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MULTI-FIDELITY SURROGATE MODELING FOR TIME-SERIES
OUTPUTS ∗

BAPTISTE KERLEGUER †‡

Abstract. This paper considers the surrogate modeling of a complex numerical code in a multi-
fidelity framework when the code output is a time series. Using an experimental design of the low- and
high-fidelity code levels, an original Gaussian process regression method is proposed. The code output
is expanded on a basis built from the experimental design. The first coefficients of the expansion
of the code output are processed by a co-kriging approach. The last coefficients are collectively
processed by a kriging approach with covariance tensorization. The resulting surrogate model taking
into account the uncertainty in the basis construction is shown to have better performance in terms
of prediction errors and uncertainty quantification than standard dimension reduction techniques.
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1. Introduction. Advances in scientific modeling have led to the development
of more complex and more computationally expensive codes. The surrogate modeling
approach consists in building a surrogate model of a complex numerical code from a
data set computed from an experimental design. We address in this paper a complex
code with time series output in a multi-fidelity framework. Multi-fidelity refers to
the situation where different codes dealing with the same problem are available. The
particular case that interests us is when codes are hierarchical, i.e. they are classified
according to their computational cost and their accuracy. The more accurate the
code, the more expensive it is. There is indeed a crucial need in the development of
surrogate modeling methods that can deal with high-dimensional output and multi-
fidelity.

A well-known method to build surrogate models is Gaussian process regression.
This method, also called kriging, was originally proposed by [13] for geostatistics. This
method has subsequently been used for computer experiments and in particular in the
field of uncertainty quantification, see [28, 29]. With the emergence of multi-fidelity
codes it has become interesting to build multi-fidelity approaches for the construction
of surrogate models. The autoregressive scheme presented by [12] is the first result in
the field of Gaussian process regression. This technique has been amended by [18] in
order to reduce the overall co-kriging problem to several independent kriging problems.
The papers [9, 23, 25] present different application cases and [8] is a synthesis of the
use of multi-fidelity for surrogate modeling.

Among the codes with high-dimensional outputs, we are interested in those whose
outputs are functions of one variable. When they are sampled, such outputs are called
time series. This means that the dimension of the code output is very large. Previous
work has solved the problem of functional outputs only in the simple-fidelity case.
Two methods have been considered to solve the simple-fidelity problem: reduce the
dimension of the outputs [21] or adapt the regression kernel [26]. The disadvantage of
dimension reduction is that it is then more difficult to quantify uncertainties based on
the reduced problem. Moreover, large data sets (containing many low-fidelity data)
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lead to ill-conditioned covariance matrices that are difficult to invert. As proposed in
[24], it is possible to strongly constrain the covariance kernel which makes it possible
to improve the estimation compared to the dimension reduction method. However,
this method implies that the covariance must be separable, which reduces the use
cases. Knowing that the AR(1) multi-fidelity model for Gaussian process regression
uses co-kriging, [22] presents an interesting approach for co-kriging in the context of
functional outputs, which is based on dimension reduction. An approach to multi-
fidelity with functional outputs is presented in [10] for multivariate Hilbert space
valued random fields.

In this work, we present a method that can generate a surrogate model for time-
series output in a multi-fidelity framework, with one high-fidelity code and one low-
fidelity code. A short introduction to Gaussian process regression and multi-fidelity
is given in Section 3. Section 4 presents a dimension reduction technique which takes
into account multi-fidelity. The method presented in Section 5 involves a dimension
reduction technique as for the method of Section 3 but it also processes the orthogonal
part by a simple-fidelity covariance tensorization method. To show the efficiency of
the surrogate model we present an example in Section 6.

2. Statement of results. Let us consider a complex numerical code where the
input is a point x ∈ Q, with Q being a domain in Rd and the output is a function
of a one-dimensional variable. We are interested in hierarchical codes, which means
that there are several code levels that can be classified according to their fidelity.
In this work, we will focus on only two code levels, a high-fidelity code and a low-
fidelity code. In what follows, H represents the high-fidelity code and L the low-
fidelity code, the generic notation is F ∈ {H,L}. For any given input x, we can
run the F = L or H code and observe the data zF(x, t) for all t in a fixed regular
grid {tu, u = 1, . . . , Nt} in [0, 1]. However, the cost of the high-fidelity code allows
only a very limited number of code calls. This induces the use of the experimental
design DF =

{
x(1), . . . ,x(NF)

}
. NF is the number of observations of the code F. The

Nt×NF matrix containing the observations for x ∈ DF is ZF
obs.Our goal is to predict

the values of
(
zH(x(i), tu)

)
u=1,...,Nt
i=1,...,NH

given
(
ZH

obs,Z
L
obs
)
.

We assume that (zL, zH) is a realization of a stochastic process (ZL, ZH). We will
denotebyZFthe randomvector containing the random variables

(
ZF(x(i), tu)

)
u=1,...,Nt
i=1,...,NH

.

The combination of ZL and ZH is Z.
In this work, we introduce an original approach to the construction of a surrogate

model in the framework of hierarchical multi-fidelity codes with time-series outputs.
The main idea is to combine a reduction method of the output dimension, that fits
well with the autoregressive model of multi-fidelity co-kriging, and a simple fidelity
method that allows to treat time series output by Gaussian process regression with
covariance tensorization. In Section 3 we give the main elements of the Gaussian
process regression theory that are needed in our paper.

The choice of the basis for dimension reduction is crucial. In Sections 4-5 we
develop an empirical method based on K-fold cross-validation which uses only low-
fidelity data and allows us to consider the first two moments of the basis vectors. Once
projected onto the reduced space it is possible to characterise the models of the first
coefficients of the expansion of the code output onto the basis by the multi-fidelity
Gaussian process regression method.

The orthogonal part, which is the projection of the code output onto the orthog-
onal space of the reduced space, can be neglected if the dimension of the reduced
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space can be chosen so as to achieve a good bias-variance trade-off (see Section 4) or
it can be treated by Gaussian process regression with covariance tensorization (see
Section 5). The latter approach collectively addresses the orthogonal part of the high-
fidelity code and it makes it possible to better predict the output of the high-fidelity
code and to better quantify the uncertainty of the prediction.

The results presented in the numerical example in Section 6 confirm that the
processing of the orthogonal part is important. In this example we test the different
methods presented in the paper and we assess their performance in terms of prediction
errors and uncertainty quantification.

3. Gaussian Process regression. In Subsection 3.1 the autoregressive multi-
fidelity model is presented. This model comes from [12]. The Gaussian process regres-
sion with covariance tensorization is presented in Subsection 3.2. The method comes
from [26] and it has been improved by [3] and [24].

3.1. Multi-fidelity Gaussian process regression. In this section we want to
build a surrogate model of a code αH(x) whose input x is in Q ⊂ Rd and whose scalar
output is in R. The construction of a surrogate model for complex computer code
is difficult because of the lack of available experimental outputs. We consider the
situation in which a cheaper and approximate code αL(x) is available. In this section,
we apply the regression method presented by [12], reviewed in [7] and improved in
[18].

The code outputs (αL, αH) is assumed to be a realization of a Gaussian process
(AL, AH). The vector containing the values of αF(x) at the points of the experimental
design DF are denoted by αF and AF is the Gaussian vector containing the random
variables AF(x) at the points x in DF. The combination of AL and AH is A. So is
α, the combination of αL and αH. We present the recursive model of multi-fidelity
introduced by [18]. The experimental design is constructed such that DH ⊂ DL. We
assume the low-fidelity code is computationally cheap, and that we have access to a
large experimental design , i.e. NL � NH.

We consider the hierarchical model introduced by [18]:

(3.1)

 AH(x) = ρL(x)ÃL(x) + δ(x)

ÃL(x) ⊥ δ(x)
ρL(x) = gTL (x)βρ

,

where ⊥ means independence, T stands for the transpose,

(3.2) δ(x) ∼ GP
(
fTH (x)βH, σ

2
HrH(x,x′)

)
,

and ÃL(x) is a Gaussian process conditioned by the values αL. Its distribution is the
one of

[
AL(x)|AL = αL, βL, σL

]
with

(3.3) AL(x) ∼ GP
(
fTL (x)βL, σ

2
LrL(x,x′)

)
.

Therefore, the distribution of ÃL(x) is Gaussian with mean µÃL
(x) and variance

σ2
ÃL

(x):

µÃL
(x) =fTL (x)βL + rTL (x)C−1L

(
αL − FLβL

)
,(3.4)

σ2
ÃL

(x) =σ2
L
(
rL(x,x)− rTL (x)C−1L rL(x)

)
.(3.5)

Here:
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- GP means Gaussian process,
- gL(x) is a vector of qL regression functions,
- fF(x) are vectors of pF regression functions,
- rF(x,x′) are correlation functions,
- βF are pF-dimensional vectors,
- σ2

F are real,
- βρ is a q-dimensional vector of adjustment parameters,
- CF =

(
rF(x(i),x(j))

)NF

i,j=1
is the NF ×NF correlation matrix of AF,

- rF(x) =
(
rF(x,x(i))

)NF

i=1
is the NF-dimensional vector of correlations between

AF(x) and AF,
- FF is the NF × pF matrix containing the values of fTF (x) for x ∈ DF.

For x ∈ Q, the conditional distribution of AH(x) is:

(3.6)
[
AH(x)|A = α, β, βρ, σ

2
]
∼ N

(
µAH(x), σ2

AH
(x)
)
,

where β =
(
βTH , β

T
L
)T is the pH + pL-dimensional vector of regression parameters,

σ2 =
(
σ2

L, σ
2
H
)
are the variance parameters,

µAH(x) =gTL (x)βρµÃL
(x) + fTH (x)βH

+ rTH(x)C−1H

(
αH − ρL(DH)� αL(DH)− FHβH

)
(3.7)

and

(3.8) σ2
AH

(x) =
(
gTL (x)βρ

)2
σ2
ÃL

(x) + σ2
H
(
1− rTH(x)C−1H rH(x)

)
.

The notation � is the element by element matrix product. ρL(DH) the NH-
dimensional vector containing the values of ρL(x) for x ∈ DH. αL (DH) is the NH-
dimensional vector containing the values of αL(x) at the points of DH.

The goal of a Bayesian prediction is to integrate the uncertainty of the parameter
estimation into the predictive distribution as in [15]. Here the parameters are σ, β
and βρ. As explained in [18] the result is not Gaussian but we can obtain expressions
of the posterior mean E [AH(x)|A = α] and variance V [AH(x)|A = α]. It is possible
to consider informative or non informative priors for the parameters [18, 19]. Here we
consider informative conjugate priors:[

σ2
L
]
∼IG (mL, ςL) ,(3.9) [

βL|σ2
L
]
∼NpL

(
bL, σ

2
LVL

)
,(3.10) [

σ2
H|AL = αL, βL, σL

]
∼IG (mH, ςH) ,(3.11)

[
βρ, βH|AL = αL, σ2

H, βL, σL
]
∼Nq+pH

(
bH =

(
bρ

bβH

)
, σ2

HVH = σ2
H

(
V ρ 0

0 V βH

))
,

(3.12)

with
- bL a vector of size pL,
- bρ a vector of size q,
- bβH a vector of size pH,
- V βH a pH × pH matrix,
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- V ρ a q × q matrix,
- VL a pL × pL matrix,
- mF and ςF are positive scalars and IG stands for the inverse Gamma distri-
bution.

By using these informative conjugate priors we obtain the following a posteriori dis-
tribution as in in [18] :

[
σ2

L|AL = αL] ∼IG (dL, QL) ,(3.13) [
βL|AL = αL, σ2

L
]
∼NpL (ΣLνL,ΣL) ,(3.14) [

σ2
H|A = α

]
∼IG (dH, QH) ,(3.15) [

βH, βρ|A = α, σ2
H
]
∼NpH+q (ΣHνH,ΣH) ,(3.16)

with:
- dF = nF

2 +mF,

- Q̃F =
(
αF −HFλ̂F

)T
C−1F

(
αF −HFλ̂F

)
,

- QF = Q̃F + ςF +
(
bF − λ̂F

)T (
VF +

(
HT

FC
−1
F HF

))−1 (
bF − λ̂F

)
,

- ΣF =
[
HT

F
C−1

F
σ2
F
HF +

V −1
F
σ2
F

]−1
,

- νF =
[
HT

F
C−1

F
σ2
F
αF +

V −1
F
σ2
F
bF

]
,

- HF is defined by HL = FL and HH =
[
GL �

(
αH1TqL

)
FH
]
,

- GL is the NH × q matrix containing the values of gTL (x) for x ∈ DH,
- 1qL is a q-dimensional vector containing 1.
- λ̂F =

(
HT

FC
−1
F HF

)−1
HT

FC
−1
F αF.

Consequently, the posterior distribution of AH(x) has the following mean and
variance:

E [AH(x)|A = α] =hTH(x)ΣHνH + rTH(x)C−1H

(
αH −HHΣHνH

)
,

(3.17)

V [AH(x)|A = α] =
(
ρ̂2L(x) + ερ(x)

)
σ2
ÃL

(x) +
QH

2(dH − 1)
(1− rTH(x)C−1H rH(x))

+
(
hTH − rTH(x)C−1H HH

)
ΣH
(
hTH − rTH(x)C−1H HH

)T
,(3.18)

with ρ̂L(x) = gTL (x)β̂ρ, β̂ρ = [ΣHνH]i=pH+1,...,pH+q and ερ(x) = gTL (x)Σ̃HgL(x) with
Σ̃H = [ΣH]i,j=pH+1,...,pH+q.

The posterior mean E [AH(x)|A = α] is the predictive model of the high fidelity
response and the posterior variance V [AH(x)|A = α] represents the predictive vari-
ance of the model.

The hyper-parameters of the covariance kernels rL and rH can be estimated by
maximum likelihood or by leave-one-out cross validation [2]. The nested property of
the experimental design sets DH ⊂ DL is not necessary to build the model but it is
simpler to estimate the parameters with this assumption. Moreover, the ranking of
codes and the low computer cost of the low-fidelity code allow for a nested design for
practical applications.

3.2. Gaussian process regression for functional outputs. In this subsec-
tion, we address Gaussian process regression for a simple-fidelity code with time-series
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output. For the calculation of surrogate models with functional outputs, there are
two different techniques. The simplest ones are dimension reduction techniques as
presented in [1, 21] (see Section 4). An alternative is presented here, this method is
Gaussian process regression with covariance tensorization. The method is presented
in [26] and the estimation of the hyper-parameters is from [24].

In this section we consider that the output is a time-dependent function observed
on a fixed time grid {tu}u=1,··· ,Nt

, with Nt � 1, which is called a time series.
The experimental design in a times-series output case is very different from a

scalar output case. In particular, for a value x in the experimental design D, all the
t of the time grid are in the experimental design. The Nt × Nx matrix containing
the the observations is Zobs =

(
z(x(i), tu)

)
u=1,...,Nt
i=1,...,Nx

. In Gaussian process regression

the code output is assumed to be a realization of a Gaussian process Z(x, tu) with
x ∈ Q and u = 1, . . . , Nt. The a priori knowledge of Z(x, tu) is given by its covariance
function C in (3.20) and its mean function µ in (3.19). We focus our attention to the
case Nt > Nx. We assume that the covariance structure can be decomposed into two
different functions representing the correlation in x and the correlation in t. If we
choose well both functions, the kriging calculation is possible [24, 26].

The a priori RNt-valued mean function by of the form:

(3.19) µ(x) = Bf(x)

where f(x) is a given RM -valued function and B ∈ MNt×M (R) is to be estimated.
We define F the Nx ×M matrix [fT (x(i))]i=1,...,Nx

.
The a priori covariance function C(tu, tu′ ,x,x

′) can be expressed with the Nt×Nt
matrix Rt and the correlation function Cx : Q×Q→ [0, 1] with Cx(x,x) = 1:

(3.20) C(tu, tu′ ,x,x
′) = Rt(tu, tu′)Cx(x,x′).

The covariance "matrix" (here a tensor) of
(
Z(x(j), tu)

)
u=1,...,Nt
j=1,...,Nx

is

(3.21) R = Rt ⊗Rx,

with (Rx)k,l = Cx(x(k),x(l)) k, l = 1, . . . , Nx.
If Rx and Rt are not singular, then the a posteriori distribution of the RNt-valued

process Z given the covariance functions and observations is Gaussian:

(3.22) (Z(x, tu))u=1,...,Nt
|Rt, Cx,Zobs ∼ GP(µ?(x), R?(x,x

′)Rt),

with the Nt-dimensional posterior mean:

(3.23) µ?(x) = ZobsR
−1
x rx(x) +B?u(x)

with rx(x) is the Nx-dimensional vector
(
Cx(x,x(j))

)
j=1,...,Nx

. The posterior covari-
ance function R?(x,x′) is :

(3.24) R?(x,x
′) = c?(x,x

′) (1 + v?(x,x
′)) .

The functions that are used in the regression are

(3.25)

 u(x) = f(x)− FTR−1x rx(x)
c?(x,x

′) = Cx(x,x′)− rx(x)TR−1x rx(x′)
v?(x,x

′) = u(x)T (FTR−1x F )−1u(x′)c−1? (x,x′)
,
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and

(3.26) B? = ZobsR
−1
x F (FTR−1x F )−1.

The correlation function Cx is assumed to be a Matérn kernel with a tensorized
form:

(3.27) Cx(x,x′) =

d∏
i=1

(
1 +

√
5|xi − xi′|
`xi

+
5|xi − xi′|2

3`2xi

)
exp

(
−
√

5|xi − xi′|
`xi

)
,

with `x = (`x1
, . . . , `xd

) the vector of correlation lengths. Other choices are of course
possible. Rt is estimated using R−1x and the observations Zobs by maximum likelihood,
as in [24]:

(3.28) R̂t =
1

Nx

(
Zobs − Ẑ

)
R−1x

(
Zobs − Ẑ

)T
,

with Ẑ is the Nt × Nx matrix of empirical means Ẑu,i = 1
Nx

∑Nx

j=1 (Zobs)u,j , ∀i =
1, . . . , Nx and u = 1, . . . , Nt.

It remains only to estimate the vector of correlation lengths `x = (`x1
, . . . , `xd

) to
determine the function Cx. As presented in [24], the maximum likelihood estimation
is not well defined for `x. Indeed the approximation of Rt by (3.28) is singular because
Nx < Nt. In fact we do not need to inverse Rt as seen in Equations (3.22)–(3.26).
The method generally used to estimate the correlation lengths is cross-validation and,
in our case, Leave-One-Out (LOO). The LOO mean square error that needs to be
minimized is:

(3.29) ε2(`x) =

Nx∑
k=1

‖µ(−k)
? (x(k)|Z(−k)

obs , lx)−Zobs(x
(k))‖2,

where µ(−k)
? (x(k)|Z(−k)

obs , lx) is the RNt-valued prediction mean obtained with the cor-
relation length vector lx, using all observations except the k-th, at the point x(k). We
can use an expression of ε2(lx) that does not require multiple regression, like in [5, 2].
For more detail see Appendix A.

4. AR(1) multi-fidelity model with projection. To carry out a simple-
fidelity regression for a code whose output is a time series we can use the method
presented in Subsection 3.2 or use output dimension reduction. For dimension re-
duction, as in [21], a basis is chosen. The functional output is expanded onto this
basis, the expansion is truncated and a surrogate model is built for each scalar-valued
coefficient of the truncated expansion.

In our case, we deal with both multi-fidelity and time-series outputs, as presented
in Section 2. One solution could be to use covariance tensorization in the multi-
fidelity framework. This method requires the inversion of large covariance matrices.
However, the inversion methods possible in simple fidelity become impossible because
the matrices are then too ill-conditioned to be inverted.

This leads us to introduce new methods. The most naive method consists in
starting again from the dimension reduction and to carry out the projection of the
outputs of the two codes onto the same appropriate basis. It is therefore possible
to use the model Equation (3.1). The problem is that is not possible to define a
basis that is optimal for both the high and low fidelity codes. A basis estimated from
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the low-fidelity data is preferred as it is more robust thanks to the larger number
of data. Thus the loss of high-fidelity information is significant which leads us to
introduce our new method Section 5. The originality of our approach is to keep the
dimension reduction technique but also to use the residual high-fidelity data to carry
out a Gaussian process regression with covariance tensorization.

4.1. Model. We consider the situation described in Section 2. We recall that
(ZL, ZH) is a stochastic process. The temporal grid is {tu}u∈{1,...,Nt}. NF observations
are available for different values of x at the fidelity F.

Let Γ be an orthogonal Nt×Nt matrix. The columns of Γ, Γi, form an orthonor-
mal basis of RNt . We assume that, given Γ, the processes ZH have the form:

ZL(x, tu) =

Nt∑
i=1

Ai,L(x)Γi(tu),(4.1)

ZH(x, tu) =

Nt∑
i=1

Ai,H(x)Γi(tu),(4.2)

where (Ai,L(x), Ai,H(x)) are Gaussian processes which are independent with respect
to i, given Γ.

Remark:. Under these hypotheses (ZL, ZH) given Γ are Gaussian processes whose
covariance matrices can be diagonalized on the basis formed by the columns of Γ.

Let (αi,F(x))
Nt

i=1 be the RNt-valued function:

(4.3) αi,F(x) =

Nt∑
u=1

zF(x, tu)Γi(tu).

We denote by αF
i the 1 × Nx row vector

(
αi,F(x(j))

)Nx

j=1
that contains the available

data. The full data set is α =
(
αL, αH

)
.

Consequently we will use the method presented in Subsection 3.1 given Γ. This
leads us to the model presented in Equation (4.4). Given Γ, ∀i ∈ {1, . . . , Nt},

(4.4)

 Ai,H(x) = ρi,L(x)Ãi,L(x) + δi(x)

Ãi,L(x) ⊥ δi(x)
ρi,L(x) = gTi (x)βρL,i

,

where:
δi(x) ∼ GP

(
fTi,H(x)βi,H, σ

2
i,Hri,H(x,x′)

)
,

and Ãi,L(x) a Gaussian process conditioned by the values αL. The distribution of
Ãi,L(x) is the one of

[
Ai,L(x)|AL = αL, βi,L, σi,L

]
where:

Ai,L(x)|Γ ∼ GP
(
fTi,L(x)βi,L, σ

2
i,Lri,L(x,x′)

)
.

gi(x) is a vector of q regression functions, fi,F(x) are vectors of pF regression
functions, ri,F(x,x′) are correlation functions, βi,F is a pF-dimensional vector, βρL,i
is a q-dimensional vector and σ2

i,F are real. For simplicity the regression functions gi
and fi,F do not depend on i.

The model depends on Γ, which is why we discuss in Subsection 4.2 the choice of
the basis.
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4.2. Basis. In this section we present different models for the random orthogonal
matrix Γ. Its law depends on what we know. If we have access to a lot of information
based on the output of our code, we can use a Dirac distribution concentrated on one
orthogonal matrix γ (it is a form of plug-in method). In contrast, the least informative
law is the Uniform Law, i.e. the Haar measure over the group of orthogonal matrices.
In order to make the best use of the available information, i.e. the known results of
the code, an empirical law can be used.

4.2.1. Dirac distribution. We can choose the distribution of the random ma-
trix Γ as a Dirac distribution concentrated on a well chosen orthogonal matrix γ.
This matrix is chosen when the basis is known or if it is considered that the basis can
be efficiently estimated from the observed code outputs. Motivated by remark below
Equation (4.2), the matrix γ can be computed using the singular value decomposition
(SVD) of the code outputs.

The general idea is to choose subsets D̃F ⊂ DF of size ÑF to apply a SVD on the
Nt ×

(
ÑH + ÑL

)
matrix Z̃obs that contains the observed values (zH(x, tu))u=1,...,Nt

x∈D̃H

and (zL(x, tu))u=1,...,Nt

x∈D̃L

. The SVD gives:

(4.5) Z̃obs = ŨΛ̃Ṽ T .

The choice of γ is Ũ .
The first idea is to mix all available data, high- and low-fidelity: D̃H = DH and

D̃L = DL. However, we assume that NL � NH, so the basis is mainly built on the
low-fidelity data. In addition, the small variations in the data between high and low
fidelity that would be useful to build the basis have negligible impact because they
are overwhelmed by the low fidelity data. This method should not be used.

We have to choose between high and low fidelity. High fidelity has the advantage
of being closer to the desired result. However, it is also almost impossible to validate
the chosen γ because the high-fidelity data size NH is small. The low-fidelity data set
is larger, hence the estimation of γ is more robust. Note, however, that the choice is
less appropriate for the high-fidelity code. In order to choose γ, we therefore suggest
to use the low-fidelity data and to calculate the SVD with D̃H = ∅ and D̃L = DL.

4.2.2. Uniform distribution. We can choose a random matrix using the Haar
measure on the orthogonal group ONt

, where ONt
is the group of Nt×Nt orthogonal

matrices. This is the Uniform Orthogonal Matrix Law.
To generate a random matrix from the Haar measure over ONt , one can first

generate a Nt × Nt matrix with independent and identically distributed coefficients
with the reduced normal distribution, then, apply the Gram-Schmidt process onto the
matrix. As shown in [4], this generator produces a random orthogonal matrix with
the uniform orthogonal matrix law. This method completely ignores the available
data and is not appropriate in our framework.

4.2.3. Empirical distribution. The downside of the Dirac distribution is that
the uncertainties on the basis are not taken into account. An empirical method to
assess the uncertainty estimation is therefore considered.

The proposed method uses only the low-fidelity data because it is assumed that
there are too few high-fidelity data to implement this method, so D̃H = ∅. For the
construction of the basis we try to have different sets to evaluate the basis in order to
have empirical estimates of the moments of the basis vectors. Let k be a fixed integer
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in {1, . . . , NL}. Let I = {j1, . . . , jk} be a random set of k elements in {1, . . . , NL},
with uniform distribution over the subsets of k elements in {1, . . . , NL}. The empirical
distribution is defined as follows: for any test function f : ONt

→ R,

(4.6) E
[
f(ŨI)

]
=

1(
NL
k

) ∑
{j1,...,jk}⊂{1,...,NL}

f(Ũ[j1,...,jk]),

where Ũ[j1,...,jk] is the matrix of the left singular vectors of the SVD of(
zL(x(i), tu)

)
u∈{1,...,Nt}

i∈{1,...,NL}\{j1,...,jk}
. This distribution depends on the choice of k, that

will be discussed in Section 6.

4.3. Predictive mean and variance. The goal of this section is to calculate
the posterior distribution of ZH(x, tu). The problem can be split into two parts: the
multi-fidelity regression of the basis coefficients knowing Γ and the integration with
respect to the distribution of Γ. The Dirac and empirical distributions can be used
to define the law of Γ.

Multi-fidelity surrogate modeling of the coefficients. By applying the model pro-
posed in Subsection 3.1 we can therefore deduce the prediction mean and variance.
Given Γ, (Ai,H(x, tu), Ai,L(x, tu)) x∈Q

u=1,...,Nt

are independent a priori and a posteriori

with respect to i. This independence makes it possible to generate Nt independent
surrogate models, with mean and variance given by (3.17) and (3.18):

E [Ai,H(x)|Γ,A = α] =hTi,H(x)Σi,Hνi,H + rTi,H(x)C−1i,H
(
αH
i −Hi,HΣi,Hνi,H

)
,(4.7)

V [Ai,H(x)|Γ,A = α] =
(
ρ̂2i,L(x) + εi,ρ(x)

)
σ2
ÃL,i

(x)

+
Qi,H

2(di,H − 1)
(1− rTi,H(x)C−1i,Hri,H(x))

+
(
hTi,H(x)− rTi,H(x)C−1i,HHi,H

)
Σi,H

(
hTi,H(x)− rTi,H(x)C−1i,HHi,H

)T
.(4.8)

4.3.1. Dirac law of Γ. Here we assume that the law of Γ is Dirac at γ. Con-
sequently, the posterior distribution of ZH(x, t) is Gaussian. In order to characterize
the law of ZH(x, t) it is necessary and sufficient to compute its mean and variance.

Mean:. The posterior mean is:

(4.9) E [ZH(x, tu)|A = α] =

Nt∑
i=1

γi(tu)E [Ai,H(x)|A = α] ,

where the expectation E [Ai,H(x)|A = α] is given by (4.7).
Variance:. The posterior variance:

(4.10) V [ZH(x, tu)|A = α] =

Nt∑
i=1

γ2i (tu)V [Ai,H(x)|A = α] ,

where the variance V [Ai,H(x)|A = α] is given by (4.8).

4.3.2. Empirical law of Γ. Because the law is different from Dirac the posterior
distribution of ZH(x, t) is not Gaussian anymore. However, we can characterize the
posterior mean and the variance of ZH(x, t).

We denote Eα [·] = E [·|A = α], Vα [·] = V [·|A = α], EZobs [·] = E [·|Z = Zobs] and
VZobs [·] = V [·|Z = Zobs].
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Mean. The linearity of the expectation and the law of total expectation give:

(4.11) Eα [ZH(x, tu)] =

Nt∑
i=1

Eα[Γi(tu)Eα[Ai,H(x)|Γ]],

where the expectation Eα[Ai,H(x)|Γ] is given by Equation (4.7).
Variance. The law of total variance gives :

(4.12) Vα [ZH(x, tu)] = Vα [Eα [ZH(x, tu)|Γ]] + Eα [Vα [ZH(x, tu)|Γ]]

The variance term can be expressed as follows :

(4.13)
Vα [Eα [ZH(x, tu)|Γ]] = Vα

[∑Nt

i=1 Γi(tu)Eα [Ai,H(x)|Γ]
]

=
∑Nt

i=1 Vα [Γi(tu)Eα [Ai,H(x)|Γ]]

+
∑Nt

i,j=1,i6=j Covα(Γi(tu)Eα [Ai,H(x)|Γ] ,Γj(tu)Eα [Aj,H(x)|Γ])

,

where Eα [Ai,H(x)|Γ] is given by Equation (4.7). The expectation term can be ex-
pressed as :
(4.14)

Eα [Vα [ZH(x, tu)|Γ]] =

Eα
[∑Nt

i=1 Vα [Ai,H(x)Γi(tu)|Γ] +
∑Nt

i,j=1,i6=j Covα (Ai,H(x)Γi(tu), Aj,H(x)Γj(tu)|Γ)
]

=
∑Nt

i=1 Eα
[
Γ2
i (tu)Vα [Ai,H(x)|Γ]

]
+
∑Nt

i,j=1,i6=j Eα [Γi(tu)Γj(tu)Covα (Ai,H(x), Aj,H(x)|Γ)]

,

where Vα [Ai,H(x)Γi(tu)|Γ] is given in Equation (4.8) and Covα(Ai,H(x), Aj,H(x)|Γ) =
0 if i 6= j. Consequently:

(4.15)
Vα [ZH(x, tu)] =

∑Nt

i=1 Vα [Γi(tu)Eα [Ai,H(x)|Γ]]

+
∑Nt

i,j=1,i6=j Covα(Γi(tu)Eα [Ai,H(x)|Γ] ,Γj(tu)Eα [Aj,H(x)|Γ])

+
∑Nt

i=1 Eα
[
Γ2
i (tu)Vα [Ai,H(x)|Γ]

] .

Equations (4.11) and (4.15) are combinations of expectations of explicit functions
of Γ. We can compute the result using our knowledge on the law of Γ. The expectation
of a function of Γ is given by Equation (4.6).

4.4. Truncation. There is a problem with surrogate modeling of the coefficients
of the decomposition with indices larger than NL. Indeed, we typically have NL < Nt
so the vectors Γi with indices larger than NL of the basis are thus randomly construc-
ted, which is not suitable for building surrogate models. To solve this problem, it is
possible to truncate the sum. Only the first N coefficients, with N ≤ NL are calcu-
lated. The assumption is that the contributions of the terms Ai,H(x)Γi(tu) for i > N
are negligible. However it turns out that these terms are often not collectively negli-
gible (see Section 6) and the truncation method does not achieve a good bias-variance
trade-off even when optimizing with respect to N (by a cross validation procedure
for instance). The high- and low-fidelity outputs do not necessarily have the same
forms. Thus it is possible that an important part of the high-fidelity code is neglected
because it is not taken into account by the sub-space spanned by {Γi}i≤N . We will
therefore propose in the next section an original method to tackle this problem.
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5. AR(1) multi-fidelity model with tensorized covariance and Projec-
tion. The naive method presented in Section 4 has many flaws. It leaves part of
the output untreated by regression and the variance is underestimated. The major
problem with the solution we propose in Section 4, is that we typically have NL < Nt.
Consequently for i > NL the verctors Γi of the basis do not represent the typical vari-
ation of ZH. We should find an appropriate way to predict the law of the projection
of ZH on span {Γi, i > NL}.

One interesting approach is to apply the covariance tensorization method to the
orthogonal part. This idea is to address the last terms of the expression collectively
through a Gaussian Process model with tensorized covariance structure. This allows
us to split in the problem into two parts. The first part is to compute as presented
the previous section the first N terms of the expansion of ZH onto the basis by using
a co-kriging approach. The second part is to compute the projection of ZH onto the
orthogonal space by using a kriging approach with tensorized covariance. The choice
of the optimal N will be carried out by a K-fold cross-validation method.

5.1. Decomposition. The proposed method is based on the decomposition of
the outputs, as presented in Equation (4.1).

Projection. Let N be an integer, smaller than the time dimension Nt. Let Γ be an
orthogonal matrix, as presented in Subsection 4.2, the columns of Γ are {Γi}i=1,··· ,Nt .
As discussed in Subsection 4.4 the full computation of all Nt surrogate models does
not give good results. This leads to the idea of the introduction of the orthogonal sub-
spaces S‖N and S⊥N , where S‖N = span {Γ1, . . . ,ΓN} and S⊥N = span {ΓN+1, . . . ,ΓNt

}.
With a given basis Γ it is possible to decompose the code outputs. The decom-

position over the basis Γ gives us coefficients. We decompose ZH and ZL over the
subspace S‖N . The rests are denoted Z⊥H and Z⊥L . Consequently, we get:

(5.1) ZL(x, tu) = Z
‖
L(x, tu) + Z⊥L (x, tu) =

N∑
i=1

Ai,L(x)Γi(tu) + Z⊥L (x, tu)

and

(5.2) ZH(x, tu) = Z
‖
H(x, tu) + Z⊥H (x, tu) =

N∑
i=1

Ai,H(x)Γi(tu) + Z⊥H (x, tu).

We are able to describe the code outputs with the basis ΓN = {Γi}i=1,...,N of SN ,
the coefficients Ai,H and Ai,L, and the orthogonal parts Z⊥L and Z⊥H . We denote by
αi,H and αi,L the available data sets, the full set is called α. The expression of αi,F is
given by Equation (4.3).

We will use the method presented in Subsection 3.1 for all i ≤ N . Given Γ,

(5.3)

 Ai,H(x) = ρi,L(x)Ãi,L(x) + δi(x)

Ãi,L(x) ⊥ δi(x)
ρi,L(x) = gTi (x)βi,ρL

,

where:
δi(x) ∼ GP

(
fTi,H(x)βi,H, σ

2
i,Hri,H(x,x′)

)
,

and Ãi,L(x) is a Gaussian process conditioned by αL. Its distribution is the one of[
Ai,L(x)|AL = αL, βL, σL

]
where:
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Ai,L(x)|Γ ∼ GP
(
fTi,L(x)βi,L, σ

2
i,Lri,L(x,x′)

)
.

gi is a vector of q regression functions, fi,F(x) are vectors of pF regression func-
tions, ri,F(x,x′) are correlation functions, βi,F is a pF-dimensional vector, βi,ρL is a
q-dimensional vector and σ2

i,F are real.
For the orthogonal part projected onto S⊥N the method is different. The hypothesis

is that the projection Z⊥L (x, tu) of ZL(x, tu) has a negligible influence on the projec-
tion Z⊥H (x, tu) of ZH(x, tu). Our assumption is that Z⊥H (x, tu) is a Gaussian process
with a tensorized covariance. The method we will use on Z⊥H (x, tu) is described in
Subsection 3.2.

The value N = 0 corresponds to full simple fidelity, in this case we use only
Gaussian process regression with covariance tensorization as in subsection 3.2. For
N = NL the dimension reduction is minimal and co-kriging is applied to all pairs
(Ai,L, Ai,H) for i ≤ NL. We will see that the optimal N is in fact positive but smaller
than NL.

5.2. Predictive mean and covariance. In this section we will first make a
quick reminder of the methods presented in Section 3. Moreover, with different as-
sumptions in the law of Γ we will present the regression using the model and the
data.

Multi-fidelity of coefficients. As in subsection 4.3 we compute the N multi-fidelity
models of the first N coefficients of the expansion of the code output given Γ. If we
apply the method proposed in subsection 3.1 we can therefore deduce the prediction
mean and variance. The independence of Ai,H(x, t) and Ai,H(x, t) given Γ allows to
generate N independent surrogate models. Consequently, (3.17) and (3.18) become
Equations (4.7) and (4.8). All parameters are computed as in Subsection 3.2.

Tensorized covariance regression. The orthogonal part of the regression is com-
puted using the method presented in subsection 3.2. The adaptation is that the
regression must be in subspace S⊥N . This does not have any consequence on the x
part but only on the t part. Contrarily to Z

‖
H(x, tu) only one surrogate model is

needed for Z⊥H (x, tu).
Given Γ, we define

(5.4) Z⊥obs = Zobs −

(
N∑
i=1

αi,H(x)Γi(tu)

)
u=1,··· ,Nt

x∈DH

,

where αi,H is given by Equation (4.3).
The first part is to compute the covariance matrices Rt and Rx. For Rx we

assume that Cx is chosen in the Matérn-5/2 class of functions. The function only
depends on the correlation length vector `x. The matrix Rt is estimated as described
in Subsection 3.2 by the matrix R̂t given by:

R̂t =
1

Nx

(
Z⊥obs − Ẑ⊥

)
R−1x

(
Z⊥obs − Ẑ⊥

)T
,

where Ẑ⊥ is the Nt × Nx matrix of empirical means Ẑ⊥u,i = 1
Nx

∑Nx

j=1

(
Z⊥obs

)
u,j

,
∀i = 1, . . . , Nx and u = 1, . . . , Nt. Its range is indeed in S⊥N .

The mean of prediction is the sum of two terms, Z⊥obsR
−1
x rx(x) which is S⊥N -valued

and B?u(x) also S⊥N -valued because:

(5.5) B? = Z⊥obsR
−1
x F

(
FTR−1x F

)−1
,
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with F the NH ×M matrix
[
fT (x(i))

]
i=1,...,NH

. Consequently, we have:

(5.6) Z⊥H (x, tu)|`x,Γ, N,Z⊥obs ∼ GP(µ?(x), R?(x,x
′))

where the mean is given by (3.23) and the covariance by (3.24) with Z⊥obs as the
observed inputs. LOO estimation of the vector of correlation lengths `x given Γ and
N is carried out by the method presented in Appendix A.

5.2.1. Dirac law of Γ. Here we assume that Γ is known and its distribution is
Dirac at γ. Consequently as in Section 4, the model gives us that ZH(x, t) is a Gauss-
ian process by linear combination of independent Gaussian processes. Its posterior
distribution is completely determined if we can evaluate its mean and covariance.

Mean. The Γi(tu) is constant and equal to γi(tu). Consequently:

(5.7) Eα
[
Z
‖
H(x, tu)|N

]
=

N∑
i=1

Eα[Ai,H(x)]γi(tu).

and

(5.8) EZobs [ZH(x, tu)|N, `x] =
∑N
i=1 Eα[Ai,H(x)]Γi(tu) + EZobs

[
Z⊥H (x, tu)|N, `x

]
,

where Eα [Ai,H(x)] is given by (4.7) and EZobs

[
Z⊥H (x, tu)|N, `x

]
by (3.23).

Variance. The formula of the variance is:

(5.9) Vα [Ai,H(x)Γi(t)] = Vα [Ai,H(x)] γi(t)
2.

The uncorrelation of the coefficients Ai,F(x) gives Covα [Ai,H(x), Aj,H(x)] = 0,
for i 6= j and Covα

[
Ai,H(x)γi(tu), Z⊥H (x, tu)

]
= 0. The expression of the variance

becomes simple:

(5.10) VZobs [ZH(x, tu)|N, `x] =
∑N
i=1 Vα [Ai,H(x)] γi(tu)2

+VZobs

[
Z⊥H (x, tu)|N, `x

]
where Vα [Ai,H(x)] is given by (4.8) and VZobs

[
Z⊥H (x, tu)|N, `x

]
is given by (3.22).

5.2.2. Empirical law of Γ. ZH(x, t) is not a Gaussian process. However to
predict the output of the high-fidelity code and to quantify the prediction uncertainty
we are able to compute the posterior mean and variance of ZH(x, t).

Mean. We can decompose the process into two parts:

(5.11) ZH(x, tu) = Z
‖
H(x, tu) + Z⊥H (x, tu).

The linearity of the expectation gives us:

(5.12) EZobs [ZH(x, tu)|N, `x] =

N∑
i=1

EZobs [Ai,H(x)Γi(tu)] + EZobs

[
Z⊥H (x, t)|N, `x

]
.

The theorem of total expectation gives us:

(5.13) EZobs

[
Z
‖
H(x, tu)|N

]
=

N∑
i=1

EZobs [Γi(tu)Eα [Ai,H(x)|Γ]],
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and therefore,

EZobs [ZH(x, tu)|N, `x] =

N∑
i=1

EZobs [Γi(tu)Eα[Ai,H(x)|Γ]]

+ EZobs

[
EZobs

[
Z⊥H (x, tu)|N, `x,Γ

]
|N, `x

]
.(5.14)

where Eα[Ai,H(x)|Γ] is given by Equation (4.7) and Vα
[
Z⊥H (x)|Γ

]
is given by Equa-

tion (3.23). Equation (5.14) is a combination of expectations of explicit functions of
Γ, which can be computed by Equation (4.6).

Variance. The theorem of the total variance gives us:

(5.15) VZobs [ZH (x, tu) |N, `x] = VZobs [EZobs [ZH (x, tu) |Γ, N, `x] |N, `x]
+EZobs [VZobs [ZH (x, tu) |Γ, N, `x] |N, `x]

.

The two terms of (5.15) are:

(5.16)
VZobs [EZobs [ZH (x, tu) |Γ, N, `x] |N, `x] =

VZobs

[
EZobs

[
Z⊥H (x, tu) |Γ, N, `x

]
+ EZobs

[
Z
‖
H (x, tu) |Γ, N

]
|N
]
,

and

(5.17)

EZobs [VZobs [ZH (x, tu) |Γ, N, `x] |N, `x] =
EZobs

[
VZobs

[
Z⊥H (x, tu) |Γ, N, `x

]
|N, `x

]
+EZobs

[
2CovZobs

[
Z
‖
H (x, tu) , Z⊥H (x, tu) |Γ, N, `x

]
|N, `x

]
+EZobs

[
Vα
[
Z
‖
H (x, tu) |Γ, N

]
|N
]
.

.

The uncorrelation of the Ai,H(x, tu) coefficients given Γ gives
Covα [Ai,H(x), Aj,H(x)|Γ] = 0 for i 6= j and CovZobs

[
Ai,H(x)Γi(tu), Z⊥H (x, tu)|Γ

]
= 0.

This leads us to simplify Equations (5.16) and (5.17) into:

(5.18)

VZobs [EZobs [ZH(x, tu)|Γ, N, `x]] = VZobs

[
Eα
[
Z⊥H (x, tu)|Γ, N, `x

]
|N, `x

]
+
∑N
i=1 VZobs [Γi(tu)Eα [Ai,H(x)|Γ]]

+
∑N
i,j=1;i6=j CovZobs [Γi(tu)Eα [Ai,H(x)|Γ] ,Γj(tu)Eα [Aj,H(x)|Γ]]

+2
∑N
i=1 CovZobs

[
Γi(tu)Eα [Ai,H(x)|Γ] ,EZobs

[
Z⊥H (x, tu)|Γ, N, `x

]
|N, lx

] ,
and
(5.19)

EZobs [VZobs [ZH (x, tu) |Γ, N, `x]] = EZobs

[
VZobs

[
Z⊥H (x, tu) |Γ, N, `x

]
|N, `x

]
+
∑N
i=1 EZobs

[
Γi(tu)2Vα [Ai,H (x) |Γ] |N, `x

] .

The full formula of the variance can be expressed as :

(5.20)

VZobs [ZH (x, tu) |N, `x] = VZobs

[
EZobs

[
Z⊥H (x, tu)|Γ, N, `x

]
|N, `x

]
+EZobs

[
Vα
[
Z⊥H (x, tu) |Γ, N, `x

]
|N, `x

]
+
∑N
i=1 VZobs [Γi(tu)Eα [Ai,H(x)|Γ]]

+
∑N
i=1 EZobs

[
Γi(tu)2Vα [Ai (x) |Γ]

]
+
∑N
i,j=1;i 6=j CovZobs [Γi(tu)Eα [Ai,H(x)|Γ] ,Γj(tu)Eα [Aj,H(x)|Γ]]

+2
∑N
i=1 CovZobs

[
Γi(tu)Eα [Ai,H(x)|Γ] ,EZobs

[
Z⊥H (x, tu)|Γ, N, `x

]
|N, `x

]
.

where Vα[Ai,H(x)|Γ] is given by Equation (4.8) and Vα
[
Z⊥H (x)|Γ

]
is given by Equa-

tion (3.24). Equation (5.20) is a combination of expectations and variances of explicit
functions of Γ, which can be computed by Equation (4.6).
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5.3. Effective dimension. For the formula in Subsection 5.2 to be valid, N
must be fixed. We may choose N by a knowledge on the physical system or on the
code but it is impossible in most cases due to the high/low-fidelity differences. The
best solution is generally to determine N by a K-fold cross validation procedure.

The criterium that we choose to maximize is:

(5.21) Q2
N (tu) = 1−

∑NH
k=1

(
zH(x(k), tu)− E

[
ZH(x(k), tu)|Γ, N, `x,Z(−k)

obs

])2
NHV [zH(DH, tu)]

,

where V [zH(DH, tu)] is the empirical variance of the observed values:

V [zH(DH, tu)] =
1

NH

NH∑
k=1

zH(x(k), tu)2 −
( 1

NH

NH∑
k=1

zH(x(k), tu)
)2
.

The procedure we propose starts with the dimension 0. For the case N = 0 the
surrogate model depends only on high fidelity regression.

- We compute the surrogate model for all N = 0, . . . , NL
- We calculate the mean in tu of Q2

N (tu):

Q̂2
N =

1

Nt

Nt∑
u=1

Q2
N (tu)

At the end we compare the Q̂2
N values and the value N with the largest Q̂2

N is chosen.

6. Illustration: double pendulum simulator. The purpose of this section is
to apply the methods proposed in the previous sections to a mechanical example. The
example is based on a simulator of a pendulum attached to a spring-mass system. We
have two codes: the high-fidelity code numerically solves Newton’s equation. The low-
fidelity code simplifies the equation, by linearisation for small angles of the pendulum
motion, and solves the system.

6.1. Characteristics of the outputs.
The physical system. The system can be seen as a dual-oscillator cluster. The first

oscillator is a spring-mass system whose axis is perpendicular to the gravitational axis.
The parameters of this system are the mass of the system M and the spring stiffness
k. The initial position of the mass is denoted y0, its initial velocity is 0. The second
oscillator is a pendulum. A schematic representation of the system is presented in
Figure 6.1. The parameters are the mass m and the length of the pendulum `, which
are fixed. The initial value of the angle is θ0 and its derivative is θ̇0. By Newton’s law
of motion, the dynamics is governed by a system of two coupled ordinary differential
equations (ODEs). However, we do not have a closed form expression that gives the
solution of the system. This forces us to use computer codes. The output signal is
the position of the mass m at time t ∈ {t1, . . . , tNt} with Nt = 101. The input vector
is x =

{
M,k, y0, θ0, θ̇0

}
. The input variables are assumed to be independent and

identically distributed with uniform distributions as described in Table 6.1.
The two different code levels. We propose two codes. The high-fidelity code nu-

merically solves the coupled system of ODEs by an Euler’s derivation of the position
y and the angle θ for each tu. This gives functions θ(tu) and y(tu). The low-fidelity
code assumes that the angle of the θ pendulum is small so that the linearisation of
sin(θ) makes it possible to get an explicit form of the solution of the two coupled
ODEs.
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Figure 6.1. The double pendulum system with its parameters.

Table 6.1
Distributions of the input variables.

M k θ0 θ̇0 y0
U(10, 12) U(1; 1.4) U(π

4
; π
3
) U(0; 1

10
) U(0; 0.2)

Code Analysis. A sensitivity analysis is carried out for information purposes, but
it has no use in the forthcoming surrogate modeling. We are thus able to determine the
effective dimension of our problem. We compare outputs of the high- and low-fidelity
codes and the associated Sobol indices on Figure 6.2. We estimate Sobol indices by
the method described in [27] and implemented in the R library [11] by using a Monte
Carlo sample of size 105 for each code. No surrogate model was used to estimate the
indices in Figure 6.2. The main result is that the two codes depend on the same input
variables. The four most important input variables are y0, k, M and θ0.

6.2. Comparison between methods. The experimental designs used to com-
pare the methods are presented in [16]. They are constructed from two independent
maximin LHS designs with NH = 10 and NL = 100 points. The low-fidelity design
is then modified so that the designs are nested. Only the points of the low-fidelity
design closest to the points of the high fidelity design are moved. To generate these
designs the R packages [6, 14] was used. The test design is composed of 4000 uni-
formly randomly chosen in the hypercube determined by the supports of the uniform
distributions described in Table 6.1.

In this section, we want to demonstrate the interest of the method presented in
Section 5. For this we will compare several methods:

• the simple-fidelity method using the SVD with high fidelity code as in [21]
and we have kept only the first NH terms. This method will be called simple
fidelity method.

• the multi-fidelity method presented in Section 4 with a Dirac distribution of
Γ, called the multi-fidelity projection method.

• the multi-fidelity method that uses regression of the orthogonal part and the
distribution of Γ is Dirac at γ the matrix of the SVD of the observed low-
fidelity code outputs. It prediction is computed as is Section 5 and called full
Dirac method.

• the multi-fidelity method presented in Section 5 with the empirical distribu-
tion, called full empirical method.
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Figure 6.2. Comparison between low-fidelity (top left) and high-fidelity (top right) code out-
puts. Sobol indices for high- and low-fidelity codes (bottom left: high fidelity, bottom right: low
fidelity). For each time t in the time grid, we report the first-order Sobol indices and "interactions"
stands for the sum of the Sobol indices of order larger than 2.

The method we would like to highlight is the full empirical method.
Empirical basis. The law of Γ needs to be determined in order to compute or

estimate the moments (4.11),(4.15), (5.14), and (5.20). The distribution of Γ is the
empirical distribution described in Subsection 4.2.3. As shown by (4.6) it depends
on the size k of the random subset I. Here we choose k = 4. Because it is too
expensive to compute the sum over all

(
NL
k

)
different subsets {j1, . . . , jk}, we estimate

the expectation (4.6) by an empirical average over n = 64 realizations Ij of the random
subset I:

(6.1) E [f(Γ)] ' 1

n

n∑
j=1

f(ŨIj ),

where ŨIj is the matrix of the left singular vectors of the SVD of(
zL(x(i), tu)

)
u∈{1,...,Nt}

i∈{1,...,NL}\Ij
. We have checked that the stability with respect to k is

conserved if 1 < k < NL − NH and the stability with regard to n is valid if n >
max (k, 50). We tested the construction of the empirical basis for all k values in this
range and found that changes in k do not influence the basis.

The computational cost of calculating the basis is very important in particular
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Figure 6.3. Comparison between the methods in terms of time-dependent Q2. Averages over
40 random experimental designs are computed. The colored fields represent the confidence intervals
determined by ±1.96 standard deviation. Here NH = 10, NL = 100 and Nt = 101.

because it is impossible for us to calculate it for all subsets. A method to compute the
basis with only a cost of O(N2

t ) is given in [20] whereas we compute it with O(N2
LNt)

by our method. The gain is however very small especially if NL < Nt which is our
case. We have therefore not implemented this method in the results presented.

Prediction of the orthogonal part. A simple model for the a priori mean function
is M = 1 and f(x) = 1. Consequently, FTR−1x F =

∑
i,j

{
R−1x

}
i,j
.

Multi-fidelity regression of the coefficients. Our implementation of the multi-
fidelity regression is based on [14]. We use an informative prior for the regression
of the coefficients. For more information refer to [16, Section 3.4.4]. In this example
the size of the piors are q = pL = pH = 1. Considering the relation between the two
codes we chose bρ = 1. The trend in supposed to be null consequently, bβH = bL = 0.
The variances are σL = 0.5 and σH = 0.5 with V βH = 2 and VL = 2. The parameters
for the inverse Gamma distribution mL = mH = 0.2 and ςL = ςH = 1.5. We have
checked the robustness of the results with respect to the hyper-parameters of the
prior distributions. Alternatively, the article [19] presents non-informative priors for
the autoregressive co-kriging.

Prediction. In order to estimate the errors of the surrogate models, we calculate
their Q2’s and report them in Figure 6.3. To compute Q2 for a model, we calculate
the difference between a validation set of size 4000 and the predictions of the model.
The validation set is not used to optimize the parameters of the surrogate models and
is randomly uniform over the input hypercube. We have averaged the estimates of
the Q2 over 40 different experimental designs.

The first observation is that simple fidelity is far from good. This is a perfect
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Figure 6.4. Comparison between the predictions of the full method (left) and the dimension
reduction only method (right). The black solid line is the exact high-fidelity time series, the colored
solid line is the prediction mean and the dashed lines are the confidence intervals. In this example
the value of N obtained by cross validation is 8.

illustration of the need for multi-fidelity. The multi-fidelity projection method gives
us a very interesting result because the Q2 is almost always higher than 0.8. However,
in Figure 6.4 we can see that it does not capture the form of the times series. The Q2

of the Dirac and empirical methods are larger than the ones of the other methods.
The error is also less variable as a function of t. And the variance is much lower
for both methods. However, even if there is a difference between the Dirac and
empirical methods, it is not possible to say that the empirical method is better in this
application. The difference between the Dirac and empirical methods is small, in our
example.

The variance of the prediction is very important for the quantification of uncer-
tainty. All formulas are given in the previous sections and we illustrate the results
in Figure 6.4. We can see that the variance of the projection method is not accurate
and overestimates the quality of the prediction. This method is not acceptable for
prediction. The Dirac method and the empirical method have almost the same vari-
ance. If we compare to the variance of the projection method, it means that most of
the uncertainty relates to the orthogonal part. This leads to the conclusion that this
part is important in the regression.

In order to understand the interest of the method with covariance tensorization
for the orthogonal part we study in more detail the orthogonal part. First we study
the value of N . Here NH = 12, the limit value is 12. We find that the optimal
value of N for 40 learning sets is between 8 and 10. Even when the value of NH is
increased, N remains constant in the 8 to 10 range. This means that the low-fidelity
code can give reliable information on the high-fidelity code output projection into a
8-dimensional space. The high-fidelity code output is, however, higher dimensional
and it is important to predict the orthogonal part with a dedicated method, namely
the proposed covariance tensorization method.

7. Discussion. The objective of this work is to propose a method that generates
a surrogate model in the context of multi-fidelity and time series outputs with full
control of the quantification of uncertainty of the prediction. The method we propose
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Figure 6.5. Estimation of the different time-dependent prediction variance terms for the
empirical basis method.

is based on three main ingredients: dimension reduction, co-kriging, and covariance
tensorization. The model we present is based on multi-fidelity (co-kriging) regression.
By reducing the output dimension, multi-fidelity regression becomes possible. To
take into account all the information of the data sets, the part that cannot be treated
with the previous method is predicted by Gaussian process regression with covariance
tensorization.

First, we have presented different ways to build the basis that allows to represent
the code outputs, both high and low fidelity. Second, we have presented a model that
allows to estimate the high-fidelity code outputs from data collected from the high-
and low-fidelity codes. The combination of a multi-fidelity part and a single-fidelity
part with tensorized covariance is the central point of the proposed method. The
performance of our model has been tested on a mechanical example. We have been
able to use multi-fidelity in a very convincing way to build a robust surrogate model
better than any other method presented so far.

There are several ways to extend the method presented in this article. Sequential
experimental designs in a multi-fidelity context have already been dealt with by [17].
However, they deserve to be extended to the case of time-series outputs. We can
consider regression problems for more than two levels of code. It is conceivable in
this case to build several levels of bases which from code to code would improve the
basis and thus reduce the orthogonal part. In addition, high-dimensional outputs
are not different from time-series outputs as considered in this paper. It is therefore
conceivable to adapt this method to more general functional outputs.

Appendix A. LOO formula and discussion.
LOO without loop. In order to quickly minimize the LOO error with respect to

the vector of correlation lengths `x there exist formulas to evaluate ε2(`x) with matrix
products [2],[5]. The LOO optimization problem is equivalent to minimize a function
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fCV(`x) given by:

(A.1) fCV(`x) = zTR−1`x
diag

(
R−1`x

)−2
R−1`x

z,

where z is a vector that collect all the data.
Considering Equation (3.21) and the mixed-product property, the inverse of a

Kronecker product and the formula diag(A⊗B) = diagA⊗ diagB the cost function
can be expressed as:

(A.2) fCV(`x) = zT
(
R−1t diag

(
R−1t

)−2
R−1t

)
⊗
(
R−1x diag

(
R−1x

)−2
R−1x

)
z.

However, the term in Rt is impossible to calculate because Rt is not invertible.
R−1t diag

(
R−1t

)−2
R−1t can be approximated by INt

in order to have a tractable prob-
lem. This assertion is equivalent to the hypothesis:

(A.3) R2
t = diag(R−1t )−2.

This assumption can be seen as the fact that the error is estimated by taking into
account only the spatial distribution of the covariance. Indeed, to calculate the error
only the matrix Rx is used, even if the value of Rt is calculated by maximum likelihood
later in the Gaussian process regression method.

Thus, the minimization described in Equation (3.29) makes it possible to calculate
the correlation lengths by minimizing:

(A.4) fCV(`x) ' zT INt ⊗
(
R−1x diag

(
R−1x

)−2
R−1x

)
z.

The main interest of this method is to give an approximate value of the error and
to make the optimization much faster.

Optimization with hypothesis (A.3). Efficient minimization algorithms require to
have the derivative of the function so that it does not have to be calculated by finite
differences. Thanks to the simplification (A.4) it is possible to calculate the derivative
of the LOO error [2]:

(A.5)
∂

∂`xk

fCV(`x) = 2zT INt
⊗R−1x diag

(
R−1x

)−2(
R−1x

∂Rx
∂`xk

R−1x

)
diag

(
R−1x

)−1
R−1x z

−2zT INt
⊗R−1x diag

(
R−1x

)−2
R−1x

∂Rx
∂`xk

R−1x z

,

with

(A.6)
(
∂Rx,l
∂`xk

)
i,j

=
`xk

(xk,j − xk,i)2

|xk,j − xk,i|
h′5

2

(
|xk,j − xk,i|

`xk

)
and

(A.7) h′5
2
(x) = −5

3
x
(

1 +
√

5x
)

exp
(
−
√

5x
)
.

The method used to calculate the value of `x is the Nelder-Mead method with only one
starting point, because starting from more points will be more costly and the function
fCV is close to quadratic consequently does not need multiple starting points.
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Loop LOO Full LOO Simplified LOO
εQ∈ 7.06 10−4 8.72 10−4 8.14 10−4

time 18.41 s 3.47 min 0.17 s
Table A.1

Benchmark of the different LOO optimization techniques for estimating the f(x, t) =
cos (4π(x2 + 1)t) sin (3πx1t) function using the separable covariance method. Loop LOO processes
the error by computing the approximation, Full LOO processes the regularize analytic expression
and Simplified LOO processes the simplified one given by Equation (A.4).

Optimization without hypothesis (A.3):. When hypothesis (A.3) does not hold, a
way must be found to calculate `x without this assumption. By a regularization of the
matrix Rt it is possible to calculate fCV(`x) and its derivative by Equations (3.29),
(A.2), and (A.8). However, the solution will be a regularized solution and not an
exact solution.

There are different types of regularization that allow matrices to be inverted. Two
methods have been investigated here. The first one is standard( Tilkonov regulariza-
tion):

(A.8) R̂−1t =
(
RTt Rt + εINt

)−1
Rt.

The second one is:

(A.9) R̂−1t = (Rt + εINt)
−1
.

It has the disadvantage of being more sensitive to ε than the first one, which is why
it will not be used.

However, in the calculation of the determinant, this adjustment may have ad-
vantages. Indeed it gives: R̂−1t = V Σ−1UT with Σ−1 = diag 1

σi+ε
whereas the same

decomposition gives for Equation (A.8) Σ−1 = diag σi

σ2
i+ε

. This is the reason why the
two adjustments presented are not used in the same case. Indeed 1

σi+ε
is less efficient

for the calculation of a determinant but more efficient for the calculation of the inverse
of R̂t.

(A.10)

∂

∂`xk

fCV(`x) = 2zT
(
R̂−1t diag

(
R̂−1t

)−2
R̂−1t

)
⊗R−1x diag

(
R−1x

)−2(
R−1x

∂Rx
∂`xk

R−1x

)
diag

(
R−1x

)−1
R−1x z

−2zT
(
R̂−1t diag

(
R̂−1t

)−2
R̂−1t

)
⊗R−1x diag

(
R−1x

)−2
R−1x

∂Rx
∂`xk

R−1x z

.

Equation (A.6) and Equation (A.7) are still valid.
This complete approach was compared to the LOO calculation using a loop. How-

ever, the calculation time of Kronecker products is too long compared to the calcu-
lation of the simple error with a loop. Moreover, the difference in the errors of the
different methods is negligible. Thus this solution is only recommended when the
calculation of Equations (A.2) and (A.10) is optimized.

Table A.1 shows that the gain in calculation time by the simplified method is
significant even though the error difference is very small. The extremely long time
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for the complete LOO is mainly due to an implementation of the Kronecker product
that is not very effective in our implementation.
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