ell xi 

1 

Nx 
\mathrm{o}\mathrm{b}\mathrm{s} \mathrm{o}\mathrm{b}\mathrm{s} 

+ , 
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i 

Nt 

\sum  

i=1 

i=1 i 

i=1 

Mean. The posterior mean is 
Nt 

(6.1) \BbbE [ZH(\bfitx , tu)|A = \alpha ] = 
\sum 

\gamma i(tu)\BbbE [Ai,H(\bfitx )|A = \alpha ] , 

where the expectation \BbbE [Ai,H(\bfitx )|A = \alpha ] is given by (D.1). 
ariance. The posterior variance is 

(6.2) \BbbV [ZH(\bfitx , tu)|A = \alpha ] = 
\sum 

\gamma 2(tu)\BbbV [Ai,H(\bfitx )|A = \alpha ] , 
i=1 

where the variance \BbbV [Ai,H(\bfitx )|A = \alpha ] is given by (D.2). 

6.1.2. CVB law of \bfGamma . Because the law is different from Dirac, the posterior distribution 
of ZH(\bfitx , t) is not Gaussian anymore. However, we can characterize the posterior mean and 
the variance of ZH(\bfitx , tu). 

We denote \BbbE \alpha [·] = \BbbE [·|A = \alpha ], \BbbV \alpha [·] = \BbbV [·|A = \alpha ], \BbbE \bfitZ \mathrm{o}\mathrm{b}\mathrm{s} [·] = \BbbE [·|\scrZ = \bfitZ \mathrm{o}\mathrm{b}\mathrm{s}], and \BbbV \bfitZ \mathrm{o}\mathrm{b}\mathrm{s} [·] = 

\BbbV [·|\scrZ = \bfitZ \mathrm{o}\mathrm{b}\mathrm{s}]. 
Mean. The linearity of the expectation and the law of total expectation give 

Nt 

(6.3) \BbbE \alpha [ZH(\bfitx , tu)] = \BbbE \alpha [\Gamma i(tu)\B bbE \alpha [Ai,H(\bfitx )|\bfGamma ]], 
i=1 

where the expectation \BbbE \alpha [Ai,H(\bfitx )|\bfGamma ] is given by (D.1). 
Variance. The law of total variance gives 

(6.4) \BbbV \alpha [ZH(\ bf i t x , tu)] = \BbbV \alpha [\BbbE \alpha [ZH(\ bf i t x , tu)|\bfGamma ]] + \BbbE \alpha [\BbbV \alpha [ZH(\ bf i t x , tu)|\bfGamma ]] . 

By Appendix D.2, we get 

\BbbV \alpha [ZH(\bfitx , tu)] = 
\sum Nt

 \BbbV \alpha [\Gamma i(tu)\B bbE \alpha [Ai,H(\bfitx )|\bfGamma ]] 
(6.5) Nt i,j=1,i\not =j Cov\alpha (\Gamma i(tu)\ B bbE \alpha [Ai,H( \bfitx )|\bfGamma ] , \Gamma j(tu)\BbbE \alpha [Aj,H(\ bf it x )|\bfGamma ]) 

+ 
\sum Nt \BbbE \alpha 

\bigl[ 
\Gamma 2(tu)\BbbV \alpha [Ai,H(\bfitx )|\bfGamma ]

\bigr] 
 

Equations (6.3) and (6.5) are combinations of expectations of explicit functions of \bfGamma . We 
can compute the result using our knowledge of the law of \bfGamma . The expectation of a function of 

\bfGamma is given by (3.2). 

6.1.3. Truncation. There is a problem with the surrogate modeling of the coefficients of 
the decomposition with indices larger than NL. Indeed, we typically have NL < Nt, so the 
vectors \Gamma i with indices larger than NL of the basis are randomly constructed, which is not 
suitable for building surrogate models. To solve this problem, it is possible to truncate the 

sum. Only the first N coefficients, with N \leq NL, are calculated. This would be reasonable 
if the contributions of the terms Ai,H(\bfitx )\Gamma i(tu) for i > N were negligible. However, it turns 
out that these terms are often not collectively negligible (see section 7), and the truncation 
method does not achieve a good bias-variance trade-off even when optimizing with respect to 
N (e.g., by a cross-validation procedure). The high- and low-fidelity outputs do not necessarily 
have the same forms. Thus, it is possible that an important part of the high-fidelity code is 

neglected because it is not taken into account by the subspace spanned by {\Gamma i}i\leq N . We will 
therefore propose in the next section an original method to tackle this problem. 

+ 
\sum  
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N 

H 

H 

N 

i=1 \bfitZ \mathr m{o} \ mathr m{b} \ mathr m{s} H 

\bfitZ \mathr m{o} \ mathr m{b} \ mathr m{s} H 

H 

i=1 \bfitZ \mathr m{o} \ mathr m{b} \ mathr m{s} H 

\bfitZ \mathr m{o} \ mathr m{b} \ mathr m{s} H 

6.2. Without truncation. In this section, we first make a quick reminder of the methods 
presented in section 5. Moreover, with different assumptions about the law of \bfGamma , we present 
the regression using the model and the data. 

Multifidelity of coefficients. As in subsection 6.1, we compute the N multifidelity models 
of the first N coefficients of the expansion of the code output given \bfGamma . If we apply the 
method proposed in section 4, we can therefore deduce the prediction mean and variance, as 
in subsection 6.1. 

Tensorized covariance regression. The orthogonal part of the regression is computed using 
the method presented in section 5. The adaptation is that the regression must be carried out 

in subspace S⊥ given \bfGamma , 

 

⊥ 
\mathrm{o}\mathrm{b}\mathrm{s} 

 

 

where \alpha i,H is given by (2.3). 

 

= \bfitZ \mathrm{o}\mathrm{b}\mathrm{s} — 

\Biggl( 
\sum N
  

\alpha i,H( \ bf i t x )\Gamma i(tu) 

\Biggr)  
 

, 
u=1,··· ,Nt 

\bfitx \in DH 

This does not have any consequence on the \bfitx part but only on the t part. Contrarily to 

ZH(\bfitx , tu), only one surrogate model is needed for Z⊥(\bfitx , tu). The detail of how we can deal 
with Z⊥(\bfitx , tu) and ZH (\bfitx , tu) is explained in Appendix C. 

6.2.1. Dirac law of \bfGamma . Here we assume that \bfGamma is known and its distribution is Dirac at 
\bfitgamma . Consequently, ZH(\bfitx , t) is a GP by linear combination of independent GPs. Its posterior 
distribution is completely determined if we can evaluate its mean and covariance. 

Mean. The \Gamma i(tu)'s are constant and equal to \gamma i(tu). Consequently, 

 
(6.7) \BbbE \alpha  

 
and 

\Bigl[   

ZH(\bfitx , tu)|N 
\Bigr] 

=
 \sum 

i=1 

 
\BbbE \alpha [Ai,H( \bfitx )]\gamma i(tu) 

(6.8) \BbbE \bfitZ  

 
 

 

\ mathr m{o} \ mathr m{b} \ mathr m{s} [ZH(\bfitx , tu)|N, \ell \bfitx ] = 
\sum N

 \BbbE \alpha [Ai,H( \bfitx )]\Gamma i(tu) + \BbbE ⊥ 
\bigl[ 

Z⊥(\bfitx , tu)|N, \ell \bfitx 

\bigr]  
, 

where \BbbE \alpha [Ai,H(\bfitx )] is given by (D.1) and \BbbE ⊥ 
Variance. The formula of the variance is 

[Z⊥(\bfitx , tu)|N, \ell \bfitx ] by (5.5). 

(6.9) \BbbV \alpha [Ai,H(\bfitx )\Gamma i(t)] = \BbbV \alpha [Ai,H(\bfitx )] \gamma i(t)2. 

The uncorrelation of the coefficients Ai,\mathrm{F}(\bfitx ) gives Cov\alpha [Ai,H(\bfitx ), Aj,H(\bfitx )] = 0 for i = j and 

Cov\alpha [Ai,H(\bfitx )\gamma i(tu), Z⊥(\bfitx , tu)] = 0. The expression of the variance becomes simple, 

(6.10) \BbbV \bfitZ  

 
 

 

\ mathr m{o} \ mathr m{b} \ mathr m{s} [ZH(\bfitx , tu)|N, \ell \bfitx ] = 
\sum N

 \BbbV \alpha [Ai,H( \bfitx )] \gamma i(tu)2 + \BbbV ⊥ 
\bigl[ 

Z⊥(\bfitx , tu)|N, \ell \bfitx 

\bigr] 
, 

where \BbbV \alpha [Ai,H(\bfitx )] is given by (D.2) and \BbbV ⊥ [Z⊥(\bfitx , tu)|N, \ell \bfitx ] is given by (5.4). 

6.2.2. VB law of \bfGamma . The posterior distribution of ZH(\bfitx , t) is not Gaussian anymore. 
However, to predict the output of the high-fidelity code and to quantify the prediction uncer- 
tainty, we are able to compute the posterior mean and variance of ZH(\bfitx , t). 

(6.6) \bfitZ  

i=1 
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H 

N 

\sum  

H 

H 

\sum  \bigl[  

+ 
\sum  

i=1 \bfitZ \mathr m{o} \ mathr m{b} \ mathr m{s} H 

H 

, \bfitZ 
\Bigr] \Bigr)  

i=1 

Z⊥(\bfitx , t)|N, \ell \bfitx  

+ \BbbE \bfitZ \mathr m{o} \ mat hrm{b} \ mat hrm{s} ZH (\bfitx , tu) |\bfGamma , N, \ell \bfitx  |N, \ell \bfitx  

i=1 
N 
i=1 \Gamma i(tu)2 \BbbV \alpha [Ai (\bfitx ) |\bfGamma ] 

\bigr]  

Mean. We can decompose the process into two parts: 

(6.11) ZH(\bfitx , tu) = ZH(\bfitx , tu) + Z⊥(\bfitx , tu). 

The linearity of the expectation gives us 

\sum  

  
 

 

 

 
\Bigl[  

  

 
\Bigr]  

 

 

The theorem of total expectation gives us 
 

 

(6.13) \BbbE \bfitZ \mathr m{o} \ mathr m{b} \ mathr m{s} 

 

 

and therefore 

\Bigl[   

ZH(\bfitx , tu)|N 
\Bigr] 

=
 \sum 

i=1 

 

\BbbE \bfitZ \mathrm{o}\mathrm{b}\mathrm{s} [\Gamma i(tu)\B bbE \alpha [Ai,H(\bfitx )|\bfGamma ]] 

N 

\BbbE \bfitZ \mathrm{o}\mathrm{b}\mathrm{s} [ZH(\ bf i t x , tu)|N, \ell \bfitx ] = \BbbE \bfitZ \mathrm{o}\mathrm{b}\mathrm{s} [\Gamma i(tu)\B bbE \alpha [Ai,H(\bfitx )|\bfGamma ]] 
i=1 

(6.14) 
 

+ \BbbE \bfitZ  

 
 

 

\ mathr m{o} \ mathr m{b} \ mathr m{s} 

⊥ 
\bfitZ \mathr m{o} \ mathr m{b} \ mathr m{s} 

\Bigl[ 
Z⊥(\bfitx , tu)|N, \ell \bfitx , \bfGamma 

\Bigr] 
|N, \ell \bfitx 

\Bigr] 
, 

where \BbbE \alpha [Ai,H(\bfitx )|\bfGamma ] is given by (D.1) and \BbbV \alpha [Z⊥(\bfitx )|\bfGamma ] is given by (5.5). Equation (6.14) is 
a combination of expectations of explicit functions of \bfGamma , which can be computed by (3.2). 

Variance. The theorem of the total variance gives us 

(6.15) 
\BbbV \bfitZ \mathrm{o}\mathrm{b}\mathrm{s} [ZH (\bfitx , tu) |N, \ell \bfitx ] = \BbbV \bfitZ \mathrm{o}\mathrm{b}\mathrm{s} [\BbbE \bfitZ \mathrm{o}\mathrm{b}\mathrm{s} [ZH (\bfitx , tu) |\bfGamma , N, \ell \bfitx ] |N, \ell \bfitx ] 

+\BbbE \bfitZ \mathrm{o}\mathrm{b}\mathrm{s} [\BbbV \bfitZ \mathrm{o}\mathrm{b}\mathrm{s} [ZH (\bfitx , tu) |\bfGamma , N, \ell \bfitx ] |N, \ell \bfitx ] . 

By Appendix D.3, we get 

\BbbV \bfitZ  [ZH (\bfitx , tu) |N, \ell \bfitx ] = \BbbV \bfitZ  \ b i g l [ 
\ Bbb E ⊥

 
\bigl[ 

Z⊥(\bfitx , tu)|\bfGamma , N, \ell \bfitx 

\bigr] 
|N, \ell \bfitx 

\bigr] 
 

\mathrm{o}\mathrm{b}\ mathrm{s} \bigl[  \bigl[  \ mathr m{o} \ mathr m{b} \ mathr m{s} 

⊥ 
\bfitZ \mathr m{o} \ mathr m{b} \ mathr m{s} H \bigr]  \bigr]  

+ 
\sum N 

 

 

\BbbV \bfitZ  
 

 

[\Gamma i(tu) \ B b b E \alpha [Ai,H( \b f i t x )|\bfGamma ]] 

N i,j=1;i\not =j Cov\bfitZ   \ mathr m{o} \ mathr m{b} \ mathr m{s} [\Gamma i(tu)\B bbE \alpha [Ai,H(\bfitx )|\bfGamma ] , \Gamma j(tu)\BbbE \alpha [Aj,H(\ bf i t x )|\bfGamma ]] 

+2 
\sum N

 Cov\bfitZ  
 

 

\ mathr m{o} \ mathr m{b} \ mathr m{s} 

\bigl[ 
\Gamma i(tu)\ B bbE \alpha [Ai,H(\bfitx )|\bfGamma ] , \BbbE ⊥ 

\bigl[ 
Z⊥(\bfitx , tu)|\bfGamma , N, \ell \bfitx 

\bigr] 
|N, \ell \bfitx 

\bigr] 
, 

where \BbbV \alpha [Ai,H(\bfitx )|\bfGamma ] is given by (D.2) and \BbbV \alpha [Z⊥(\bfitx )|\bfGamma ] is given by (5.6). Equation (6.16) is a 
combination of expectations and variances of explicit functions of \bfGamma , which can be computed 
by (3.2). 

6.2.3. Effective dimension. For the formulas in subsection 6.2 to be valid, N must be 
fixed. We may choose N by knowledge of the physical system or of the code, but it is 
impossible in most cases due to the high-/low-fidelity differences. The best solution is generally 
to determine N by a K-fold cross-validation procedure. 

The criterion that we choose to maximize is 

 
(6.17) Q2 (t 

 
) = 1 — 

\sum NH 
\Bigl( 

zH

 
(\bfitx (k), tu ) — \BbbE 

\Bigl[ 
ZH (\bfitx (k), tu )|\bfGamma , N, \ell  

 
\bfitx  

(—k) 2 
\mathrm{o}\mathrm{b}\mathrm{s} , 

 
 

N  u NH\BbbV [zH(DH, tu)] 

(6.12) \BbbE \bfitZ  \mathrm{o}\ mathrm {b}\ mathr m{s} [ZH(\bfitx , tu)|N, \ell \bfitx ] = \BbbE \bfitZ  \mathrm{o}\ mathrm {b}\ mathr m{s} 

⊥ 
\bfitZ \mathrm{o}\ mathr m{b}\ma thrm{s} H . 

+ \BbbE \bfitZ  

N 

[Ai,H(\bfitx )\Gamma i(tu)] + \BbbE  

\Bigl[ 
\BbbE 

 

k=1 

\BbbV \alpha  

(6.16) \ mathr m{o} \ mathr m{b} \ mathr m{s} 

 

\ mathr m{o} \ mathr m{b} \ mathr m{s} 



526 BAPTISTE KERLEGUER 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

 

 

 4  3 10  

  \sum  \Bigl( \sum  

N 

Nt 

N N 

N 

N Nt 
N u 

u=1 

Table 1 

Distributions of the input variables. 
 

     MS k \theta 0 \theta \.0 y0  

\scrU (10, 12) \scrU (1; 1.4) \scrU ( \pi  ; \pi  ) \scrU (0;  1  ) \scrU (0; 0.2) 

 
where \BbbV [zH(DH, tu)] is the empirical variance of the observed values: 

 

 
\BbbV [zH(DH, tu)] = 

NH 

1  
NH 

k=1 

 

zH(\bfitx (k), tu)2 — 
 1  

NH
 

NH 
k=1 

 
zH(\bfitx (k), tu) 

\Bigr) 2
.
 

The procedure we propose starts with the dimension 0. For the case N = 0, the surrogate 
model depends only on high-fidelity regression: 

- We compute the surrogate model for all N = 0, . . . , NL. 
- We calculate the mean in tu of Q2 (tu): 

 

Q\ ^ 2  = 
 1  \sum 

Q2 (t ). 
 

 

We compare the Q\̂ 2 values and the value N with the largest Q\^2 chosen. In order to 
evaluate the surrogate model in the next section, we compute Q\ ^ 2  = maxN Q\ ^ 2  . 

7. Illustration: Double-pendulum simulator. The purpose of this section is to apply the 
methods proposed in the previous sections to a mechanical example. The example is based 
on a simulator of a pendulum attached to a spring-mass system. We have two codes: The 
high-fidelity code numerically solves Newton's equation, and low-fidelity code simplifies the 
equation by linearization for small angles of the pendulum motion and solves the system. 

7.1. Characteristics of the outputs. 

The physical system. The system can be seen as a dual-oscillator cluster. The first oscillator 
is a spring-mass system whose axis is perpendicular to the gravitational axis. The parameters 
of this system are the mass of the system MS and the spring stiffness k. The initial position 
of the mass is denoted y0, and its initial velocity is 0. The second oscillator is a pendulum. A 
schematic representation of the system is presented in Figure 1. The parameters are the mass 
m and the length of the pendulum \ell , which are fixed. The initial value of the angle is \theta 0, and 

its derivative is \theta \.0. By Newton's law of motion, the dynamics is governed by a system of two 
coupled ODEs. However, we do not have a closed-form expression that gives the solution of 
the system. This forces us to use computer codes. The output signal is the position of the 

mass m at time t ∈ {t1, . . . , tNt } with Nt = 101. The input vector is \bfitx = {MS, k, y0, \theta 0, \theta \.0}. 
The input variables are assumed to be independent and identically distributed with uniform 
distributions as described in Table 1. 

 
The two different code levels. We propose two codes. The high-fidelity code numerically 

solves the coupled system of ODEs by an Euler's derivation of the position y and the angle 

\theta for each tu. This gives functions \theta (tu) and y(tu). The low-fidelity code assumes that the 
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Figure 1. The double-pendulum system with its parameters. 

 

angle of the \theta pendulum is small so that the linearization of sin(\theta ) makes it possible to get a 
simpler form of the expression of the two coupled ODEs and a faster resolution. 

Code analysis. A sensitivity analysis is carried out for information purposes, but it is not 
used in the forthcoming surrogate modeling. The sensitivity analysis makes it possible to 
determine the effective dimension of our problem. We compare outputs of the high- and low- 
fidelity codes and the associated Sobol indices on Figure 2. We estimate Sobol indices by the 
method described in [31] and implemented in the R library [13] by using a Monte Carlo sample 
of size 105 for each code. No surrogate model was used to estimate the indices in Figure 2. 
The indices are computed as in [12, equation 11] for each tu. The areas shown in Figure 2 
are the compilation of all the incides calculated in each tu. The difference between the sum 
of the indices of order 1 and 1 is considered as interactions. The main result is that the two 
codes depend on the same input variables. The four most important input variables are y0, k, 
M , and \theta 0. It can be seen in Figure 2 that the interactions between codes are mostly linear. 
Maximum amplitude points of zL(x, tu) and zH(x, tu), which are more complex interactions 
between codes, can be seen in the horizontal part of the bottom graph of Figure 2. 

7.2. Comparison between methods. The experimental designs used to compare the 
methods are presented in [19]. They are constructed from two independent maximum LHS 
(Latin hypercube sampling) designs with NH = 10 and NL = 100 points. The low-fidelity 
design is then modified so that the designs are nested. Only the points of the low-fidelity 
design closest to the points of the high-fidelity design are moved. To generate these designs, 
the R packages [7, 17] are used. A random uniform nested design can also be used, but we 
choose a more effective design for GP regression. The test design is composed of 4000 points 
randomly chosen in the hypercube determined by the supports of the uniform distributions 
described in Table 1. 

In this section, we want to demonstrate the interest of the method presented in section 2. 
For this, we will compare several methods: 

\bullet The multifidelity method is presented in subsection 6.1 with a Dirac distribution of 
\bfGamma , called the SVD method. 

\bullet The multifidelity method uses GP regression of the orthogonal part with covariance- 
tensorization, and the distribution of \bfGamma is Dirac at \bfitgamma , the matrix of the SVD of the 
observed low-fidelity code outputs. Its prediction is computed as in subsection 6.2 and 
called the Dirac method. 
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Figure 2. Comparison between low-fidelity (top left) and high-fidelity (top right) code outputs. Sobol indices 
for high- and low-fidelity codes (center left: low-fidelity; center right: high-fidelity). For each time t in the time 
grid, we report the first-order Sobol indices, and ``interactions"" stands for the sum of the Sobol indices of order 

larger than 2. Finally, the bottom plots represent the interactions between codes (plots of (zL(x, tu), zH (x, tu))Nt
 

for different x). The bottom left graph is for 10 values and the bottom right graph for 3 values of \bfitx . 
 

 

\bullet The multifidelity method is presented in subsection 6.2 with the CVB distribution, 
called the CVB method. 

\bullet The neural network (NN) method is presented in [23]. We extend this method for time- 
series outputs by considering Nt-dimensional outputs for the low- and high-fidelity 
neural networks and by removing the physical inspired NN (PINN) part. The PINN 
part is removed in order to reduce the parameters and allows the learning phase to be 
faster and more accurate; see [35] for more details. We used the parameters proposed 
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k 

\bigl( \bigr)  

\simeq 
\sum  

j t 

x x 

H 

H 

in the article, i.e., 2 hidden layers for each network with 20 neurons per layer. We also 
tested the NN method up to 100 neurons per layer, but the best results were obtained 
with approximately 20 neurons. 

The method we would like to highlight is the CVB method. 
CVB basis. The law of \bfGamma needs to be determined in order to compute or estimate the 

moments (6.3), (6.5), (6.14), and (6.16). The distribution of \bfGamma is the CVB distribution 
described in subsection 3.3. As shown by (3.2), it depends on the size k of the random subset 
I. Here we choose k = 4. Because it is too expensive to compute the sum over all NL 

different subsets {j1, . . . , jk}, we estimate the expectation (3.2) by an empirical average over 
n = 64 realizations Ij of the random subset I, 

 

n 

(7.1) \BbbE [f (\bfGamma )] 
1 

f (\bfitU \~ 
n 

j=1 

 

Ij ), 

where \bfitU \~ I  is the matrix of the left singular vectors of the SVD of (zL(\bfitx (i), tu)) u\in {1,...,N } . 
i\in {1,...,NL}\Ij 

We have checked that the stability with respect to k is conserved if 1 < k < NL — NH and that 
the stability with regard to n is valid if n > max (k, 50). We have tested the construction of 
the CVB basis for all k values in this range and found that changes in k do not influence the 
basis significantly. 

The computational cost of calculating the basis is very important in particular because it 
is impossible for us to calculate it for all subsets. A method to compute the basis with only 
a cost of O(N 2) is given in [24], whereas we compute it with O(N 2Nt) by our method. The t L 

gain is, however, very small, especially if NL \ll Nt which is our case. We have therefore not 
implemented this method in the results presented in this paper. 

Prediction of the orthogonal part. A simple model for the a priori mean function is chosen 

as M = 1 and f (\bfitx ) = 1. Consequently, F T R—1F = 
\sum 

 
 

i,j {R—1}i,j. 
Multifidelity regression of the coefficients. Our implementation of the multifidelity regression 

is based on [17]. We use an informative prior for the regression of the coefficients. For 
more information, refer to [19, section 3.4.4]. In this example, the size of the priors is q = 
pL = pH = 1.  Considering the relation between the two codes, we choose b\rho = 1.  The 
trend is supposed to be null; consequently, b\beta = bL = 0. The variances are \sigma L = 0.5 and 

\sigma H = 0.5 with V \beta = 2 and VL = 2. The parameters for the inverse gamma distribution are 
mL = mH = 0.2 and \varsigma L = \varsigma H = 1.5. We have checked the robustness of the results with respect 
to the hyperparameters of the prior distributions. Alternatively, the article [22] presents 
noninformative priors for the autoregressive cokriging. 

Prediction. In order to estimate the errors of the surrogate models, we calculate their 

Q\^ 2 's and report them in Figure 3. To compute Q\ ^ 2  for a model, we calculate the difference 
between the validation set of size 4000 and the predictions of the model. We have averaged 
the estimates of the Q\ ^ 2  over 40 different experimental designs. 

The SVD method gives a very interesting result because the Q\ ^ 2  is almost always higher 
than 0.8. However, in Figure 4, we can see that it does not capture the form of the times 
series. The Q\ ^ 2  of the Dirac and CVB methods are larger than the ones of the other methods. 
The error is also less variable as a function of t. And the variance is much lower for both 
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Figure 3. Comparison between the methods in terms of time-dependent Q\ ^ 2 .  Averages over 40 random 
experimental designs are computed. The colored fields represent the confidence intervals determined by \pm 1.96 
empirical standard deviation. Here NH = 10, NL = 100, and Nt = 101. 
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Figure 4. Comparison between the predictions of the CVB method (left) and the SVD method (right). The 
black solid line is the exact high-fidelity time series, the colored solid line is the prediction mean, and the dashed 
lines are the confidence intervals. In this example, the value of N obtained by cross validation is 8. The 
uncertainty interval is 1.96 times the standard deviation. 

 

methods. However, even if there is a difference between the Dirac and CVB methods, it is 
not possible to say that the CVB method is better in this application. The difference between 
the Dirac and CVB methods is small in our example. 

The variance of the prediction is very important for the quantification of prediction uncer- 
tainty. All formulas are given in the previous sections, and we illustrate the results in Figure 4. 
We can see that the variance of the projection method is not accurate and overestimates the 
quality of the prediction. This method is not acceptable for prediction. The Dirac method 
and the CVB method have almost the same variance. If we compare to the variance of the 
SVD method, it means that most of the uncertainty relates to the orthogonal part. This leads 
to the conclusion that this part is important in the regression. 

In order to understand the interest of the method with covariance tensorization for the 
orthogonal part, we study in more detail the orthogonal part. First, we study the role of the 
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Figure 5. Estimation of the different time-dependent prediction variance terms for the CVB method. 
 

 

value of N . Here NL = 100, so the possible values of N are between 0 and 100. We find that 
the optimal value of N for 40 learning sets is between 8 and 10. Even when the value of NH is 
increased, N remains constant in the 8 to 10 range. This means that the low-fidelity code can 
give reliable information on the high-fidelity code output projection into an eight-dimensional 
space. The high-fidelity code output is, however, higher dimensional, and it is important 
to predict the orthogonal part with a dedicated method, namely, the proposed covariance 
tensorization method. 

We have carried out extensive numerical simulations with values of NH in the range 
[5 : 20] and values of NL in the range [50 : 1000]. If only very small data sets are available 

(5 \leq NH \leq 7), the prediction is not satisfactory whatever the method. Moreover, for values of 
NL greater than 200, there is no significant change except for the NN method, which improves 
to the level of the CVB method for the largest data sets. There is also a decrease in prediction 
uncertainty with the increase of the NH number, as can be expected. At the same time as the 
prediction uncertainty increases when NH is decreased, there is also a decrease in prediction 
performance but independently of the method. The code we used is available in [15]. 

8. Discussion. The objective of this work is to propose a method that generates a sur- 
rogate model in the context of multifidelity and time-series outputs and that quantifices the 
prediction uncertainty. The method we propose is based on three main ingredients: dimension 
reduction, cokriging, and covariance tensorization. The model we present is based on mul- 
tifidelity (cokriging) regression. By reducing the output dimension, multifidelity regression 
becomes possible. To take into account all the information contained in the data sets, the 
part that cannot be treated with the previous method is predicted by GP regression with 
covariance tensorization. 

First, we have presented different ways to build the basis that allows to represent the high- 
and low-fidelity code outputs. Second, we have presented a model that allows to estimate the 
high-fidelity code outputs from data collected from the high- and low-fidelity codes. The 
combination of a multifidelity part and a single-fidelity part with tensorized covariance is the 
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= \alpha  , \sigma H, \beta L, \sigma L , \sigma HVH = \sigma H 0 V \beta  
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H 

L 

~Nq+pH 

H 

central point of the proposed method. The performance of our model has been tested on a 
mechanical example. We have been able to use multifidelity in a very convincing way to build 
a robust surrogate model better than any other method presented so far. 

There are several ways to extend the method presented in this article. Sequential experi- 
mental designs in a multifidelity context have already been dealt with by [20]. However, they 
deserve to be extended to the case of time-series outputs. We can consider regression problems 
for more than two levels of code. It is conceivable in this case to build several levels of bases 
which from code to code would improve the basis and thus reduce the orthogonal part. In 
addition, high-dimensional outputs are not different from time-series outputs as considered 
in this paper. It is therefore conceivable to adapt this method to more general functional 
outputs. 

Appendix A. Multifidelity priors for AR(1) model. In the following, we define the priors 
needed to use the AR(1) model defined in section 4. 

The goal of a Bayesian prediction is to integrate the uncertainty of the parameter esti- 
mation into the predictive distribution as in [18]. Here the parameters are \sigma , \beta , and \beta \rho . As 
explained in [21], the result is not Gaussian, but we can obtain expressions of the posterior 

mean \BbbE [AH(\bfitx )|A = \alpha ] and variance \BbbV [AH(\bfitx )|A = \alpha ]. It is possible to consider informative 
or noninformative priors for the parameters [21, 22]. Here we consider informative conjugate 
priors: 

 

(A.1) 
\bigl[ 

\sigma 2 
\bigr] 

~\scrI 5 (mL, \varsigma L) , 

 
(A.2) 

\bigl[ 
\beta L|\sigma 2 

\bigr] 
~Np  

\bigl( 
bL, \sigma 2 VL

\bigr) 
, 

 
(A.3) 

\bigl[ 
\sigma 2 |AL = \alpha L, \beta L, \sigma L

\bigr] 
~\scrI 5 (mH, \varsigma H) , 

\bigl[   
L L 2 

\bigr]  
\biggl(  

 

\biggl( 
b\rho \biggr) 

2

 

 

 

2 

\biggl( 
V \rho 0 

\biggr) \biggr)  

 

Here 

- bL is a vector of size pL; 
- b\rho is a vector of size q; 

- b\beta  is a vector of size pH; 

- V \beta is a pH × pH matrix; 

- V \rho is a q × q matrix; 
- VL is a pL × pL matrix; 

- m\mathrm{F} and \varsigma \mathrm{F} are positive real numbers, and \scrI 5 stands for the inverse gamma 
distribution. By using these informative conjugate priors, we obtain the following a posteriori 
distribu- 

tions as in [21]: 
 

(A.5) 
\bigl[ 

\sigma 2|AL = \alpha L
\bigr] 

~\scrI 5 (dL, QL) , 

A.6) 
\bigl[ 

\beta L|AL = \alpha L, \sigma 2
\bigr] 

~Np (CL \nu L, CL) , 

 
(A.7) 

\bigl[ 
\sigma 2 |A = \alpha 

\bigr] 
~I5 (dH, QH) , 

 
(A.8) 

\bigl[ 
\beta H, \beta \rho |A = \alpha , \sigma 2 

\bigr] 
~Np +q (CH \nu H, CH) . 

 

b 
(A.4) \beta \rho , \beta H|A bH = \beta  

H 

. 
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\mathrm{F} + V 
\Bigr] 
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HT C
—1 

\alpha \mathrm{F} + 
V —1 
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H H H 

H L \rho  A\~
L 2(dH — 1) 

H H 

H H H H H H 

CV \bfitx  \ell \bfitx  \ell \bfitx  \ell \bfitx  

CV \bfitx  t t t x x x 

H 

- \nu  \mathrm{F} \mathrm{F} 
\mathrm{F} 
2 

\mathrm{F} 

\mathrm{F} 
2 

\mathrm{F} 

Here 

- d\mathrm{F} = n\mathrm{F} + m\mathrm{F}; 

- Q\~ \mathrm{F} = (\alpha \mathrm{F} — H \ m a t h r m { F } \lambda \̂ \mathrm{F})T C—1(\alpha \mathrm{F} — H \ m a t h r m { F } \lambda \̂ \mathrm{F}); 
- Q\mathrm{F} = Q\~ \ m a t h r m { F }  + \varsigma \mathrm{F} + (b\mathrm{F} — \lambda \^ \mathrm{F})T (V\mathrm{F} + (HT C—1H\mathrm{F}))—1(b\mathrm{ F} — \lambda \^\mathrm{F}); 

- C = 
\Bigl[ 

HT C
—1 

H —1  —1 
\mathrm{F} 

\mathrm{F} \mathrm{F} 

\mathrm{F} 
 \Bigl[  \mathrm{F} 

 

2 
\mathrm{F} 

 

\mathrm{F} 2 
\mathrm{F} 

 
\Bigr]  

 

  

- H\mathrm{F} is defined by HL = FL and HH = [GL ⊙ (\alpha H \bfone T ) FH]; 

- GL is the NH × q matrix containing the values of gT (\bfitx ) for \bfitx ∈ DH; 
- \bfone qL is a q-dimensional vector containing 1; 
- \lambda \^\mathrm{F} = (HT C—1H\mathrm{F})—1HT C—1\alpha \mathrm{F}. 

\mathrm{F} \mathrm{F} \mathrm{F} \mathrm{F} 

Consequently, the posterior distribution of AH(\bfitx ) has the following mean and variance: 
 

(A.9) \BbbE [AH(\bfitx )|A = \alpha ] =hT (\bfitx )CH\nu H + rT (\bfitx )C—1 
\bigl( 

\alpha H — HHCH \nu H
\bigr) 

, 

\BbbV [A (\bfitx )|A = \alpha ] = 
\bigl( 

\rho \^2 (\bfitx ) + \varepsilon (\bfitx )
\bigr) 

\sigma 2 (\bfitx ) + 
 QH  (1 — rT (\bfitx )C—1r (\bfitx )) 

 
(A.10) + 

\bigl( 
hT — rT (\bfitx )C—1H 

\bigr) 
C

 \bigl( 
hT — rT (\bfitx )C—1H 

\bigr) T 
,
 

 

where \rho \ L̂(\bfitx ) = gT (\bfitx )\beta \^\rho , 
[CH]i,j=pH+1,...,pH+q. 

\beta \^\rho = [CH\nu H]i=p 
 
+1,...,pH +q, and \varepsilon \rho (\bfitx ) = gT (\bfitx )C\ ~  HgL(\bfitx )with C\ ~  H = 

The posterior mean \BbbE [AH(\bfitx )|A = \alpha ] is the predictive model of the high-fidelity response, 
and the posterior variance \BbbV [AH(\bfitx )|A = \alpha ] represents the predictive variance of the model. 

Appendix B. LOO formula and discussion. 

LOO without loop. In order to quickly minimize the LOO error with respect to the vector 
of correlation lengths \ell \bfitx , there exist formulas to evaluate \varepsilon 2(\ell \bfitx ) with matrix products [2], [6]. 

The LOO optimization problem is equivalent to minimize a function fCV(\ell \bfitx ) given by 

(B.1) f (\ell ) = zT R—1diag 
\bigl( 

R—1
\bigr) —2 

R—1z, 

where z is a vector that collects all the data. 
Considering (5.3) and the mixed-product property, the inverse of a Kronecker product, 

and the formula diag(A \otimes B) = diagA \otimes diagB, the cost function can be expressed as 

(B.2) f (\ell ) = zT 
\Bigl( 

R—1diag 
\bigl( 

R—1
\bigr) —2 

R—1
\Bigr) 

\otimes 
\Bigl( 

R—1diag 
\bigl( 

R—1
\bigr) —2 

R—1
\Bigr) 

z. 

\mathrm{F} ; 

\sigma  \sigma  

= 

H 

H H H 

H 
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\biggl( \biggr)  
k r 

Nt x x x 

x x x \partial \ell x 
x x x 

(B.7) h 5 (x) = — 
3 

x 1 + 5x exp — 5x 

t t t 

k 

h 5 

k 

2 

However, the term in Rt is impossible to calculate because Rt is not invertible.  R—1 
diag(R—1)—2R—1 can be approximated by IN in order to have a tractable problem.  This 

t t t 

assertion is equivalent to the hypothesis 

(B.3) R2 = diag(R—1)—2. 
t t 

This assumption can be seen as the fact that the error is estimated by taking into account only 
the spatial distribution of the covariance. Indeed, to calculate the error, only the matrix Rx 
is used, even if the value of Rt is calculated by maximum likelihood later in the GP regression 
method. 

Thus, the minimization described in (5.11) makes it possible to calculate the correlation 
lengths by minimizing 

(B.4) f (\ell ) \simeq z I \otimes 
\Bigl( 

R diag 
\bigl( 

R 
\bigr) —2 

R 
\Bigr) 

z, 
T —1 —1 1 

where INt is the Nt × Nt identity matrix. The main interest of this method is to give an 
approximate value of the error and to make the optimization much faster. 

Optimization with hypothesis (B.3). Efficient minimization algorithms require to have the 
derivative of the function so that it does not have to be calculated by finite differences. Thanks 
to the simplification (B.4), it is possible to calculate the derivative of the LOO error [2], 

\partial  
f 

 

 
(\ell  

 
) = 2zT I \otimes R—1diag 

\bigl( 
R—1

\bigr) —2 
\biggl( 

R—1 
\partial Rx R—1

\biggr) 

diag 
\bigl( 

R—1
\bigr) —1 

R—1z 
 

 

—2z I \otimes R diag 
\bigl( 

R 
\bigr) —2 

R 
\partial Rx R z, 

—1 —1 —1 —1 

 
with 

Nt x x x \partial \ell x 
x 

 
(B.6) 

 
and 

\partial Rx,l 

\partial \ell xk 

 
= 

i,j 

\ell x (xk,j — xk,i)
2

 

|xk,j — xk,i| 2 

\biggl( 
|xk,j — xk,i| 

\biggr) 
 

 
 

 

r 5  \Bigl( √  \Bigr) \Bigl( √  \Bigr)  
 

The method used to calculate the value of \ell \bfitx is the Nelder--Mead method with only one 

starting point because starting from more points will be more costly and the function fCV is 
close to quadratic and consequently does not need multiple starting points. 

Optimization without hypothesis (B.3). When hypothesis (B.3) does not hold, a way must 
be found to calculate \ell \bfitx without this assumption. By a regularization of the matrix Rt, it 

is possible to calculate fCV(\ell \bfitx ) and its derivative by (5.11), (B.2), and (B.8). However, the 
solution will be a regularized solution and not an exact solution. 

There are different types of regularization that allow matrices to be inverted. Two methods 
have been investigated here. The first one is standard (Tilkonov regularization): 

 
(B.8) R\widehat —1 = 

\bigl( 
RT R 

 
+ \varepsilon 2I 

\bigr) —1 
RT .

 

k 

\ell xk 

CV \bfitx  

(B.5) 
\partial \ell x 

CV \bfitx  Nt 

. 

t Nt 



MULTIFIDELITY METAMODELING FOR TIME-SERIES OUTPUTS 535 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

 

 

—4 —4 —4 

  1  
\sig m a 2+\ var eps i lo n 2 

   

t t 

\sigma i+\varepsilon  Denoting by R\widehat —1 = V C—1U T , the SVD of Rt with C—1 = diag  1  , whereas the same de- 

determinant but more efficient for the calculation of the inverse of R\widehat t: 

t t t x x x \partial \ell x 
x 

t \mathrm{o}\mathrm{b}\mathrm{s} x \mathrm{o}\mathrm{b}\mathrm{s} 

t 

by 

Table 2 

Benchmark of the different LOO optimization techniques for estimating the f (\bfitx , t) = cos(4\pi (x2 + 
1)t) sin(3\pi x1t) function using the separable covariance method. Loop LOO processes the error by comput- 
ing the approximation, full LOO processes the regularized analytic expression, and simplified LOO processes the 
simplified one given by (B.4). 

 

Loop LOO Full LOO Simplified LOO 

\vare psilon \ scrQ \in 7.06 10 8.72 10 8.14 10 
time 18.41 s 3.47 min 0.17 s 

The second one is 

(B.9) R\widehat —1 = (Rt + \varepsilon IN )—1 . 

It has the disadvantage of being more sensitive to \varepsilon than the first one, which is why it will 
not be used. 

However, in the calculation of the determinant, this adjustment may have advantages. 
 

composition gives for (B.8) C—1 = diag  \sigma i   . This is the reason why the two adjustments 
i 

presented are not used in the same case. Indeed, \sigma i+\varepsilon is less efficient for the calculation of a 

 
\partial  f 

 
(\ell  ) = 2zT 

\biggl( 

R\widehat —1diag 
\Bigl( 

R\widehat —1
\Bigr) —2 

R\widehat —1

\biggr) 

 
 

 

\partial \ell xk 

CV  \bfitx  
\biggl(  

t t t 
\biggr)  

(B.10) \otimes R—1diag 
\bigl( 

R—1
\bigr) —2

 R—1 \partial Rx R—1 diag 
\bigl( 

R—1
\bigr) —1 

R—1z 

\biggl(  
x 

\Bigl(  
x 

\Bigr)  \biggr)  
x \partial \ell x 

x x x 

—2z R\widehat —1diag R\widehat —1 R\widehat —1 \otimes R—1diag 
\bigl( 

R—1
\bigr) —2 

R—1 
\partial Rx 

R—1z. 
 

 

Equations (B.6) and (B.7) are still valid. 
This complete approach was compared to the LOO calculation using a loop. However, 

the calculation time of Kronecker products is too long compared to the calculation of the 
simple error with a loop. Moreover, the differences in the errors of the different methods are 
negligible. Thus, this solution is only recommended when the calculation of (B.2) and (B.10) 
is optimized. 

Table 2 shows that the gain in calculation time by the simplified method is significant 
even though the error difference is very small. The extremely long time for the complete LOO 
is mainly due to an implementation of the Kronecker product that is not very effective in our 
implementation. 

 
Appendix C. Tensorized covariance of the orthogonal part. For Rx, we assume that Cx 

is chosen in the Mat\'ern- 5/2 class of functions. The function only depends on the correlation 

length vector \ell \bfitx . The matrix Rt is estimated as described in section 5 by the matrix R\ w i d eh a t  t given 

 

R\widehat = 
\Bigl( 

\bfitZ ⊥
 

— \bfitZ \^
⊥

\Bigr) 
R—1 

\Bigl( 
\bfitZ ⊥ — \bfitZ \^

⊥
\Bigr) T 

, 

k 

T 
—2 

1 

Nx 

k 
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N 

N 

\mathrm{F} 

\mathrm{o}\mathrm{b}\mathrm{s} 

i,H 

i,L 

i,H 

A\~
L,i 

i,H i,H i,H i,H i,H i,H 

i=1 

i=1 

+ 
\sum  

i 

+ 
\sum  

t u,i Nx j=1 \mathrm{o}\mathrm{b}\mathrm{s} 

٨ \mathrm{o}\mathrm{b}\mathrm{s} x x 

H \mathrm{o}\mathrm{b}\mathrm{s} 

\BbbV \alpha [Ai,H( \bfitx )\Gamma i(tu)|\bfGamma ] + 
\sum Nt

 Cov\alpha (Ai,H( \ bf i t x )\Gamma i(tu), Aj,H( \ b f i t x )\Gamma j(tu)| \bf Ga mma ) 

= 
\sum Nt \BbbE \alpha 

\bigl[ 
\Gamma 2(tu)\BbbV \alpha [Ai,H(\bfitx )|\bfGamma ]

\bigr] 
 

(D.5) i,j=1,i/=j 

where \bfitZ \^
⊥ 

is the N × N matrix of empirical means Z\^⊥ =  1  \sum Nx 
\bigl( 

\bfitZ ⊥ \bigr)  
 

∀i = 1, . . . , N 

and u = 1, . . . , Nt. Its range is indeed in S⊥. 
The prediction mean is the sum of two terms, \bfitZ ⊥ R—1rx(\bfitx ), which is S⊥-valued, and 

B٨u(\bfitx ), also S⊥-valued, because 
\mat hrm{ o} \mat hrm{ b} \mat hrm{ s}  x N 

(C.1) B = \bfitZ ⊥ R—1F 
\bigl( 

F T R—1F 
\bigr) —1 

, 

with F the N\mathrm{F} × M matrix [f T (\bfitx (i))]i=1,...,N . Consequently, we have 

(C.2) Z⊥(\bfitx , tu)|\ell \bfitx , \bfGamma , N, \bfitZ ⊥  ~ 5P(\mu ٨(\bfitx ), R٨(\bfitx , \bfitx r)), 

where the mean is given by (5.5) and the covariance by (5.6) with \bfitZ ⊥ as the observed inputs. 

LOO estimation of the vector of correlation lengths \ell \bfitx given \bfGamma and N is carried out by the 
method presented in Appendix B. 

Appendix D. Expressions of some expectations and variances. 

D.1. Computation for uncorrelated GPs Given \bfGamma ,(Ai,H(\bfitx , tu), Ai,L(\bfitx , tu))  \bfitx \in Q are 
u=1,...,Nt 

independent with respect to i. This independence makes it possible to generate Nt independent 
surrogate models, with mean and variance given by (A.9) and (A.10): 

 

(D.1) \BbbE [Ai,H(\bfitx )|\bfGamma , A = \alpha ] =hT (\bfitx )Ci,H\nu i,H + rT
 (\bfitx )C—1 

\bigl( 
\alpha H — Hi,HCi,H \ nu i,H

\bigr) 
, 

\BbbV [Ai,H( \bfitx )|\bfGamma , A = \alpha ] = 
\bigl( 

\rho \^2 (\bfitx ) + \varepsilon i,\rho (\bfitx )
\bigr) 

\sigma 2 

i,H i 

(\bfitx ) 

+ 
 Qi,H  

(1 — rT (\bfitx )C—1r (\bfitx )) 

2(di,H — 1) 
i,H i,H i,H 

(D.2) + 
\Bigl( 

hT (\bfitx ) — rT (\bfitx )C—1H 
 
i,H 

\Bigr) 
C

  
i,H 

\Bigl( 
hT

 

(\bfitx ) — rT (\bfitx )C—1H 
 
i,H 

\Bigr) T 
.
 

 
D.2. Variance for projection The law of total variance gives 

(D.3) \BbbV \alpha [ZH(\ bf i t x , tu)] = \BbbV \alpha [\BbbE \alpha [ZH(\ bf i t x , tu)|\bfGamma ]] + \BbbE \alpha [\BbbV \alpha [ZH(\ bf i t x , tu)|\bfGamma ]] . 

The variance term can be expressed as follows: 

\BbbV \alpha [\BbbE \alpha [ZH(\ bf i t x , tu)|\bfGamma ]] = \BbbV \alpha 
\Bigl[ \sum Nt  \Gamma i(tu)\ B bbE \alpha [Ai,H( \bfitx )|\bfGamma ]

\Bigr] 
 

(D.4) = 
\sum Nt \BbbV \alpha [\Gamma i(tu)\B bbE \alpha [Ai,H(\bfitx )|\bfGamma ]] 

Nt 

i,j=1,i/=j Cov\alpha (\Gamma i(tu)\ B bbE \alpha [Ai,H( \bfitx )|\bfGamma ] , \Gamma j(tu)\BbbE \alpha [Aj,H(\ bf it x )|\bfGamma ]) 

where \BbbE \alpha [Ai,H(\bfitx )|\bfGamma ] is given by (D.1). The expectation term can be expressed as 

\Big l[ \sum  
 

 

\BbbE \alpha [\BbbV \alpha [ZH(\ bf i t x , tu)|\bfGamma ]] = 
 

 

\Bigr]  

Nt 

i,j=1,i/=j 

 

\BbbE \alpha [\Gamma i(tu )\Gamma j(tu)Cov \alpha (Ai,H(\ bf itx ), Aj,H(\ bf i t x )|\bfGamma )] 

i=1 

x u,j x 

\BbbE \alpha  Nt 

i=1 
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i=1 

i=1 i 

H 

\Bigl[  \Bigl[  H 

H 

H 

H 

i=1 

+ 
\sum  

i=1 H 

\sum  \bigl[  

+ 
\sum  

i=1 

\BbbE \bfitZ \math rm{o} \mathrm{b}\ma th rm{s} [\bigl[ \BbbV \bfitZ \mathrm{o}\math rm{b}\math rm{s} [Z\ b i g l [  H (\bfitx , tu) |\bfGamma , N, \ell \bfitx ] |\bigr] N, \ell \bfitx ] =\ b i g r ]   

Z H (\bfitx , tu) , Z⊥ (\bfitx , tu) |\bfGamma , N, \ell \bfitx  

+ \BbbE \bfitZ \mathr m{o} \ mat hrm{b} \ mat hrm{s} ZH (\bfitx , tu) |\bfGamma , N, \ell \bfitx  |N, \ell \bfitx  

i=1 
N 
i=1 \Gamma i(tu)2 \BbbV \alpha [Ai (\bfitx ) |\bfGamma ] 

\bigr]  

where \BbbV \alpha [Ai,H(\bfitx )\Gamma i(tu)|\bfGamma ] is given in (D.2) and Cov\alpha (Ai,H(\bfitx ), Aj,H(\bfitx )|\bfGamma ) = 0 if i /= j. Con- 
sequently, 

\BbbV \alpha [ZH(\bfitx , tu)] = 
\sum Nt

 \BbbV \alpha [\Gamma i(tu)\B bbE \alpha [Ai,H(\bfitx )|\bfGamma ]] 
(D.6) Nt i,j=1,i/=j Cov\alpha (\Gamma i(tu)\ B bbE \alpha [Ai,H( \bfitx )|\bfGamma ] , \Gamma j(tu)\BbbE \alpha [Aj,H(\ bf it x )|\bfGamma ]) 

+ 
\sum Nt \BbbE \alpha 

\bigl[ 
\Gamma 2(tu)\BbbV \alpha [Ai,H( \bfitx )|\bfGamma ]

\bigr] 
. 

D.3. Variance for tensorization of covariance and projection The theorem of the total 
variance gives us 

(D.7) 
\BbbV \bfitZ \mathrm{o}\mathrm{b}\mathrm{s} [ZH (\bfitx , tu) |N, \ell \bfitx ] = \BbbV \bfitZ \mathrm{o}\mathrm{b}\mathrm{s} [\BbbE \bfitZ \mathrm{o}\mathrm{b}\mathrm{s} [ZH (\bfitx , tu) |\bfGamma , N, \ell \bfitx ] |N, \ell \bfitx ] 

+\BbbE \bfitZ \mathrm{o}\mathrm{b}\mathrm{s} [\BbbV \bfitZ \mathrm{o}\mathrm{b}\mathrm{s} [ZH (\bfitx , tu) |\bfGamma , N, \ell \bfitx ] |N, \ell \bfitx ] . 

The two terms of (6.15) are 

 (D.8) \Bigl[  \BbbV \bfitZ \math rm{o} \math rm{b} \math rm{s} [\BbbE \bfitZ \math rm{o}\math rm{b} \math rm{s} [ZH (\bfitx , tu) |\bfGamma , N, \ell \bfitx \Bigl[ ] |N, \ell \bfitx ] = \Bigr]  \Bigr]  
 

 

and 

\BbbV \bfitZ  
 

 

\ mathr m{o} \ mathr m{b} \ mathr m{s} 
\BbbE \bfitZ  

 

 

\ mathr m{o} \ mathr m{b} \ mathr m{s} 

\bigl[ 
Z⊥ (\bfitx , tu) |\bfGamma , N, \ell \bfitx 

\bigr] 
+ \BbbE \bfitZ  

 

 

\ mathr m{o} \ mathr m{b} \ mathr m{s} 
ZH (\bfitx , tu) |\bfGamma , N |N 

 

\BbbE \bfitZ  
 

 

 

 

\ mathr m{o} \ mathr m{b} \ mathr m{s} \BbbV \bfitZ \mathr m{o} \ mat hrm{b} \ mat hrm{s} Z⊥ (\bfitx , tu) |\bfGamma , N, \ell \bfitx  
 

 

|N, \ell \bfitx  \Bigr]  \Bigr]  

 

+ \B b bE \bfitZ  

 
 

 

\ mathr m{o} \ mathr m{b} \ mathr m{s} 

\Bigl[ 
\BbbV \alpha 

\Bigl[ 
ZH

 
(\bfitx , tu) |\bfGamma , N 

\Bigr] 
|N 

\Bigr] 
. 

The uncorrelation of the Ai,H(\bfitx , tu) coefficients given \bfGamma gives Cov\alpha [Ai,H(\bfitx ), Aj,H(\bfitx )|\bfGamma ] = 0 

for i /= j and Cov\bfitZ 
into 

 

\ mathr m{o} \ mathr m{b} \ mathr m{s} [Ai,H(\bfitx )\Gamma i(tu), Z⊥(\bfitx , tu)|\bfGamma ] = 0. This leads us to simplify (D.8) and (D.9) 

\BbbV \bfitZ  
 

 \ mathr m{o} \ mathr m{b} \ mathr m{s} [\BbbE \bfitZ  
 

 \ mathr m{o} \ mathr m{b} \ mathr m{s} [ZH(\bfit x , tu)|\bfGamma , N, \ell \bfitx ]] = \BbbV \bfitZ  
 

 \ mathr m{o} \ mathr m{b} \ mathr m{s} 

\bigl[ 
\BbbE \alpha 

\bigl[ 
Z⊥(\bfitx , tu)|\bfGamma , N, \ell \bfitx 

\bigr] 
|N, \ell \bfitx 

\bigr] 
 

+ 
\sum N \BbbV \bfitZ  

 

 
\ mathr m{o} \ mathr m{b} \ mathr m{s} [\Gamma i(tu) \ B b b E \alpha [Ai,H( \ b fi t x )|\bfGamma ]] 

(D.10) N i,j=1;i/=j Cov\bfitZ   \ mathr m{o} \ mathr m{b} \ mathr m{s} [\Gamma i(tu)\ B bbE \alpha [Ai,H(\bfitx )|\bfGamma ] , \Gamma j(tu)\BbbE \alpha [Aj,H(\ bf i t x )|\bfGamma ]] 
 
 

and 

+2 
\sum N

 Cov\bfitZ  
 

 

\ mathr m{o} \ mathr m{b} \ mathr m{s} 

\bigl[ 
\Gamma i(tu)\BbbE \alpha [Ai,H(\ bf i t x )|\bfGamma ] , \BbbE \bfitZ  

 

 

\ mathr m{o} \ mathr m{b} \ mathr m{s} 

\bigl[ 
Z⊥(\bfitx , tu)|\bfGamma , N, \ell \bfitx 

\bigr] 
|N, \bfitl \bfitx 

\bigr] 
 

\BbbE \bfitZ  [ \BbbV \bfitZ  [ZH (\bfitx , tu) |\bfGamma , N, \ell \bfitx ]] = \BbbE \bfitZ  \bigl[ 
\BbbV \bfitZ 

 
\bigl[ 

Z⊥ (\bfitx , tu) |\bfGamma , N, \ell \bfitx 

\bigr] 
|N, \ell \bfitx 

\bigr] 
 

(D.11) \ mathr m{o} \ mathr m{b} \ mathr m{s} \ mathr m{o} \ mathr m{b} \ mathr m{s} \sum N 
 

 
 

\bigl[  
 

 
 

\ mathr m{o} \ mathr m{b} \ mathr m{s} \mathrm{o}\mathrm{b}\mathrm{s} H \bigr]  

 

 

\BbbV \bfitZ  [ZH (\bfitx , tu) |N, \ell \bfitx ] = \BbbV \bfitZ  \ b i g l [ 
\ Bbb E \bfitZ 

 
\bigl[ 

Z⊥(\bfitx , tu)|\bfGamma , N, \ell \bfitx 

\bigr] 
|N, \ell \bfitx 

\bigr] 
 

\mathrm{o}\mathrm{b}\ mathrm{s} \bigl[  \bigl[  \ mathr m{o} \ mathr m{b} \ mathr m{s} 

⊥ 
\ mathr m{o} \ mathr m{b} \ mathr m{s} H \bigr]  \bigr]  

+ 
\sum N 

 

 

\BbbV \bfitZ  
 

 

[\Gamma i(tu) \ B b b E \alpha [Ai,H( \b f i t x )|\bfGamma ]] 

N i,j=1;i/=j Cov\bfitZ   \ mathr m{o} \ mathr m{b} \ mathr m{s} [\Gamma i(tu)\B bbE \alpha [Ai,H(\bfitx )|\bfGamma ] , \Gamma j(tu)\BbbE \alpha [Aj,H(\ bf i t x )|\bfGamma ]] 

+2 
\sum N

 Cov\bfitZ  
 

 

\ mathr m{o} \ mathr m{b} \ mathr m{s} 

\bigl[ 
\Gamma i(tu)\BbbE \alpha [Ai,H(\ bf i t x )|\bfGamma ] , \BbbE \bfitZ  

 

 

\ mathr m{o} \ mathr m{b} \ mathr m{s} 

\bigl[ 
Z⊥(\bfitx , tu)|\bfGamma , N, \ell \bfitx 

\bigr] 
|N, \ell \bfitx 

\bigr] 
, 

(D.9) 
\mathrm{o}\ mathrm {b}\ mathr m{s} 

i=1 \mathrm{o}\ mathrm {b}\ mathr m{s} 

The full formula of the variance can be expressed as 

+ \BbbE \bfitZ  

+ 
\sum  

+ \B b bE \bfitZ  2Cov\bfitZ  \ mathr m{o} \ mathr m{b} \ mathr m{s} |N, \ell \bfitx  

+ \BbbE \bfitZ  \Gamma i(tu)2 \BbbV \alpha [Ai,H (\bfitx ) |\bfGamma ] |N, \ell \bfitx  

\BbbV \alpha  

(D.12) \ mathr m{o} \ mathr m{b} \ mathr m{s} 

 

\ mathr m{o} \ mathr m{b} \ mathr m{s} 
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