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On the Capacity Enlargement of Gaussian
Broadcast Channels with Passive Noisy Feedback

Aditya Narayan Ravi, Sibi Raj B. Pillai, Vinod M. Prabhakaran, Michèle Wigger

Abstract—It is well known that the capacity region of an
average transmit power constrained Gaussian Broadcast Channel
(GBC) with independent noise realizations at the receivers is
enlarged by the presence of causal noiseless feedback. When
the noise variances at the receivers are identical, even passive
feedback via independent memoryless Gaussian links can lead to
a capacity region enlargement. The last fact remains true even
when the feedback noise variance is very high, and available
only from one of the receivers. While such capacity enlargements
are feasible for several other feedback models in the Gaussian
BC setting, it is also known that feedback does not change the
capacity region for physically degraded broadcast channels. In
this paper, we consider a two user GBC with independent noise
realizations at the receivers, where the feedback links from the
receivers are corrupted by independent additive Gaussian noise
processes. We investigate the set of four noise variances, two
forward and two feedback, for which no capacity enlargement
is possible. A sharp characterization of this region is derived,
i.e., any quadruple outside the presented region will lead to a
capacity enlargement, whereas quadruples inside will leave the
capacity region unchanged. Our results lead to the conclusion
that when the forward noise variances are different, too noisy a
feedback from one of the receivers alone is not always beneficial
for enlarging the capacity region, be it from the stronger user or
the weaker one, in sharp contrast to the case of equal forward
noise variances.

Index Terms—Gaussian Broadcast Channel, Noisy Feedback,
Capacity Region, Feedback Coding, Capacity Enlargement.

I. INTRODUCTION

FEEDBACK does not increase the capacity of a memory-
less point-to-point channel, a result which goes back to

C. E. Shannon [1]. However, feedback has a positive impact in
simplifying coding schemes and boosting error exponents [2].
With the discovery of capacity regions for several multiuser
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models in the ’70s and ’80s, it was of significant interest to
find the impact of feedback on these models. In the absence
of feedback, identifying suitable auxiliary variables which can
lead to single letter expressions for the rate-region turned
out to be a key step in discovering the capacity region of a
degraded Broadcast Channel (BC) [3]. Notice that, without any
feedback, one can turn a stochastically degraded BC in to an
equivalent physical degraded setup, as only the marginal distri-
butions to the individual receivers matter in the decay of error
probability with blocklength. When perfect causal feedback
is available in a two user BC, a single letter characterization
of the capacity region in terms of one auxiliary variable is
obtained by El Gamal in [4] and [5], where the physical degra-
dation assumption is crucial. More specifically, [4] and [5]
respectively show that the capacity regions of a physically
degraded discrete memoryless BC and a physically degraded
Gaussian BC (GBC) are unchanged by the presence of causal
feedback. In contrast, Dueck [6] demonstrated a BC for which
rate pairs outside its no-feedback capacity region can be
attained using feedback. For a stochastically degraded two
user GBC, Ozarow and Leung developed a feedback coding
scheme to show that perfect noiseless feedback from both the
receivers enlarges the capacity region [7], when there is no
physical degradation. It was later shown that perfect noiseless
feedback from the stronger receiver was sufficient to enlarge
the capacity region [8]. The optimism of capacity enlargement
using feedback did carry over to a variety of models. Recent
works considered BCs with noisy feedback [9], [10], [11] and
rate limited feedback [12]. In fact, for a two user GBC with
equal receiver noise variances, passive noisy feedback from
any one of the receivers enlarges the capacity region, even
when the feedback noise is of very high variance [10].

It was shown in [13] that noisy feedback always enlarges
the capacity region of a Gaussian Multiple Access Channel
(MAC), a fact which remains true with the availability of
feedback to only one of the transmitters. Furthermore, a
MAC-BC duality while employing linear feedback coding
schemes with noiseless feedback is known [14], allowing many
of the MAC results to be relevant for the BC as well. In
summary, capacity enlargement for Gaussian BCs using noisy
feedback turned out to be true for several models which are
not physically degraded. That this is not always the case when
the receivers have different noise variances is shown in the
present paper. The results here significantly expand some of
the initial results in the conference versions [15], [16], which
considered one sided feedback from the stronger receiver.
The main interest here is in identifying the set of four noise
variances, corresponding to two forward noise processes and
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two feedback noise processes, such that the capacity region
differs from that without feedback. We wish to highlight the
following aspects of the paper:
• noisy feedback from both the receivers are considered.
• the exact threshold behaviour is characterized, i.e., any

set of four noise variances can be classified based on
whether the capacity region of the GBC with feedback,
having these parameters, is enlarged or not.

• that too noisy a feedback from the weaker receiver of a
two user GBC does not enlarge the capacity region was
hitherto unknown.

• a byproduct of our analysis is an outer bound which can
be useful in some regimes where the conditions of no
capacity enlargement are violated.

A. Notations:

For a positive integer n, we use Un to denote the tuple
U1, U2, . . . , Un. A variable Uij with multiple subscripts will be
denoted as Ui,j in some contexts to make the index separation
clear. The diagonal square matrix of size n× n is denoted by
diag(d̄), where the diagonal elements are given by the vector
d̄. We write U ∼ N (µ,K) to denote a random vector U
having a Multivariate Gaussian Distribution with covariance
matrix K. The acronyms LHS and RHS stand for Left Hand
Side and Right Hand Side respectively, of the mathematical
equation in consideration. Logarithms are taken with respect
to base 2.

B. Paper Organization:

The organization of the paper is as follows. We introduce the
two user scalar GBC with passive noisy feedback from both
the receivers in the next section, and present our objectives
as well as the main results. Before proceeding to the detailed
proofs, we take a detour in Section III to present results on the
utility of feedback in some related channel models. Then, in
order to prove the main results, we first develop some converse
arguments in Section IV. In particular, for the two receiver
GBC model with noisy feedback, we identify a regime where
feedback does not help in capacity enlargement. The boundary
of the regime thus characterized is then shown to be sharp,
by constructing an achievable region which strictly enlarges
the no feedback capacity for noise parameters exterior to the
regime. This is presented in Section V. Finally, Section VI
concludes the paper.

II. MODEL AND RESULTS

Consider a memoryless two user scalar GBC, as shown in
Fig. 1. Assume independent memoryless noisy feedback links
from both receivers to the transmitter, in a causal manner. In
this setup, X refers to the signal transmitted by the sender,
and the additive noise processes (Z1, Z2) in the forward links
are independent, distributed according to N (0, diag(σ2

1 , σ
2
2)).

Unless otherwise stated, we will assume

σ2
1 ≤ σ2

2 , (1)

i.e., receiver 2’s outputs are more noisy than receiver 1’s.
The passive causal feedback links are corrupted by additive

Sender

+

+

Rec 1

Rec 2

W1,W2
X

+

+

Ŵ1

Ŵ2

Z1

Z2

Zfb1

Zfb2

Fig. 1. GBC with causal passive noisy feedback from both the receivers.

noise (Zfb1, Zfb2) ∼ N (0, diag(σ2
fb1, σ

2
fb2)), independent of the

forward noise processes.
A pair of messages (W1,W2), independently and uniformly

chosen from {1, . . . , 2nR1}×{1, . . . , 2nR2} is to be conveyed
in n channel uses of the GBC. The encoder chooses the symbol
Xi at time i ∈ {1, . . . , n} as a function of both the messages
as well as causal noisy feedback from both receivers:

Xi = gi(W1,W2, Y
i−1
1 + Zi−1fb1 , Y

i−1
2 + Zi−1fb2 ). (2)

The transmissions are constrained to meet an average power
constraint P , i.e.,

∑n
i=1 E|Xi|2 ≤ nP . After every block of n

transmissions, each receiver attempts to decode the message
intended to it. Let Pe(n) denote the average error probability
that any of the two receivers makes a decoding error. We are
interested in the capacity region Cnoisy−fb of this model. Using
standard definitions [2], the capacity region can be concisely
defined as follows.

Definition 1: The capacity region Cnoisy−fb is the convex
closure of the set of all non-negative rate pairs (R1, R2) such
that there exists a sequence of encoder-decoder pairs with
Pe(n)→ 0 as n→∞.

Let Cwo−fb refer to the capacity region when there are
no feedback links present, well known to be achieved by
superposition coding [17]. Cwo−fb is the collection of non-
negative rate pairs (R1, R2) such that

R1 ≤
1

2
log

(
1 +

θP

σ2
1

)
(3a)

R2 ≤
1

2
log

(
1 +

(1− θ)P
θP + σ2

2

)
, (3b)

for some θ ∈ [0, 1]. By ignoring feedback, it is easy to see

Cwo−fb ⊆ Cnoisy−fb. (4)

For equal noise variances, i.e. σ2
1 = σ2

2 , Venkataramanan
and Pradhan [10] showed that the inclusion in (4) is strict,
irrespective of the feedback noise variances. In fact, it is
shown that noisy feedback from even one of the two re-
ceivers always enlarges the capacity region. This brings the
following question to the fore: For what set of parameters
(σ2

1 , σ
2
2 , σ

2
fb1, σ

2
fb2) in (R+ ∪ {∞})4 will the inclusion in (4)

stay strict? Alternately, are there regimes of noise variances
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where feedback is rendered futile in enlarging the capacity
region? Our main result is the following.

Theorem 1: For σ2
1 ≤ σ2

2 , the relation Cwo−fb = Cnoisy−fb
holds if and only if

σ2
2

σ2
1

≥
(
σ2
1

σ2
fb1

+ 1

)(
σ2
2

σ2
fb2

+ 1

)
. (5)

Proof: The proof involves two main steps. One is a
converse argument to show that the capacity region is un-
changed if the condition in (5) is satisfied. To this end, we
employ a novel idea of equipping each receiver with suitable
versions of the noise processes in the system. This enables the
identification of a useful degradation structure in the broadcast
model, in turn leading to a capacity region outer bound. The
details are shown in Section IV-B. It further turns out that
under the condition (5), the proposed outer bound is achieved
by simple superposition coding schemes without any feedback.
The sufficiency part of Theorem 1 is shown using a simple
linear feedback coding scheme, which operates at rates outside
the no feedback capacity region when (5) is not met. Section V
details the coding scheme and achievable region.

The following corollary can be obtained by simple algebraic
manipulations from Theorem 1.

Corollary 2 (One-sided feedback): Consider a GBC with
σ2
1 ≤ σ2

2 . When feedback is available only from receiver 2,
the relation Cwo−fb = Cnoisy−fb holds if and only if

σ2
fb2 ≥ σ2

2

(
σ2
2

σ2
1

− 1

)−1
. (6)

On the other hand, if feedback is only available from re-
ceiver 1, then the relation Cwo−fb = Cnoisy−fb holds if and
only if

σ2
fb1 ≥ σ2

1

(
σ2
2

σ2
1

− 1

)−1
. (7)

Proof: Take σ2
fb1 → ∞ in Theorem 1 to get the first

statement. Similarly, the second statement follows by taking
σ2

fb2 →∞.
The above corollary can be rephrased to show that one-

sided feedback from receiver 1 increases capacity if and only
if σ2

2

σ2
fb1
<

σ2
1

σ2
fb1

(
σ2
1

σ2
fb1

+ 1
)

. Similarly, one-sided feedback from

receiver 2 increases capacity if and only if σ2
1

σ2
fb2
>

σ2
2/σ

2
fb2

(σ2
2/σ

2
fb2)+1

.
Fig. 2 depicts the regimes of noise-variances where capacity is
enlarged with one-sided feedback from receiver 1. The figure
also allows for σ2

1 > σ2
2 . In this case, the desired result is

obtained by swapping indices 1 and 2 in the above corollary.
The figure illustrates that for σ2

1 = σ2
2 , one-sided feedback

from receiver 1 is always helpful, no matter how noisy it
is. Otherwise, if σ2

1 6= σ2
2 , then one-sided feedback from

receiver 1 becomes useless for capacity enlargement when the
feedback noise-variance exceeds a certain threshold. Similar
statements hold also for one-sided feedback from receiver 2.
In fact, the corresponding plot can be obtained from Fig. 2
by mirroring the plot on the σ2

1 = σ2
2 line. Theorem 1 further

provides the following corollary on the usefulness of feedback.
Corollary 3: If σ2

1 = σ2
2 , feedback enlarges the capacity

region whenever σ2
fb1 < ∞ or σ2

fb2 < ∞. On the other hand,

σ
2
1
=
σ
2
2

0 2 4
0

2

4

σ2
1/σ

2
fb1

σ
2 2
/
σ
2 fb
1

Fig. 2. The patterned region indicates where one-sided feedback from
receiver 1 enlarges capacity, and the shaded region indicates where capacity
remains unchanged.

if σ2
1 6= σ2

2 , then there are finite feedback noise variances
σ2

fb1 < ∞ and σ2
fb2 < ∞ such that even feedback from both

users does not enlarge capacity.
Proof: The proof follows by noting that for σ2

1 = σ2
2 , the

LHS of (5) evaluates to 1 and is thus dominated by its RHS
whenever σ2

fb1 or σ2
fb2 are finite. For σ2

1 < σ2
2 , the LHS of (5)

exceeds 1 and it is possible to find finite σ2
fb1 and σ2

fb2 such
that the RHS of (5) does not exceed its LHS.

While Theorem 1 is the main result of this paper, the
converse and achievability techniques we employ in proving it
can be used to infer outer and inner bounds for the Gaussian
broadcast channel with feedback. We discuss these below.

Let us recall the ingenious outer bound proposed by Ozarow
and Leung [7] for a GBC with perfect causal feedback. This
outer bound, which we will denote by OBC, is in fact the
intersection of two regions. Specifically, let Osw,w denote
the capacity region of a GBC, where the first receiver has
access to (Y1, Y2), while the second receiver observes Y2.
Since such a system is physically degraded, having perfect
causal feedback of (Y1, Y2) at the encoder does not change
the capacity region [5]. The region Osw,w is the collection of
all rate pairs (R1, R2) such that R1 ≤ 1

2 log
(
1+
(

1
σ2
1

+ 1
σ2
2

)
θP
)

and R2 ≤ 1
2 log

(
1 + (1−θ)P

σ2
2+θP

)
for some θ ∈ [0, 1]. Reversing

the roles of the receivers, we can give (Y1, Y2) to the second
receiver, while the first receiver observes Y1, resulting in the
capacity region Os,ws. Now OBC , Osw,w

⋂
Os,ws is an outer

bound to the capacity region of the original BC with feedback.
Clearly, the region OBC will remain an outer bound with noisy
feedback as well. An outer bound explicitly accommodating
the feedback noise can be stated as follows.

Theorem 4: With σ2
1 ≤ σ2

2 , we have Cnoisy−fb ⊆
Onoisy−fb⋂OBC, where Onoisy−fb is the collection of all non-
negative (R1, R2) such that

R1 ≤
1

2
log

(
1 +

θP

σ2

)
and R2 ≤

1

2
log

(
1 +

(1− θ)P
θP + σ2

2

)
,

(8)
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for some θ ∈ [0, 1], and

σ2 = min

 1

1
σ2
1+σ

2
fb1

+
(

1
σ2
2

+ 1
σ2

fb2

) , σ2
1

 . (9)

Proof: The proof of the above statement is given in
Section IV-C.
Notice that the outerbound Onoisy−fb in (8) differs from the
no-feedback capacity region Cwo−fb of (3) in the bound on
R1 where a new parameter σ2 (defined in (9)) replaces σ2

1 .
The above theorem implies the “if part” (converse part) of
Theorem 1. This follows from the fact that when (5) holds,
σ2 in (9) is indeed σ2

1 . To see this, we may rewrite (5) as

1

σ2
2

+
1

σ2
fb2
≤ σ2

fb1/σ
2
1

σ2
1 + σ2

fb1
, (10)

and notice that using the upper bound of (10) on the bracketed
term in (9) gives σ2 = σ2

1 .
In order to show the required capacity enlargement claimed

in Theorem 1, we will use a linear feedback coding scheme in
conjunction with zero forcing decoders. Despite its seemingly
simple nature, the scheme turns out to be powerful enough to
show the capacity enlargement claimed in Theorem 1.

Lemma 5: For a pair of real valued variables (γ1, γ2), and
β , 2 +

γ2
1σ

4
1

P (σ2
1+σ

2
fb1)

+
γ2
2σ

4
2

P (σ2
2+σ

2
fb2)

, any non-negative rate pair
(R1, R2) satisfying

R1≤
1

4
log
(
1 +

4θP

σ2
1β + (γ21 + 2γ1)

σ4
1

σ2
1+σ

2
fb1

+ γ22
σ4
2

σ2
2+σ

2
fb2

)
(11a)

R2≤
1

4
log
(
1 +

4(1− θ)P
σ2
2β + (γ22 − 2γ2)

σ4
2

σ2
2+σ

2
fb2

+ γ21
σ4
1

σ2
1+σ

2
fb1

)
(11b)

for some 0 ≤ θ ≤ 1, is achievable for the GBC with noisy
feedback.

Proof: The lemma is proved in Section V, along with the
achievability proof of Theorem 1.
To exemplify the utility of this lemma, let us consider the
case with σ2

1 = σ2
2 , and σ2

fb2 = ∞, i.e., no feedback from
the second receiver. Then, taking θ′ = 0.5 and γ1 = γ2 = 0
will recover the equal rate point on the no-feedback capacity
region. However, some minimal algebra suffices to show that
small negative values of γ1 will cause the region given by (11)
to contain rate-pairs outside the no-feedback capacity region.
Therefore, this scheme almost immediately suggests a capacity
enlargement using passive noisy feedback in a GBC with
σ2
1 = σ2

2 . Generalizing the above idea to different noise
variances at the receivers needs more analytical effort, which
is done in Section V after the proof of Lemma 5. We remark
that when compared to the scheme in [10], which achieves
potentially superior rate regions, the scheme yielding Lemma 5
is remarkably simpler. This simplicity (and the consequent
simplicity of the rate region) allows us to perform the analysis
needed to prove the capacity enlargement in Theorem 1.

III. MORE ON THE USEFULNESS OF FEEDBACK

In this section we consider two related BC setups where the
feedback links to the transmitter do not increase the capacity

region. The results here may be of interest on their own.
Moreover, Corollary 2 can be proved using the first result
that we present in this section, stated as Theorem 6 below.
However, the results and tools presented in this section seem
not enough to prove the converse to our main result presented
in Theorem 1.

A. A Vector-BC With Partial Feedback

We start with a slight extension of El Gamal’s negative
result on the usefulness of feedback for physically degraded
BCs, to vector channels with partial feedback. Consider a
general (not necessarily Gaussian) BC where the first receiver
observes Y1 = (Ỹ1, Ŷ1), and the second receiver observes
Y2 = (Ỹ2, Ŷ2). Let the transition law of the BC be described
by PỸ1,Ŷ1,Ỹ2,Ŷ2|X . Feedback is only from outputs Ỹ1 and Ỹ2
to the transmitter, and can be noisy or perfect. The following
negative result holds.

Theorem 6: Consider a memoryless BC of transition law
PỸ1,Ŷ1,Ỹ2,Ŷ2|X . If there exists a conditional law P ′

Ỹ2,Ŷ2|Ỹ1,Ŷ1

such that the joint law

P ′
Ỹ1,Ŷ1,Ỹ2,Ŷ2|X

, P ′
Ỹ2,Ŷ2|Ỹ1,Ŷ1

· PỸ1Ŷ1|X (12)

satisfies

P ′
Ŷ1|X,Ỹ1,Ỹ2

= PŶ1|X,Ỹ1,Ỹ2
, (13a)

P ′
Ŷ2|X,Ỹ1,Ỹ2

= PŶ2|X,Ỹ1,Ỹ2
, (13b)

P ′
Ỹ1,Ỹ2|X

= PỸ1,Ỹ2|X , (13c)

then causal feedback of the two outputs Ỹ1 and Ỹ2 to the
transmitter does not enlarge the capacity region.

Proof: Consider the BC of transition law P ′
Ỹ1,Ŷ1,Ỹ2,Ŷ2|X

as defined in (12). This channel is indeed physically degraded
because its law satisfies the Markov chain X → (Ỹ1, Ŷ1) →
(Ỹ2, Ŷ2). Moreover, by assumptions (13), under any encoding
strategy, and both in the presence and absence of feedback, the
joint law of the tuples (W1, Ỹ

n
1 , Ŷ

n
1 ) and (W2, Ỹ

n
2 , Ŷ

n
2 ) is the

same in both the original BC PỸ1,Ŷ1,Ỹ2,Ŷ2|X and the physically
degraded version P ′

Ỹ1,Ŷ1,Ỹ2,Ŷ2|X
. To see this, consider

P (w1, ỹ
n
1 , ŷ

n
1 )

=
∑
w2,ỹn2

P (w1, w2)

n∏
i=1

P (ỹ1i, ỹ2i, ŷ1i|w1, w2, ỹ
i−1
1 , ỹi−12 , ŷi−11 )

=
∑
w2,ỹn2

P (w1, w2)

n∏
i=1

P (ỹ1i, ỹ2i|w1, w2, ỹ
i−1
1 , ỹi−12 , ŷi−11 )

× P (ŷ1i|w1, w2, ỹ
i
1, ỹ

i
2, ŷ

i−1
1 )

(a)
=
∑
w2,ỹn2

P (w1, w2)

n∏
i=1

P (ỹ1i, ỹ2i|xi)P (ŷ1i|xi, ỹ1i, ỹ2i)

(b)
=
∑
w2,ỹn2

P (w1, w2)

n∏
i=1

P ′(ỹ1i, ỹ2i|xi)P ′(ŷ1i|xi, ỹ1i, ỹ2i).

Here (a) follows since xi = gi(w1, w2, ỹ
i−1
1 , ỹi−12 ) and the

channel is memoryless, and (b) follows from the condi-
tions (13a) and (13c). Similar arguments apply at receiver 2
as well.
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Since the error probability at each receiver only depends on
its own observations, but not on the observations at the other
receiver, the capacity regions of the original and the physically
degraded BCs coincide. On any physically degraded BC,
the capacity region, even with full causal feedback, remains
the same as that without feedback [4], [5]. By the above
observations, the same must also hold for our original BC,
thus concluding the proof.

B. Feedback From the Weak Receiver to all Terminals

Consider a stochastically degraded GBC where Y1 = X +
Z1 and Y2 = X +Z2 are observed at the respective receivers.
Let us assume that Yc , Y2 + Zfb2 is given as feedback
from receiver 2 to the transmitter in a causal manner. In
addition, suppose that the same feedback values are observed
at receiver 1 as well. Thus, receiver 1 observes its own
channel outputs Y n1 as well as the noisy feedback outputs Y nc ,
before decoding. The model is illustrated in Fig. 3a. We take
(Z1, Z2, Zfb2) ∼ N (0,diag(σ2

1 , σ
2
2 , σ

2
fb2)), with σ2

1 ≤ σ2
2 .

Let us denote the capacity region of this model by Cweak−fb.
Notice that the described setup is physically degraded only if
the feedback noise Znfb2 is deterministic and thus σ2

fb2 = 0.
Interestingly, such a degraded setup was employed in [7] to
derive an outer bound to the GBC capacity region with perfect
causal feedback.

The following theorem, which is the main result of this
subsection, shows that the feedback capacity region Cweak−fb
is unaffected by the presence of the feedback link to the
transmitter. In other words, once receiver 1 learns the feedback
signal from receiver 2, the capacity region does not depend on
whether also the transmitter observes the feedback or not.

Theorem 7: The capacity region Cweak−fb is unchanged by
the presence of feedback to the transmitter. In particular,

Cweak−fb =
⋃

θ∈[0,1]

(R1, R2) such that

R1 ≤
1

2
log

(
1 +

θP

σ2
comb

)
and R2 ≤

1

2
log

(
1 +

(1− θ)P
θP + σ2

2

)
,

(14)

where

σ2
comb ,

σ2
1(σ2

2 + σ2
fb2)

σ2
1 + σ2

2 + σ2
fb2
. (15)

Proof: The achievability of Cweak−fb follows by superpo-
sition coding, without using any feedback to the transmitter.
Receiver 1 then performs maximum ratio combining of Y1 and
Yc.

The key steps in the converse are to show that the capacity
region Cweak−fb is included in the capacity region of the
augmented BC depicted in Fig. 3b, and to invoke Theorem 6
to show that feedback does not increase the capacity of this
augmented BC. The final step is then to argue that the capacity
region without feedback of the augmented BC coincides with
the region defined in Theorem 7.

X

Y1

Y2

Yc
+

Zfb2

+

(a) Original BC

X

Y1

Yc

Ya

Yc

(b) Augmented BC

Fig. 3. BC models with feedback signal available at both the receivers

Consider the augmented BC depicted in Fig. 3b. Receiver 1
observes outputs (Y n1 , Y

n
c ) and receiver 2 observes outputs

(Y na , Y
n
c ), where

Y na , Y n2 − αZnfb2 = Xn + Zn2 − αZnfb2︸ ︷︷ ︸
,Zn

a

(16)

and

α ,
σ2
2

σ2
fb2
. (17)

The transmitter observes the feedback output Yci after each
channel use i. The capacity region Cnoisy−fbaug of this augmented
BC with noisy feedback includes the original capacity region
Cweak−fb, i.e.,

Cweak−fb ⊆ Cnoisy−fbaug (18)

holds, because receiver 1 in the augmented BC observes the
same outputs as in the original BC, and receiver 2 can compute
Y n2 from its observations (Y nc , Y

n
a ).

Notice next that feedback does not increase the capacity of
the augmented BC, because this BC satisfies the assumptions
in Theorem 6. To see this, specialize the theorem to Ỹ1 =
Yc, Ŷ1 = Y1, Ỹ2 = Yc, and Ŷ2 = Ya. Now set P ′

Ỹ2|Ŷ1,Ỹ1
=

PỸ2|Ŷ1,Ỹ1
= PỸ2|Ỹ1

(i.e. Ỹ1 = Ỹ2 under both P and P ′), and
choose P ′

Ŷ2|Ŷ1,Ỹ1,Ỹ2
= P ′

Ŷ2|Ŷ1
in such a way that

Ŷ2 = Ŷ1 + Ẑ2 (19)

for Ẑ2 a zero-mean Gaussian random variable of variance σ2
2+

α2σ2
fb2 − σ2

1 and independent of all other random variables.
This is possible since σ2

2 ≥ σ2
1 .

Under this choice, (13a) holds since Ŷ1 = X + Z1 under
both P and P ′, with Z1⊥⊥(Z2, Zfb2). The assumption (13b)
also holds, since the pair (Za, Z2 + Zfb2) has independent
Gaussian entries and it has the same distribution as (Z1 +
Ẑ2, Z2 + Zfb2). Since Ỹ1 = Ỹ2 = Yc, the condition (13c)
holds as well. Thus, we can employ Theorem 6 to conclude
that feedback does not increase the capacity of the augmented
BC, i.e.,

Cnoisy−fbaug = Cwo−fbaug , (20)

where Cwo−fbaug denotes the capacity region of the augmented
BC without feedback. Using the well known expression for
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the capacity region of a Gaussian vector BC [2], Cwo−fbaug is the
collection of rate pairs (R1, R2) such that

R1 ≤
1

2
log

(
1 +

θP

σ2
comb

)
and R2 ≤

1

2
log

(
1 +

(1− θ)P
θP + σ2

2

)
,

for some 0 ≤ θ ≤ 1, where σ2
comb is defined in (15).

The desired converse proof is now established, based on
(18) and (20).

IV. OUTER BOUNDS FOR GBC WITH NOISY FEEDBACK
(CONVERSE PARTS OF THEOREMS 1 AND 4)

Before we embark on proving the converse part in Theo-
rem 1, notice that there is no obvious physical degradation
in our GBC model with noisy feedback shown in Fig. 1. In
addition, Theorem 6 cannot be applied as such. Interestingly,
under the condition in (5), an outer bound to the capacity
region can be constructed by equipping each receiver with
suitable information about the noise processes in the model.
That the proposed outer bound turns out to be achievable even
without feedback clinches the deal, further underlining the
novelty of the proposed bound. While some steps in our proof
effectively employ the degradation between different variables,
these are somewhat implicit in the manipulations. To make the
exposition gradual, we consider a related problem first, that of
feedback only from the strong receiver, where Theorem 6 turns
out to be useful.

A. Noisy Feedback From the Strong Receiver Alone

With feedback only from the stronger receiver in a GBC,
let us devise the converse for the second part of Corollary 2.
The model is depicted in Fig. 4a. We have to show that for
σ2

fb2 =∞ and
σ2
1

σ2
fb1
≤ σ2

2

σ2
1

− 1, (21)

feedback from the stronger receiver (receiver 1) does not
enlarge the capacity region.

Let us first construct an augmented BC in which receiver 1
observes (Y n1 + Znfb1, Y

n
b ), where

Y nb := Y n1 − αZnfb1 = Xn + Zn1 − αZnfb1︸ ︷︷ ︸
,Zn

b

, (22)

for
α ,

σ2
1

σ2
fb1
. (23)

As before, the transmitter observes the feedback signal Y1i +
Zfb1i after channel use i ∈ {1, . . . , n}. The capacity region
Cnoisy−fbaug of this augmented BC, which is depicted in Fig. 4b,
includes the capacity region Cnoisy−fb of our original BC:

Cnoisy−fb ⊆ Cnoisy−fbaug . (24)

This is immediate since (1 + α)Y1 = α(Y1 + Zfb1) + Yb, and
thus receiver 1 can compute Y n1 from Y n1 +Znfb1 and Y nb . We
next argue that the augmented BC satisfies the assumptions
in Theorem 6 and thus feedback does not enlarge its capacity
region. To this end, let us specialize Theorem 6 by identifying

Ỹ1 = Y1 + Zfb1, Ŷ1 = Yb, Ỹ2 = ∅, and Ŷ2 = Y2, and then
choose P ′

Ŷ2|Ŷ1,Ỹ1
such that under this new law

Ŷ2 = Ŷ1 + Ẑ2, (25)

with Ẑ2 a zero-mean Gaussian random variable of variance
σ2
2 − α2σ2

fb1 − σ2
1 > 0, and independent of all other random

variables. Clearly, (13a) and (13c) are immediate under this
choice. The choice of parameter α in (23) ensures that the
condition (13b) is also met. To see this, notice that Z2 is
independent of Z1+Zfb1 under the probability law P , whereas
Zb + Ẑ2 is independent of Z1 + Zfb1 under P ′. Thus, the
noise sequences Zn2 and Znb + Ẑn2 are both independent of the
feedback noise (Zn1 + Znfb1) in the respective models. Also,
notice that the random variables Z2 and Zb+Ẑ2 are identically
distributed. Since all the required assumptions are met, we can
employ Theorem 6 to conclude that feedback does not increase
the capacity of the augmented BC, and thus

Cnoisy−fbaug = Cwo−fb. (26)

The capacity region without feedback of the augmented BC
is obtained from the well-known capacity region of a Gaussian
vector BC [2]. Combining (24) and (26) establishes the desired
converse.

X

Y1

Y2

+

Zfb1

+

(a) Original BC

X

Y1+Zfb1

Yb

Y2

(b) Augmented BC

Fig. 4. Augmenting one-sided noisy feedback from the strong receiver

B. Noisy Feedback From Both Receivers (Converse for Theo-
rem 1)

We already mentioned that the converse result for The-
orem 1 can be obtained as a special case of Theorem 4.
Nevertheless, we first provide a self-contained proof for the
former as it is not only instructive, but also makes the proof
of the latter appear more natural. While we successfully took
recourse to identifying a physically degraded set up in the
previous subsection, the arguments there do not immediately
generalize when there is feedback from the weak receiver. Ob-
serve that feeding back the signal Y2 allows the transmissions
to depend, in general, on Z2 +Zfb2. Thus, there is no obvious
stochastic degradation between Y2 and any signal derived from
the observed symbols at the strong receiver. Nevertheless, as
we will show, the dependence between Z2 and the transmitted
symbols can be decoupled by careful conditioning to enable
the identification of a suitable degradation structure. While the
condition in (5) permits such an identification and subsequent
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single-letterization as we show below, it is surprising that the
condition is tight from the capacity enlargement point of view.

By Fano’s inequality [2], after ignoring the o(n) terms,

nR1 = I(W1;Y n1 |W2)

≤ I(W1;Y n1 , Z
n
fb1, Z

n
2 + Znfb2|W2)

=

n∑
i=1

I(W1;Y1i|W2, Y
i−1
1 , Zi−1fb1 , Z

i−1
2 + Zi−1fb2 )

+ I(W1;Zfb1i, Z2i + Zfb2i|W2, Z
i−1
fb1 , Z

i−1
2 + Zi−1fb2 , Y

i
1 )

(a)
=

n∑
i=1

I(W1;Y1i|W2, Y
i−1
1 , Zi−1fb1 , Z

i−1
2 + Zi−1fb2 )

(b)
=

n∑
i=1

h(Y1i|W2, Y
i−1
1 , Zi−1fb1 , Z

i−1
2 + Zi−1fb2 )− h(Z1i)

(c)
=

n∑
i=1

h(Y1i|Ui, Xi−1 + Zi−11 , Zi−1fb1 )− h(Z1i)

(d)

≤
n∑
i=1

h(Y1i|Ui, Xi−1 + Zi−11 − γZi−1fb1 )− h(Z1i).

(27)

=

n∑
i=1

h(Y1i|Ui, Xi−1 + Z̃i−11 )− h(Z1i). (28)

Here (a) follows since (Zfb1i, Z2i + Zfb2i) is independent
of (W1,W2, Z

i−1
fb1 , Z

i−1
2 + Zi−1fb2 , Y

i
1 ). In (b), we used the

fact that (W1,W2, Y
i−1
1 + Zi−1fb1 , Z

i−1
2 + Zi−1fb2 ) determines

the transmitted symbol Xi. Clearly, given Xi, the remaining
uncertainty in Y1i is only due to Z1i, which is independent
of (W1,W2, Y

i−1
1 , Zi−1fb1 , Z

i−1
2 + Zi−1fb2 ). In step (c), we took

Ui = (W2, Z
i−1
2 + Zi−1fb2 ), whereas (d) is true for any γ ∈ R,

since conditioning cannot increase entropy. Now, (28) follows
by defining Z1 − γZfb1 as Z̃1.

For the weak receiver, again by applying Fano’s inequality
and ignoring the o(n) terms,

nR2 ≤ h(Y n2 )− h(Y n2 |W2). (29)

Let us now expand the second term as

h(Y n2 |W2) =

n∑
i=1

h(Y2i|W2, Y
i−1
2 )

≥
n∑
i=1

h(Y2i|W2, X
i−1 + Zi−12 , Zi−12 + Zi−1fb2 )

=

n∑
i=1

h(Y2i|Ui, Xi−1+ Zi−12 − β(Zi−12 + Zi−1fb2 ))

=

n∑
i=1

h(Y2i|Ui, Xi−1 + Z̃i−12 ), (30)

where Z̃2 , (1− β)Z2 − βZfb2 for some β ∈ R.
We now choose γ and β in (28) and (30), so that (Z̃n1 , Z̃

n
2 )

is independent of (Zn1 + Znfb1, Z
n
2 + Znfb2), the latter being

the information that feedback makes available to the encoder.
Specifically, set

γ =
σ2
1

σ2
fb1

and β =
σ2
2

σ2
2 + σ2

fb2
. (31)

The required independence follows from observing that
E
[
(Z1 + Zfb1)(Z1 − γZfb1)

]
= E

[
(Z2 + Zfb2)((1 − β)Z2 −

βZfb2)
]

= 0. Furthermore, since (Z̃n1 , Z̃
n
2 ) is independent of

all the information at the encoder, namely, (W1,W2, Z
n
1 +

Znfb1, Z
n
2 + Znfb2), it is also independent of Xn. Thus, we

have (Z̃n1 , Z̃
n
2 ) independent of (Un, Xn). Now consider (28);

notice that the noise term Z1i in Y1i = Xi + Z1i is
independent of (Zi−11 , Zi−1fb1 ) and hence of Z̃i−11 . There-
fore, by the independence of Z̃i−11 and (Ui, X

i), the value
of (28) remains unchanged even if we replace Z̃n1 by a
noise process with the same marginal distribution, but in-
dependent of (Zn1 , Z

n
fb1, Z

n
2 , Z

n
fb2,W1,W2). By a similar ar-

gument, without affecting (30) we may replace Z̃n2 by a
noise process with the same marginal, but independent of
(Zn1 , Z

n
fb1, Z

n
2 , Z

n
fb2,W1,W2). Hence, we will take (Z̃n1 , Z̃

n
2 )

to be independent of (Zn1 , Z
n
fb1, Z

n
2 , Z

n
fb2,W1,W2) in further

analyzing (28)–(30).
By the data processing theorem,

h(Y1i|Ui, Xi−1+ Z̃i−11 ) ≤ h(Y1i|Ui, Xi−1 + Z̃i−12 ) (32)

as long as

Var(Z̃1) ≤ Var(Z̃2). (33)

Notice that (33) is equivalent to

σ2
2

σ2
1

≥
(
σ2
1

σ2
fb1

+ 1

)(
σ2
2

σ2
fb2

+ 1

)
. (34)

Under the above condition, (28) yields

nR1 ≤
n∑
i=1

h(Y1i|Ui, Vi)− h(Z1i), (35)

where we defined Vi = Xi−1 + Z̃i−12 . Using this definition,
along with (29) and (30), we get

nR2 ≤
n∑
i=1

h(Y2i)− h(Y2i|Ui, Vi). (36)

Notice that (Ui, Vi) → Xi → (Y1i, Y2i), and we can now
obtain single letter rate expressions using one auxiliary random
variable Ũ = (U, V ). The optimality of a Gaussian auxiliary
variable can then be proved along the lines of [18], by incor-
porating feedback as in [19]. However, we proceed through a
more standard route, by applying the following version of EPI
(similar to [5]) to connect (35) and (36).

Lemma 8: For (Ũi, Y1i, Y2i) as defined above, we have

2
2
n

n∑
i=1

h(Y2i|Ũi)
≥ 2

2
n

n∑
i=1

h(Y1i|Ũi)
+ 2πe(σ2

2 − σ2
1). (37)

Proof: The proof is presented in Appendix A.
The remaining part of the proof is more routine. By well
known results in information theory [17], one can write

n

2
log 2πe(P + σ2

2) ≥
n∑
i=1

h(Y2i) ≥
n∑
i=1

h(Y2i|Ũi) ≥ h(Zn2 ).

(38)

Therefore, we can take
n∑
i=1

h(Y2i|Ũi) =
n

2
log
(
2πe(σ2

2 + θP )
)
, (39)
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for some θ ∈ [0, 1]. Then, (37) will imply that
n∑
i=1

h(Y1i|Ũi) ≤
n

2
log
(
2πe(σ2

1 + θP )
)
. (40)

From (35), (36), (38)–(40), we get for some θ ∈ [0, 1],

R2 ≤
1

2
log

(
1 +

(1− θ)P
θP + σ2

2

)
(41)

R1 ≤
1

2
log

(
1 +

θP

σ2
1

)
. (42)

The bounds in (41)–(42) can be achieved by standard su-
perposition coding, without using any feedback. This com-
pletes the proof of the converse part of Theorem 1. In a
nutshell, identifying the respective noise components which
are orthogonal to the encoder’s view of the noise processes,
is the key step. Then, the condition in (34) ensures that the
weak receiver’s conditioning (Ui, X

i−1+Z̃i−12 ) in (30) can be
taken as a physically degraded version of the strong receiver’s
conditioning (Ui, X

i−1 + Z̃i−11 ) in (27).

C. A General Outer Bound for GBC With Noisy Feed-
back (Proof of Theorem 4)

Let us now prove Theorem 4. Without loss of generality,
we can assume that receiver 1 observes Y1 = X + Za + Zb,
where Za and Zb are two independent zero mean Gaussian
random variables with respective variances σ2

a and σ2
b such

that σ2
a + σ2

b = σ2
1 . In order to construct an outer bound,

we equip receiver 1 with the observations Ya = X1 + Za,
in addition to Y1. For convenience, let us denote the tuple
(Y1, Ya, Zfb1 + Zb, Z2 + Zfb2) by T . Similar to Section IV-B,
we can bound the rates to user 1 as

nR1 (43)
≤ I(W1;Y n1 , Y

n
a |W2)

≤ I(W1;Y n1 , Y
n
a , Z

n
fb1 + Znb , Z

n
2 + Znfb2|W2)

(i)
= I(W1;Tn|W2)

(ii)
=

n∑
i=1

I(W1;Yai|W2, T
i−1)

+ I(W1;Zfb1i + Zbi|Yai,W2, T
i−1)

+ I(W1;Y1i|Zfb1i + Zbi, Yai,W2, T
i−1)

+ I(W1;Z2i + Zfb2i|Y1i, Zfb1i + Zbi, Yai,W2, T
i−1)

(iii)
=

n∑
i=1

I(W1;Yai|W2, T
i−1)

+ I(W1;Y1i|Zfb1i + Zbi, Yai,W2, T
i−1)

=

n∑
i=1

I(W1;Yai|W2, T
i−1)

+ I(W1;Zbi|Zfb1i + Zbi, Yai,W2, T
i−1) (44)

(iv)
=

n∑
i=1

I(W1;Yai|W2, T
i−1)

(v)

≤ h
(
Yai|Ui, Xi−1 + Zi−1a − γ(Zi−1fb1 + Zi−1b )

)
− h(Zai),

(45)

where the justifications of (i)–(v) are as follows. In (i), we
used T = (Y1, Ya, Zfb1 + Zb, Z2 + Zfb2), (ii) is based on
chain rule of mutual information, whereas (iii) uses the fact
that both the second and fourth terms in the RHS of (ii)
are zero. In (iv), we used the fact that (Zbi) → (Zbi +
Zfb1i) → (W1,W2, Y

i
a , Y

i−1
1 , Zi−1fb1 + Zi−1b , Zi−12 + Zi−1fb2 )

forms a Markov chain. Finally, in (v), we took Ui as
(W2, Z

i−1
2 +Zi−1fb2 ), and removed some conditioning from the

first term in the RHS. Observe that (45) is the same as (27)
with (Y1, Zfb1) replaced by (Ya, Zfb1 + Zb). The rate R2 to
the weak receiver can be bounded exactly as in (30). Let us
now choose an appropriate Ya such that the bounds in (36)
and (45) become easy to compute.

Suppose the given GBC has a set of noise variances such
that the condition in (5) of Theorem 1 is violated, but σ2

fb2 > 0.
Let us choose Ya = X+Za in (45) such that the condition in
(5) is satisfied when (σ2

1 , σ
2
fb1) there is replaced by (σ2

a, σ
2
b +

σ2
fb1), with σ2

1 = σ2
a + σ2

b . The expressions (30) and (45) can
now be coupled as in Section IV-B to yield a region which is
same as the capacity region of a GBC without feedback where
receiver 1 observes Ya and receiver 2 observes Y2. We remind
the reader that γ in (31) should be taken as γ = σ2

a/(σ
2
fb1+σ2

b )
while using (45) instead of (27). Thus the no feedback capacity
region of a GBC which observes Ya and Y2 at the respective
receivers will be an outer bound to the capacity region of the
original BC with noisy feedback. The maximum value of the
forward variance σ2

a that also satisfies the condition in (5) is
indeed the σ2 given in (9). It is evaluated as the solution to

σ2
2

σ2
=

(
σ2

σ2
1 + σ2

fb1 − σ2
+ 1

)(
σ2
2

σ2
fb2

+ 1

)
. (46)

This completes the proof of Theorem 4.

V. ZERO-FORCING ACHIEVABLE SCHEMES FOR THE GBC
WITH NOISY FB

(PROOF OF LEMMA 5 AND DIRECT PART TO THEOREM 1)

In order to complete the proof of Theorem 1, we now show
that a rate pair outside Cwo−fb is achievable if the condition
in (5) is violated by the given tuple (σ2

1 , σ
2
2 , σ

2
fb1, σ

2
fb2) of

noise variances. While several feedback coding schemes are
available in literature, the main difficulty is in having tractable
rate expressions which can show the required enlargement.
Rate regions incorporating noisy feedback are typically stated
in terms of the intersections of several hyperplanes, and
are thus difficult to express in suitable functional forms for
comparison [9], [10]. Some simplifications are possible, for
example, when σ2

1 = σ2
2 , the rate region proposed in [10]

is shown to achieve rate-pairs outside Cwo−fb, by suitable
substitution of auxiliary variables, and thereby simplifying
the expressions. However extending this to find the set of
noise variances for which an enlargement becomes possible
seems difficult in general. Instead, we will use a simple linear
feedback coding scheme to show the required enlargement.
Lemma 5 will also be proved along the way, making a separate
proof for it superfluous.
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A. A Simple Linear-Feedback Coding Scheme

Let us employ a linear feedback coding scheme where the
noise realization from each receiver after an odd numbered
transmission instant, perceived through the noisy feedback
link, is linearly combined and sent along with new symbols
in the very next instant. Thus the transmitted signal only
depends on feedback during even numbered channel uses, and
the feedback values need to be stored for just one instant at the
receiver. The fresh symbols at each instant, which are linearly
combined with feedback, are generated and conveyed to all
parties, as in standard random coding arguments [2]. Specif-
ically, we construct two independent Gaussian codebooks to
convey the messages W1 and W2 to the respective users. Let
U1, . . . , Un denote the codeword symbols to the first receiver
and V1, . . . , Vn denote the codeword symbols to the second
receiver. In order to convey the symbols (ui, vi) chosen from
the codebooks, the transmitter sends,

X2i−1 = ui + vi (47)

X2i =
√
α
[
ui − vi + β1(Z1,2i−1 + Zfb1,2i−1)

+ β2(Z2,2i−1 + Zfb2,2i−1)
]

(48)

where α, β1 and β2 are appropriate real valued parameters.
Let Ẑj,i be the MMSE estimate of Zj,2i−1 given Zj,2i−1 +
Zfbj,2i−1, for j = 1, 2. Then,

Ẑj,i ,
σ2
j

σ2
j + σ2

fbj
(Zj,2i−1 + Zfbj,2i−1) , (49)

which has variance σ̂2
j ,

σ4
j

σ2
j+σ

2
fbj

. Defining

γj , βj
σ2
j

σ̂2
j

, j = 1, 2, (50)

we can rewrite (48) as

X2i =
√
α (ui − vi + γ1Ẑ1,i + γ2Ẑ2,i). (51)

To facilitate random coding arguments, let us choose the dis-
tribution p(u, v) according to (U, V ) ∼ N

(
0,diag(θ′P, (1 −

θ′)P )
)

for some θ′ ∈ [0, 1]. This choice of (U, V ) ensures
that the average power constraint is met over the transmissions
X2i−1 at odd time instants. To ensure the same for X2i, we
choose

1

α
= 1 +

γ21 σ̂
2
1

P
+
γ22 σ̂

2
2

P
. (52)

The following operations are performed at the two receivers
for decoding the respective messages.
Receiver 1: In two consecutive instants, the observations are

Y1,2i−1 = ui + vi + Z1,2i−1 (53)

Y1,2i =
√
α(ui − vi + γ1Ẑ1,i + γ2Ẑ2,i) + Z1,2i. (54)

A simple zero forcing is achieved by computing

S1,i , Y1,2i−1 +
Y1,2i√
α

= 2ui + γ1Ẑ1,i + γ2Ẑ2,i + Z1,2i−1 +
Z1,2i√
α
. (55)

Receiver 2: Here also we do zero forcing. On observing

Y2,2i−1 = ui + vi + Z2,2i−1 (56)

Y2,2i =
√
α(ui − vi + γ1Ẑ1,i + γ2Ẑ2,i) + Z2,2i (57)

in two consecutive instants, the receiver computes

S2,i , Y2,2i−1 −
Y2,2i√
α

= 2vi − γ1Ẑ1,i − γ2Ẑ2,i + Z2,2i−1 −
Z2,2i√
α
. (58)

Each receiver j ∈ {1, 2} will attempt to decode its intended
message Wj based on the symbols Sj,1, . . . , Sj,n where n is
the codeword length in each codebook.
Analysis of error probability: Notice that the zero forcing
performed above creates an equivalent point-to-point channel
to each receiver, with no interference from the other user’s
symbols. However the transmissions take place over a block-
length of 2n instants now. Therefore, standard random coding
arguments [17] imply that the rate pair (R̃1, R̃2) is achievable,
where

R̃1 =
1

4
log

(
1 +

4θ′P

σ2
1

(
1 + 1

α

)
+ (γ21 + 2γ1)σ̂2

1 + γ22 σ̂
2
2

)
(59)

R̃2 =
1

4
log

(
1 +

4(1− θ′)P
σ2
2

(
1 + 1

α

)
+ (γ22 − 2γ2)σ̂2

2 + γ21 σ̂
2
1

)
,

(60)

with α given by (52), and (θ′, γ1, γ2) being arbitrary real tuples
satisfying θ′ ∈ [0, 1] and γ1, γ2 ∈ R. We remark that the
rate expressions above match the ones given in (11), thereby
directly proving Lemma 5.

As discussed in Section II after the statement of Lemma 5,
the expressions in (59) immediately show that when σ2

1 = σ2
2 ,

for any power level P , rate-pairs outside the no-feedback
capacity region are achievable. In the coming subsection, we
show that the same applies also for unequal noise variances
σ2
1 < σ2

2 when the power level P is sufficiently small. This
argument is then used in Section V-C to prove a capacity
enlargement for arbitrary noise variances (σ2

1 , σ
2
2) and power

level P , when (5) is violated.

B. Improving on Cwo−fb at Low Power Levels

Recall our assumption that σ2
1 ≤ σ2

2 , and notice that the
Pareto optimal rate-pairs on the boundary of Cwo−fb given in
(3) can be indexed by the continuous parameter θ ∈ [0, 1]. We
fix a suitable θ ∈ [0, 1] and show that for small enough P the
corresponding Pareto optimal rate pair in (3) is dominated by
the achievable rate pair (R̃1, R̃2) in (59) for some appropriate
choice of (θ′, γ1, γ2).

Consider an arbitrary quadruple (θ, θ′, γ1, γ2) and define

ζ , γ21 σ̂
2
1 + γ22 σ̂

2
2 . (61)
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By (59), the pair (R̃1, R̃2) (for the parameters θ′, γ1, γ2)
dominates the pair (R1, R2) (for θ) if

1 +
4θ′P

σ2
1

(
1 + 1

α

)
+ 2γ1σ̂2

1 + ζ
≥
(

1 +
θP

σ2
1

)2

1 +
4(1− θ′)P

σ2
2

(
1 + 1

α

)
− 2γ2σ̂2

2 + ζ
>

(
1 +

(1− θ)P
θP + σ2

2

)2

,

(62)

or equivalently,

4θ′

σ2
1

(
1 + 1

α

)
+ 2γ1σ̂2

1 + ζ
≥ 2θ

σ2
1

+
θ2P

σ4
1

4(1− θ′)
σ2
2

(
1 + 1

α

)
− 2γ2)σ̂2

2 + ζ
>

2(1− θ)
θP + σ2

2

+
(1− θ)2P

(θP + σ2
2)2

.

(63)

Let us change the variables from (γ1, γ2, θ
′) to (a1, a2, µ) by

defining

aj , (−1)j
γj σ̂j
P

, j = 1, 2 (64)

µ ,
1

P

(
θ′

θ
− 1

)
. (65)

While there are no restrictions on the parameters (a1, a2), the
parameter µ needs to lie in the interval [− 1

P ,
1
P ( 1

θ−1)] so that
0 ≤ θ′ ≤ 1. Notice that the described interval for possible µ
can be made to include any desired real value by choosing P
sufficiently small.

Using the transformations (64)–(65) on (63), we get

4(1 + µP )

(a21 + a22)(P 2 + Pσ2
1) + 2σ2

1 − 2a1σ̂1P
≥ 2

σ2
1

+
θP

σ4
1

(66)

4(1− θ(1 + µP ))

(a21 + a22)(P 2 + Pσ2
2) + 2σ2

2 − 2a2σ̂2P
>

2(1− θ)
θP + σ2

2

+
(1− θ)2P

(θP + σ2
2)2

.

(67)

Clearly, the above expressions hold with equality at P = 0.
Therefore, if the pair of derivatives on the LHS dominates the
corresponding RHS derivatives as P −→ 0+, this will show that
the required capacity enlargement is possible at low enough
powers. Differentiating with respect to P and setting P = 0,
we get the conditions

2µσ2
1 ≥ θ + (a21 + a22)σ2

1 − 2a1σ̂1
(68)

(1− θ)(2a2σ̂2 − (a21 + a22)σ2
2) > (1− θ)(1− 3θ) + 2θµσ2

2 .
(69)

We remind the reader that (68)–(69) will imply (66)–(67)
only at sufficiently low powers. Additional arguments will be
provided later in Section V-C for extensions to more general
average power levels. The first of the above two equations can
be guaranteed by choosing

µ ,
θ

2σ2
1

+
a21 + a22

2
− a1σ̂1

σ2
1

, (70)

whereas the second equation, on substitution of (70), will yield

a21 + a22

<
2a1θ√
σ2
1 + σ2

fb1

+
2a2(1− θ)√
σ2
2 + σ2

fb2

− θ2

σ2
1

− (1− θ)(1− 3θ)

σ2
2

.

(71)

Notice that above choice of µ does not depend on P and thus
lies in the desired interval for all sufficiently small values of
P > 0. Since a1, a2 are free parameters, we can choose them
as

a1 =
θ√

σ2
1 + σ2

fb1

a2 =
1− θ√
σ2
2 + σ2

fb2

.

By substituting this into (71), we need to verify

θ2

σ2
1

+
(1− θ)(1− 3θ)

σ2
2

− θ2

σ2
1 + σ2

fb1
− (1− θ)2

σ2
2 + σ2

fb2
< 0. (72)

for some value of θ ∈ [0, 1]. Defining x = θ
1−θ , one can

equivalently check if g(x) < 0 for some value of x > 0,
where

g(x) ,
xσ2

fb1

σ2
1(σ2

1 + σ2
fb1)

+
σ2

fb2

xσ2
2(σ2

2 + σ2
fb2)
− 2

σ2
2

.

In fact, the function g(x) is minimized for x > 0 by

x∗ =

√√√√√
1 +

σ2
1

σ2
fb1

1 +
σ2
2

σ2
fb2

(σ2
1

σ2
2

)
. (73)

Now the condition for g(x∗) < 0 can be seen to be equivalent
to

σ2
2

σ2
1

<

(
σ2
1

σ2
fb1

+ 1

)(
σ2
2

σ2
fb2

+ 1

)
, (74)

which is the complement of condition (5) given in Theorem 1.
Putting it all together, we have shown a capacity enlarge-

ment at sufficiently small powers, when at least one of the
passive feedback links is not too noisy, as implied by (74).

C. Improving on Cwo−fb for General Power Levels

We now show that any capacity enlargement at low power
levels naturally extends to a capacity enlargement at arbitrary
transmit powers. This can be shown by message splitting and
bootstrapping the low power achievable scheme. Consider a
rate-pair in which user 1 demands a small enough positive rate
R1. Let us split the message W2 for user 2 into 2 sub-messages
W2,1 and W2,2 of respective rates R2,1 and R2,2. Consider a
small positive ε, and appropriate parameters θ′ ∈ [0, 1] and
γ1, γ2 ∈ R. The message W2,2 is conveyed to receiver 2
using a simple point-to-point scheme of power P − ε. We
use the variables U ∼ N (0, θ′ε) and V1 ∼ N (0, (1 − θ′)ε)
to denote the code symbols employed in the above linear
feedback code construction to encode (W1,W2,1), and the
variable V2 ∼ N (0, P − ε) denotes the symbol employed
in the point-to-point code encoding W2,2. All codebooks are
generated independently, and we employ standard random
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coding arguments to find the error probability. Over two
successive channel uses, the sender transmits

X2i−1 = ui + v1,i + v2,2i−1

X2i =
√
α(ui − v1,i + γ1Ẑ1,2i−1 + γ2Ẑ2,2i−1) + v2,2i.

(75)

Similar to (51) and (52), the parameters α, γ1, and γ2 are
chosen so that the sum

√
α(ui−v1,i+γ1Ẑ1,2i−1 +γ2Ẑ2,2i−1)

satisfies the average power constraint of ε.
Receiver 2 infers its desired messages via the following

steps:
• It decodes message W2,2 by treating everything as noise.

Clearly the transmissions in successive instants are inde-
pendent, and we can treat the rest of the transmissions
as memoryless Gaussian noise sequences while decoding
the V2 codewords.

• After inferring W2,2, it subtracts the V2 codeword to
obtain a more clean BC with equivalent average transmit
power ε, and it applies the zero forcing decoding scheme
as in (58).

Receiver 1 decodes in a similar way: it first decodes messages
W2,2 (even though this message is not intended for it), sub-
tracts the V2 codeword, and applies the zero forcing decoding
scheme described in (55).

We show that for appropriate choices of ε, θ′, γ1, γ2, the
proposed scheme achieves a rate-point outside the no-feedback
capacity region Cwo−fb. We first notice that R1 and R2,1 can
be chosen as the rates R̃1 and R̃2 in (59) and (60), however
with the average power P replaced by ε. We have shown in
the previous subsection that for sufficiently small ε > 0 there
exist choices of θ′, γ1, γ2 and θ such that

R1 =
1

2
log2

(
1 +

θε

σ2
1

)
, (76)

R2,1 >
1

2
log2

(
1 +

(1− θ)ε
θε+ σ2

2

)
. (77)

We continue with such a sufficiently small value of ε. Since
Message W2,2 can be transmitted at a rate

R2,2 =
1

2
log2

(
1 +

P − ε
ε+ σ2

2

)
, (78)

by introducing θ′′ , θ εP , we conclude that the rate pair

R1 =
1

2
log2

(
1 +

θ′′P

σ2
1

)
, (79)

R2 = R2,1 +R2,2

>
1

2
log2

(
1 +

(1− θ)ε
θε+ σ2

2

)
+

1

2
log2

(
1 +

P − ε
ε+ σ2

2

)
=

1

2
log2

(
1 +

(1− θ′′)P
θ′′P + σ2

2

)
. (80)

is achievable. Observing that this rate-pair lies outside Cwo−fb
is sufficient to conclude the proof. In short, we used the
enlargement for small values of power, and allotted all the
remaining power for transmissions to the weak receiver. This
allowed us to strictly improve the no-feedback capacity region
at high power levels as well.

VI. CONCLUSION

We have analyzed the effect of passive noisy feedback in
enlarging the capacity region of a Gaussian broadcast channel.
Interestingly, too much noise in both the feedback links does
not lead to any enlargement in the asymmetric user case, where
the two receivers have different noise variances. This is in
sharp contrast to the case of identical noise variances at the
receivers, where it is known that any noise of finite variance
in the feedback link is beneficial for capacity enlargement.
While we have characterized the regime of noise variances for
which no enlargement occurs, our achievable scheme shows
an enlargement outside this proposed regime, thus making
the characterization sharp. While showing an enlargement,
however small, was sufficient for our purposes here, there is
still some way to go for finding the actual capacity region with
enlargement. More sophisticated coding schemes than the ones
proposed here may be required to achieve that.

The genie aided converse constructions, and associated
ideas, seem to be beneficial in analyzing other multi-user
systems with feedback. This is currently under consideration.

APPENDIX A
PROOF OF LEMMA 8

Proof: The proof is very similar to that in [5]. For the
sake of completeness, here we repeat the arguments, which
proceed by induction on n. Notice that since Z1i and Z2i are
both Gaussian with Var(Z1i) ≤ Var(Z2i) and independent of
(Ũi, Xi), in (37) we can take Y2i = Y1i + Z̃i, where Z̃i ∼
N (0, σ2

2 − σ2
1) is independent of (Xi, Z1i, Ũi). Recall that

Ũi → Xi → (Y1i, Y2i). For n = 1, the inequality follows
from entropy power inequality [2, pg. 22] since

h(Y21|Ũ1) = h(Y11 + Z̃1|Ũ1).

Let us now assume that (37) is true for n = m− 1. By the
conditional EPI [2],

22h(Y2m|Ũm) ≥ 22h(Y1m|Ũm) + 22h(Z̃m).

i.e.,

2h(Y2m|Ũm) ≥ log
(

22h(Y1m|Ũm) + 2πe(σ2
2 − σ2

1)
)
.

Therefore,

2

m

m∑
i=1

h(Y2i|Ũi)

=
m− 1

m

2

m− 1

m−1∑
i=1

h(Y2i|Ũi) +
2

m
h(Y2m|Ũm)

(a)
≥ m− 1

m
log
(

2
2

m−1

∑m−1
i=1 h(Y1i|Ũi) + 2πe(σ2

2 − σ2
1)
)

+
1

m
log
(

22h(Y1m|Ũm)) + 2πe(σ2
2 − σ2

1)
)

(b)
≥ log

(
2

2
m

∑m
i=1 h(Y1i|Ũi) + 2πe(σ2

2 − σ2
1)
)
.

Here (a) follows from the induction hypothesis and the EPI
above, and (b) follows from convexity of log(2u + v) in u for
v ≥ 0.
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