
HAL Id: hal-03350239
https://hal.science/hal-03350239

Submitted on 21 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of a COVID-19 compartmental model: a
mathematical and computational approach

Zita Abreu, Guillaume Cantin, Cristiana J Silva

To cite this version:
Zita Abreu, Guillaume Cantin, Cristiana J Silva. Analysis of a COVID-19 compartmental model: a
mathematical and computational approach. Mathematical Biosciences and Engineering, 2021, 18 (6),
pp.7979-7998. �10.3934/mbe.2021396�. �hal-03350239�

https://hal.science/hal-03350239
https://hal.archives-ouvertes.fr

Analysis of a COVID-19 compartmental model: a
mathematical and computational approach

Zita Abreu1, Guillaume Cantin2 and Cristiana J. Silva1,3

Abstract

In this note, we consider a compartmental epidemic mathematical model given by a system of
differential equations. We provide a complete toolkit for performing both a symbolic and numerical
analysis of the spreading of COVID-19. By using the free and open-source programming language
Python and the mathematical software SageMath, we contribute for the reproducibility of the
mathematical analysis of the stability of the equilibrium points of epidemic models and their fitting
to real data. The mathematical tools and codes can be adapted to a wide range of mathematical
epidemic models.

Key words. SAIRP epidemic model, COVID-19, stability analysis, free and open-source soft-
ware, reproducibility of scientific method.

1 Introduction
Mathematical models for the transmission dynamics of infectious diseases have been a powerful tool
to understand and control epidemics. An important amount of these mathematical models are given
by systems of ordinary differential equations (ODE’s), considering a continuous-time framework. In
the last decades, a great number of compartmental models has been proposed and many of them share
some of the assumptions of the well known SIR model, first proposed by Kermack-McKendrick in 1927
[5] and also given by a system of ODE’s.

The importance of compartmental models given by systems of ODE’s has been even more high-
lighted since the beginning of the COVID-19 pandemic. In fact, SIR, SEIR, SEIRD-type models,
among many others, have been used to analyze, predict and control the spread of SARS-CoV-2 virus
worldwide, in what follows we refer to some of these models applied to COVID-19 given by systems
of ODE’s. The effect of the lockdown on the spread of COVID-19 was analyzed in [4] by considering
a mathematical model that assesses the imposition of the lockdown in Nigeria. Besides lockdown
measures, in [6] quarantine, and hospitalization of COVID-19 infected individuals are analyzed. A
SIDARTHE compartmental model, is proposed in [10] which discriminates between infected individ-
uals depending on whether they have been diagnosed and on the severity of their symptoms and is
fitted to the COVID-19 epidemic in Italy. The authors claim that restrictive social-distancing measures
will need to be combined with widespread testing and contact tracing to end the ongoing COVID-19
pandemic. The spread of COVID-19 in Portugal is modeled in [14], fitting the model to real data
of simultaneously the number of active infected and hospitalized individuals, SEIR types models ap-
plied to COVID-19 are proposed in, for example, [12, 16, 21], were the models are fitted to real data.
Quarantine and lockdown measures are considered in [24] with SEIQR type models. Fractional SEIR
type models are also important in modeling and predicting the spread of infectious diseases. Their
advantages in comparison to other type of models are highlighted in, for example, [1] were COVID-19
epidemic in Pakistan is analyzed through a fractional SEIR type model using the operator of Atangana-
Baleanu. The Atangana-Baleanu derivative is also considered in [15]. A nabla discrete ABC-fractional
order COVID-19 model is analyzed in [13]. In [2] a fractional model is proposed to study the first

1Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics,
University of Aveiro, 3810-193 Aveiro, Portugal

2Université de Nantes, LS2N UMR CNRS 6004, Nantes, France
3Corresponding author: cjoaosilva@ua.pt

1

COVID-19 outbreak in Wuhan, China. The outbreak in Wuhan is also considered in [7, 19]. A Caputo
fractional model is proposed in [18] and fitted to COVID-19 data of Galicia, Spain and Portugal. A
Bats-Hosts-Reservoir-People transmission fractional-order COVID-19 model for simulating the poten-
tial transmission with the thought of individual response and control measures by the government is
analyzed in [23]. Stochastic epidemic models for COVID-19 spread and control are proposed in, e.g.,
[8, 11]. A new class of distributions is applied to the generalized log-exponential transformation of
Gumbel Type-II and implemented using real data of COVID-19, in [27]. The exponential transforma-
tion of Gumbel Type-II distribution for modeling COVID-19 data is used to analyze the number of
deaths due to COVID-19 for Europe and China, in [28].

Among other important issues, in the mathematical analysis of compartmental models given by
systems of ODE’s, we may emphasize the stability analysis of the equilibrium points, the basic re-
production number and the model fitting to real data. Although the difficulty of this analysis de-
pends on the complexity of the model under study, part of it is common to the majority of the
models and may become simplified if we use adequate mathematical software. In this paper, we show
how to use free and open-source software for the mathematical analysis of the models. We focus on
the mathematical software SageMath (version 9.2) [22] and Python programming language [20], ver-
sion 3.8, and the Python Libraries: Numpy (version 1.18.5), Pandas (version 0.25.3), Scipy
(version 1.4.1) and Matplotlib (version 2.0.0).

In this note, we consider a SAIRP model, given by a system of five ODE’s, for the transmission of
SARS-CoV-2, first proposed in [26] and after generalized to piecewise constant parameters and complex
networks model in [25]. We provide all the codes that allow us to compute the equilibrium points,
basic reproduction number, visualize the global stability of the equilibrium points and by considering
piecewise constant parameters. Moreover, we provide the Python code that allows to estimate some
of the piecewise constant parameters and fit the model to the real data of COVID-19 transmission
in Portugal, from March 2, 2020 until April 15, 2021. It is important to note, that all the codes are
elementary and thus can be easily adapted to other compartmental models, see e.g. [3, 6, 9, 17, 24, 30].

The paper is organized as follows. In Section 2, the SAIRP model, given by a system of ODE’s,
is described. The equilibrium points of the SAIRP model are computed in Section 3 and their global
stability is illustrated using SageMath (version 9.2) [22] and Python (version 3.8) [20]. The generalized
SAIRP model with piecewise constant parameters is presented and the Python code for the model
fitting to COVID-19 Portuguese real data is given, in Section 4.

2 Mathematical model
In this section, we consider the compartmental SAIRP mathematical model proposed in [25, 26] for
the transmission dynamics of COVID-19. We start by recalling the assumptions of the model. The
total population N(t), with t ∈ [0, T] (in days) and T > 0, is subdivided into five classes: suscepti-
ble individuals (S); asymptomatic infected individuals (A); active infected individuals (I); removed
(including recovered individuals and COVID-19 induced deaths) (R); and protected individuals (P).
Therefore, N(t) = S(t) + A(t) + I(t) + R(t) + P (t), considering a continuous time framework, with
t ∈ [0, T]. The total population is homogeneous and has a variable size, with constant recruitment
rate, Λ, and natural death rate, µ > 0. The susceptible individuals S become infected by contact
with active infected I and asymptomatic infected A individuals, at a rate of infection β (θA+I)

N , where
θ represents a modification parameter for the infectiousness of the asymptomatic infected individuals
A and β represents the transmission rate. Only a fraction q of asymptomatic infected individuals A
develop symptoms and are detected, at a rate v. Active infected individuals I are transferred to the
recovered/removed individuals R, at a rate δ, by recovery from the disease or by COVID-19 induced
death. A fraction p, with 0 < p < 1, is protected (without permanent immunity) from infection, and is
transferred to the class of protected individuals P , at a rate φ. A fraction m of protected individuals
P returns to the susceptible class S, at a rate w. Let ν = vq and ω = wm. The previous assumptions

2

are described by the following system of ordinary differential equations:

Ṡ(t) = Λ− β
(
1− p

) θA(t)+I(t)
N(t) S(t)− (φp+ µ)S(t) + ωP (t),

Ȧ(t) = β
(
1− p

) θA(t)+I(t)
N(t) S(t)− (ν + µ)A(t),

İ(t) = νA(t)− (δ + µ)I(t),

Ṙ(t) = δI(t)− µR(t),

Ṗ (t) = φpS(t)− (ω + µ)P (t).

(1)

The compartments and parameters descriptions and notations of system (1) are resumed in Table 1.

Table 1: Description and notation of the compartments and parameters of model (1).

Compartment Description
S Susceptible individuals
A Asymptomatic individuals
I Infected individuals
R Recovered individuals
P Protected individuals

Parameter Description
Λ Recruitment rate
µ Natural death rate
β Transmission rate
θ Modification parameter
v Transfer rate from A to I
q Transfer fraction from A to I
φ Transfer rate from S to P
p Transfer fraction from S to P
w Transfer rate from P to S
m Transfer fraction from P to S
δ Recovery rate

Consider the compact invariant region

Ω =
{
x = (S, A, I, R, P)T ∈

(
R+)5 ; 0 < S +A+ I +R+ P ≤ Λ

µ

}
. (2)

The model (1) is biologically and mathematically well-posed, that is for any initial condition x0 =
(S0, A0, I0, R0, P0)T ∈ Ω, the system (1) admits a unique solution defined on [0, ∞), whose compo-
nents are non-negative. Furthermore, the region Ω defined by (2) is positively invariant [25].

3 Equilibrium points and stability analysis
In this section, we use the free and open-source mathematical software SageMath (version 9.2) [22] to
help us compute the equilibrium points and the basic reproduction number of model (1). The global
stability analysis of the equilibrium points is illustrated through numerical simulations developed using
Python (version 3.8) [20].

3

3.1 Computing equilibrium points and basic reproduction number in SageMath
The model (1) has two equilibrium points:

• disease-free equilibrium, denoted by Σ0, given by

Σ0 = (S0, A0, I0, R0, P0) =
(

Λ (ω + µ)
µ (pφ+ µ+ ω) , 0, 0, 0,

φ pΛ
µ (pφ+ µ+ ω)

)
; (3)

• endemic equilibrium, Σ+, whenever R0 > 1, given by

Σ+ = (S+, A+, I+, R+, P+)

with

S+ = Λ(ω + µ)
(pφ+ µ+ ω)µR

−1
0 ,

A+ = Λ
ν + µ

R−1
0 (R0 − 1) ,

I+ = Λν
(ν + µ)(δ + µ)R

−1
0 (R0 − 1) ,

R+ = δΛν
(ν + µ)(δ + µ)µR

−1
0 (R0 − 1) ,

P+ = Λφp
(pφ+ µ+ ω)µR

−1
0 ,

(4)

where the basic reproduction number, R0, is given by

R0 = β (1− p) (δ θ + µ θ + ν) (ω + µ)
(δ + µ) (ν + µ) (pφ+ µ+ ω) . (5)

The SageMath code reads as follows:

var(’S’,’A’,’I’,’R’,’P’,’phi’,’mu’,’nu’,’delta’,\
’omega’,’Lambda’,’theta’,’beta’,’p’,’lambdat’);
a0 = p*phi+mu; a1 = nu+mu; a2 = delta+mu; a3 = omega+mu;
lambdat = beta*(A*theta+I)*(1-p);
N = S+A+I+R+P;
eqS = Lambda + omega*P-lambdat*S/N-a0*S;
eqA = lambdat*S/N-a1*A;
eqI = A*nu-I*a2;
eqR = I*delta-R*mu;
eqP = S*p*phi-P*a3;
pretty_print((eqS+eqA+eqI+eqP+eqR).full_simplify())
sistema = [eqR, eqA == 0, eqI == 0, eqP == 0, eqS == 0];
sol = solve(sistema, A, I, P, R, S); pretty_print(sol)

The output sol gives the two biological meaningful equilibrium points Σ0 and Σ+ given by (3) and
(4), respectively.

DFE = sol[2]; pretty_print(DFE)
EE = sol[0]; pretty_print(EE)

To compute the basic reproduction number R0, (5), we follow the approach presented in [29].

4

S

0.0 0.2 0.4 0.6 0.8 1.0

A
0.2

0.4
0.6

0.8
1.0

I

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Global stability of +

S

0.0 0.2 0.4 0.6 0.8 1.0

A

0.0
0.2

0.4
0.6

0.8

I

0.2

0.4

0.6

0.8

Global stability of 0

Figure 1: Left: global stability of the endemic equilibirum Σ+ (R0 ' 6.87). Right: global stability of the
disease-free equilibrium Σ0 (R0 ' 0.0687).

F1 = 0; F2 = lambdat*S/N; F3 = 0; F4 = 0; F5 = 0;
V1 = -eqS; V2 = F2-eqA; V3 = -eqI; V4 = -eqR; V5 = -eqP;
JF = jacobian((F1, F2, F3, F4, F5),(S, A, I, R, P));
JV = jacobian([V1, V2, V3, V4, V5],(S, A, I, R, P));
IV = (JV).inverse();
M = JF * IV;
M1 = M.subs(DFE);
vp = M1.eigenvalues();
R0 = (vp[0].factor());

3.2 Stability analysis
The following theorems hold and are numerically illustrated in Figure 1.

Theorem 1 ([25], Local stability of the DFE). The disease-free equilibrium, Σ0, is locally asymptoti-
cally stable whenever R0 < 1.

Theorem 2 ([25], Global stability of the DFE). If R0 < 1, then the disease-free equilibrium, Σ0, is
globally asymptotically stable in Ω.

Theorem 3 ([25], Global stability of the EE). The compact region Γ defined by

Γ =
{
x = (S, A, I, R, P)T ∈

(
R+)5 ;S +A+ I +R+ P = Λ

µ

}
is positively invariant under the flow induced by system (1). It contains the disease-free equilibrium,
Σ0, and the endemic equilibrium, Σ+, if R0 > 1. Furthermore, if R0 > 1, then the endemic equilibrium
Σ+ is globally asymptotically stable in Γ.

The Python code to generate Figure 1 is given below. We first import several Python scientific
libraries: numpy contains standard routines for numerical computations; scipy contains the function
odeint, which implements the Runge-Kutta method for integrating ODE’s systems; matplotlib con-
tains useful functions for producing figures.

#!/ usr / b in /env python3

import numpy as np
import matplotlib.pyplot as plt

5

from mpl toolkits.mplot3d import Axes3D
from scipy.integrate import odeint
from random import random

Next, we define the parameters for the SAIRP model (1).

SAIRP parameters
mu = 1
Lambda = 1∗mu
v = 1
q = 1
nu = 1
delta = 1
theta = 1
phi = 5
delta = 0.1
w = 1
p = 0.1
omega = 1
beta = 10 # b eta = 10 f o r EE or b e ta = 0.1 f o r DFE

Using expression (5), we easily compute the basic reproduction number R0.

N = beta∗(1−p)∗(delta∗theta+mu∗theta+nu)∗(omega+mu)
D = (delta + mu)∗(nu+mu)∗(p∗phi+mu+omega)
r0 = N/D
print(’R0 =’, r0)

Afterwards, we define the SAIRP model given by system (1).

def SAIRP(X, t):
S, A, I, R, P = X
N = S+A+I+R+P
C = beta∗(1−p)∗(theta∗A+I)/N
dS = Lambda − C∗S − phi∗p∗S + omega∗P − mu∗S
dA = C∗S − nu∗A − mu∗A
dI = nu∗A − delta∗I − mu∗I
dR = delta∗I − mu∗R
dP = phi∗p∗S − omega∗P − mu∗P
return [dS, dA, dI, dR, dP]

Finally, we integrate the SAIRP model (1) with several randomly chosen initial conditions and we
produce the 3D Figure 1.

time = np.arange(0, 10, 0.01)
fig = plt.figure()
ax = fig.gca(projection=’3d’)
ax.set title(r"Global stability of Σ^+")
ax.set xlabel(r"S")
ax.set ylabel(r"A")
ax.set zlabel(r"I")
for j in range(20):

S0 = random()
A0 = random()
I0 = random()

6

R0 = 1
P0 = 1

X0 = [S0, A0, I0, R0, P0]

orbit = odeint(SAIRP, X0, time)
S, A, I, R, P = orbit.T
ax.plot(S, A, I, ’r’, lw=0.5)

plt.savefig(’EE−GAS.pdf’)
plt.show()

4 Mathematical model with piecewise constant parameters
In this section, we consider the SAIRP model with piecewise constant parameters, proposed in [25],
which allows to model the impact of public health policies and the human behavior in the dynamics
of the COVID-19 epidemic.

For the sake of simplicity, the equations of the SAIRP model (1) can be rewritten as

ẋ(t) = f (x(t), α) , t > 0, (6)

with x = (S, A, I, R, P)T ∈ R5 and α = (Λ, µ, β, p, θ, φ, ω, ν, δ)T ∈ R9, where the non-linear
operator f is defined in R5 × R9 by

f(x, α) =



Λ− β(1− p) θA+I
N − φpS + ωP − µS

β(1− p) θA+I
N S − νA− µA

νA− δI − µI

δI − µR

φpS − ωP − µP


. (7)

The time line [0, Tend] is subdivided into a finite number of n+ 1 intervals

[T0, T1) ∪ [T1, T2) ∪ · · · ∪ [Tn, Tend],

with disjoint unions, and we introduce a piecewise constant function α defined on each time interval
as

α(t) = αi, t ∈ [Ti, Ti+1), 0 ≤ i ≤ n,

with T0 = 0, Tn+1 = Tend and αi ∈ R9. Next, consider the sequence of Cauchy problems defined for
each initial condition x0 ∈ Ω by

x(0) = x0, ẋ(t) = f
(
x(t), α0

)
, T0 < t < T1,

x(Ti) = lim
t→Ti

t∈(Ti−1, Ti)

x(t), ẋ(t) = f
(
x(t), αi

)
, Ti < t < Ti+1, 1 ≤ i ≤ n . (8)

The following theorem establishes the well-posedness of system (8).

Theorem 4 ([25]). For any initial condition x0 ∈ Ω, the sequence of Cauchy problems given by
(8) admits a unique global solution, denoted again by x(t, x0), whose components are non-negative.
Furthermore, the region Ω is positively invariant.

7

We recall that the solutions of problem (8) are continuous on the time interval [T0, Tend], but
may not be of class C 1 at t = Ti, 0 ≤ i ≤ n − 1. From the modeling point of view, each change of
parameters occurring at time t = Ti (1 ≤ i ≤ n−1) corresponds, for example, to a public announcement
of confinement/lift of confinement or prohibition of displacement [25].

In what follows, we sub-divide the time interval [0, 410] days into 9 sub-intervals and consider a
set of piecewise parameters which are estimated in order to fit the real data of COVID-19 spread in
Portugal, since the first confirmed case on March 2, 2020, until April 15, 2021.

Model fitting to real data with Python In order to fit the real data of active infected individuals
by SARS-CoV-2 (detected by test) daily provided by the health authorities in Portugal [31], we use
the model (8) with piecewise constant parameters and use the programming language Python (version
3.8) [20], and the Python Libraries: Numpy (version 1.18.5), Pandas (version 0.25.3), Scipy
(version 1.4.1) and Matplotlib (version 2.0.0). The real data are available in [31] or, for
example, in the data repository site, see e.g. [32]. In what follows we explain the goal of each code
block.

First we need as previously to import several Python scientific libraries.

#!/ usr / b in /env python3

import numpy as np
from scipy.integrate import odeint
import pandas as pd
import matplotlib.pyplot as plt
from scipy.optimize import curve fit

We consider the real data from [31, 32], here denominated data-pt-covid19 with extension .xlsx. To
read the real data one can use the following code.

excel file = ’data−pt−covid19.xlsx’
M = pd.read excel(excel file)
M New = M[[’INF.ATIVOS’]]

Next, we subdivide the time window of the total 410 days into 9 subintervals. This specific subdi-
vision is related to the increase/decrease of the transmission of the virus in the community, the public
health measures implemented by the Portuguese authorities and the human behavior, that changes
over time.

M New1 = np.squeeze(np.asarray(M New[0:73]))
M New2 = np.squeeze(np.asarray(M New [73:90]))
M New3 = np.squeeze(np.asarray(M New [90:130]))
M New4 = np.squeeze(np.asarray(M New [130:163]))
M New5 = np.squeeze(np.asarray(M New [163:200]))
M New6 = np.squeeze(np.asarray(M New [200:253]))
M New7 = np.squeeze(np.asarray(M New [253:304]))
M New8 = np.squeeze(np.asarray(M New [304:329]))
M New9 = np.squeeze(np.asarray(M New [329:410]))

maxi = len(M)

tf = np.linspace(0,maxi)

tf1 =np.linspace(0,73,73)

8

tf2 =np.linspace(73,90,17)
tf3 =np.linspace(90,130,40)
tf4 =np.linspace(130,163,33)
tf5 =np.linspace(163,200,37)
tf6 =np.linspace(200,253,53)
tf7 =np.linspace(253,304,51)
tf8 =np.linspace(304,329,25)
tf9 =np.linspace(329,410,81)

Next, we draw the curve of active infected individuals with COVID-19 in Portugal (real data), from
the first confirmed case day, March 2, 2020, until April 15, 2021.

fig1 = plt.figure(facecolor=’w’,
num=None,
figsize=(8, 6),
dpi=100,
edgecolor=’k’)

fig1.suptitle(’Active infected − Portugal’,
fontsize=14,
fontweight=’bold’)

plt = fig1.add subplot(111,
facecolor=’white’,
axisbelow=True)

In order to solve the model (6) we need to define the initial conditions, for t = 0, that correspond
to the number of individuals in each class on March 2, 2020.

Total popu la t ion , N
N = 10295894 + 2 + 2/0.15

I n i t i a l number o f i n f e c t e d and recovered i n d i v i d u a l s , I0 and R0 .
S = 10295894
I = 2
A = (2/0.15)
R = 0
P = 0

Then, we define the values of the parameters that take constant values for all time t ∈ [0, 410].

theta = 1
phi = 1/12
w = 1/45
nu = 0.15
q = 0.15
delta =1/(27)
Lambda = ((0.19/100)∗N)/365
mu = 1/(81∗365)

The parameters β, p and m are assumed to be piecewise constant. Moreover, we estimate the
parameter β for all t ∈ [0, 410] days and the parameters m and p in some of the sub-intervals, using
scipy.optimize.curve_fit from Python, see [33] for more details, that uses non-linear least squares
method to fit a function to data.

9

scipy.optimize.curve_fit

p1 = 0.675
p2 = 0.650
p3 = 0.580
p4 = 0.610
p5 = 0.580
p8 = 0.370
p9 = 0.550

m1 = 0.09
m2 = 0.09
m3 = 0.18
m4 = 0.16
m5 = 0.17

The SAIRP model
def sairp model(y,tf,N,beta,theta,p,phi,w,nu,q,delta,m,Lambda,mu):

S,A,I,R,P = y
C = beta ∗ (theta∗A+I)/(S+A+I+R+P)
dS = Lambda−C∗(1−p)∗S−phi∗p∗S+w∗m∗P−mu∗S
dA = C∗(1−p)∗S−nu∗A−mu∗A
dI = nu∗A−delta∗I−mu∗I
dR = delta∗I−mu∗R
dP = phi∗p∗S−w∗m∗P−mu∗P
return dS,dA,dI,dR,dP

I n i t i a l c o n d i t i o n s v e c t o r
y0 = S, A, I, R, P

#1 sub−i n t e r v a l o f time
def fit odeint1(tf1,beta):

return odeint(sairp model , y0, tf1, args=ARGS1)[:,2]

popt1, pcov = curve fit(fit odeint1 ,tf1,M New1 ,bounds=[(0.25),(2)])
fitted1 = fit odeint1(tf1, ∗popt1)
beta1 = popt1[0]
print("\n beta1: ",beta1)

ret = odeint(sairp model , y0, tf1, args=(N,\
beta1,theta,p1,phi,w,nu,q,delta,m1,Lambda,mu))

S, A, I, R, P = ret.T

#2 sub−i n t e r v a l o f time
y2 = ret.T[0][72],ret.T[1][72],ret.T[2][72],ret.T[3][72],ret.T[4][72]
def fit odeint2(tf2,beta):

return odeint(sairp model , y2, tf2,\
args=(N,beta,theta,p2,phi,w,nu,q,delta,m2,Lambda,mu))[:,2]

popt2, pcov = curve fit(fit odeint2 ,tf2,M New2 ,bounds=[(0.25),(2)])
fitted2 = fit odeint2(tf2, ∗popt2)
beta2 = popt2[0]
print("\n beta2: ",beta2)

10

ret = odeint(sairp model , y2, tf2,\
args=(N, beta2,theta,p2,phi,w,nu,q,delta,m2,Lambda,mu))

S2, A2, I2, R2, P2 = ret.T

#3 sub−i n t e r v a l o f time
y3 = ret.T[0][16],ret.T[1][16],ret.T[2][16],ret.T[3][16],ret.T[4][16]
def fit odeint3(tf3,beta):

return odeint(sairp model , y3, tf3,\
args=(N, beta,theta,p3,phi,w,nu,q,delta,m3,Lambda,mu))[:,2]

popt3, pcov = curve fit(fit odeint3 ,tf3,M New3 ,bounds=[(0.25),(2)])
fitted3 = fit odeint3(tf3, ∗popt3)
beta3 = popt3[0]
print("\n beta3: ",beta3)

ret = odeint(sairp model , y3, tf3,\
args=(N, beta3,theta,p3,phi,w,nu,q,delta,m3,Lambda,mu))

S3, A3, I3, R3, P3 = ret.T

#4 sub−i n t e r v a l o f time
y4 = ret.T[0][39],ret.T[1][39],ret.T[2][39],ret.T[3][39],ret.T[4][39]
def fit odeint4(tf4,beta):

return odeint(sairp model , y4, tf4,\
args=(N, beta,theta,p4,phi,w,nu,q,delta,m4,Lambda,mu))[:,2]

popt4, pcov = curve fit(fit odeint4 ,tf4,M New4 ,bounds=[(0.25),(2)])
fitted4 = fit odeint4(tf4, ∗popt4)
beta4 = popt4[0]
print("\n beta4: ",beta4)

ret = odeint(sairp model , y4, tf4,\
args=(N, beta4,theta,p4,phi,w,nu,q,delta,m4,Lambda,mu))

S4, A4, I4, R4, P4 = ret.T

#5 sub−i n t e r v a l o f time
y5 = ret.T[0][32],ret.T[1][32],ret.T[2][32],ret.T[3][32],ret.T[4][32]
def fit odeint5(tf5,beta):

return odeint(sairp model , y5, tf5,\
args=(N, beta,theta,p5,phi,w,nu,q,delta,m5,Lambda,mu))[:,2]

popt5, pcov = curve fit(fit odeint5 ,tf5,M New5 ,bounds=[(0.25),(2)])
fitted5 = fit odeint5(tf5, ∗popt5)
beta5 = popt5[0]
print("\n beta5: ",beta5)

ret = odeint(sairp model , y5, tf5,\
args=(N, beta5,theta,p5,phi,w,nu,q,delta,m5,Lambda,mu))

S5, A5, I5, R5, P5 = ret.T

#6 sub−i n t e r v a l o f time
y6 = ret.T[0][36],ret.T[1][36],ret.T[2][36],ret.T[3][36],ret.T[4][36]

11

def fit odeint6(tf6,beta,m,p):
return odeint(sairp model , y6, tf6,\
args=(N, beta,theta,p,phi,w,nu,q,delta,m,Lambda,mu))[:,2]

popt6, pcov = curve fit(fit odeint6 ,tf6,M New6 ,\
bounds=[(0.25,0.09,0.29),(2,1,0.58)])

fitted6 = fit odeint6(tf6, ∗popt6)
beta6 = popt6[0]
m6 = popt6[1]
p6 = popt6[2]
print("\n beta6: ",beta6)
print("\n m6: ",m6)
print("\n p6: ",p6)

ret = odeint(sairp model , y6, tf6,\
args=(N, beta6,theta,p6,phi,w,nu,q,delta,m6,Lambda,mu))

S6, A6, I6, R6, P6 = ret.T

#7 sub−i n t e r v a l o f time
y7 = ret.T[0][52],ret.T[1][52],ret.T[2][52],ret.T[3][52],ret.T[4][52]
def fit odeint7(tf7,beta,m,p):

return odeint(sairp model , y7, tf7,\
args=(N, beta,theta,p,phi,w,nu,q,delta,m,Lambda,mu))[:,2]

popt7, pcov = curve fit(fit odeint7 ,tf7,M New7 ,\
bounds=[(0.25,0.09,0.29),(2,1,0.58)])

fitted7 = fit odeint7(tf7, ∗popt7)
beta7 = popt7[0]
m7 = popt7[1]
p7 = popt7[2]
print("\n beta7: ",beta7)
print("\n m7: ",m7)
print("\n p7: ",p7)

ret = odeint(sairp model , y7, tf7,\
args=(N, beta7,theta,p7,phi,w,nu,q,delta,m7,Lambda,mu))

S7, A7, I7, R7, P7 = ret.T

#8 sub−i n t e r v a l o f time
y8 = ret.T[0][50],ret.T[1][50],ret.T[2][50],ret.T[3][50],ret.T[4][50]
def fit odeint8(tf8,beta,m):

return odeint(sairp model , y8, tf8,\
args=(N, beta,theta,p8,phi,w,nu,q,delta,m,Lambda,mu))[:,2]

popt8, pcov = curve fit(fit odeint8 ,tf8,M New8 ,\
bounds=[(0,0.09),(100,1)])

fitted8 = fit odeint8(tf8, ∗popt8)
beta8 = popt8[0]
m8 = popt8[1]
print("\n beta8: ",beta8)
print("\n m8: ",m8)

12

ret = odeint(sairp model , y8, tf8,\
args=(N, beta8,theta,p8,phi,w,nu,q,delta,m8,Lambda,mu))

S8, A8, I8, R8, P8 = ret.T

#9 sub−i n t e r v a l o f time
y9 = ret.T[0][24],ret.T[1][24],ret.T[2][24],ret.T[3][24],ret.T[4][24]
def fit odeint9(tf9,beta,m):

return odeint(sairp model , y9, tf9,\
args=(N, beta,theta,p9,phi,w,nu,q,delta,m,Lambda,mu))[:,2]

popt9, pcov = curve fit(fit odeint9 ,tf9,M New9 ,\
bounds=[(0,0.09),(0.78,1)])

fitted9 = fit odeint9(tf9, ∗popt9)
beta9 = popt9[0]
m9 = popt9[1]
print("\n beta9: ",beta9)
print("\n m9: ",m9)

ret = odeint(sairp model , y9, tf9,\
args=(N, beta9,theta,p9,phi,w,nu,q,delta,m9,Lambda,mu))

S9, A9, I9, R9, P9 = ret.T

Finally, we make the plot with the real data and the model solution I(t), for t ∈ [0, 410].

Plot the data on 9 s e p a r a t e curves f o r I (t)
plt.plot(tf1, fitted1, color="purple", alpha=5, lw=2.5,\

label=’Model −> 2 March − 13 May’)
plt.plot(tf2, fitted2 , color="magenta", alpha=5, lw=2.5,\

label=’Model −> 13 May − 30 May’)
plt.plot(tf3, fitted3 , color="blue", alpha=5, lw=2.5,\

label=’Model −> 30 May − 9 July’)
plt.plot(tf4, fitted4 , color="aqua", alpha=5, lw=2.5,\

label=’Model −> 9 July − 11 August’)
plt.plot(tf5, fitted5 , color="lawngreen", alpha=5, lw=2.5,\

label=’Model −> 11 August − 17 September’)
plt.plot(tf6, fitted6 , color="darkorange", alpha=5, lw=2.5,\

label=’Model −> 17 September − 9 November’)
plt.plot(tf7, fitted7 , color="chocolate", alpha=5, lw=2.5,\

label=’Model −> 9 November − 30 December’)
plt.plot(tf8, fitted8 , color="red", alpha=5, lw=2.5,\

label=’Model −> 30 December − 24 January’)
plt.plot(tf9, fitted9 , color="maroon", alpha=5, lw=2.5,\

label=’Model −> 24 January − 15 April’)

plt.plot(M New ,color="black",alpha=5,\
lw=2,linestyle=’dotted’,label=’Real data’)

xcoords = [73, 90, 130, 163, 200, 253, 304, 329]

for xc in zip(xcoords):
plt.axvline(x=xc, color="black", linestyle=’dotted’, alpha=0.5, lw=2)

13

plt.set xlabel(’Time (days)’,fontweight="bold")
plt.set ylabel(’Active infected’,fontweight="bold")
plt.yaxis.set tick params(length=0)
plt.xaxis.set tick params(length=0)
plt.grid(b=True, which=’major’, c=’w’, lw=2, ls=’−’)
legend = plt.legend(title="Population: ",loc=6,bbox to anchor=(1.05,0.2))

The graphic that results from the previous Python code is given in Figure 2.

Figure 2: Output of the Python code: fitting the SAIRP model (8) to COVID-19 active infected individuals
in Portugal, between March 02, 2020 and April 15, 2021.

We recall, that the mathematical method and numerical code can be applied to other models given
by systems of ODE’s that describe the transmission dynamics of different virus or bacteria in human,
animals or cells, for example.

5 Conclusion
In this note, we provided a complete toolkit for performing both a symbolic and numerical analysis of
a recent epidemic model, presented in [25], introduced in order to study the spreading of the COVID-
19 pandemic. This innovative compartmental model takes into account the possible transmission of
the virus by asymptomatic individuals, as well as the possibility to protect a fraction of the affected
population by public health strategies, such as confinement or quarantine. Since the public health
policies have a strong influence on the spreading of the epidemic, we have also considered a piecewise
constant parameters extension of the initial autonomous system, which have proved its ability to fit
with real data. Once the mathematical analysis of such a complex compartmental model can be
tedious, we have presented a computational approach, which is intended to support the theoretical
analysis:

• using the free and open-source software Sagemath, we have first computed the symbolic expres-
sions of the basic reproduction number R0 (equation (5)), of the disease-free equilibrium Σ0

14

(equation (3)) and of the endemic equilibrium Σ+ (equation (4)), which highlight the role of
each parameter of the model;

• using the scientific libraries numpy, scipy and matplotlib of the free and open-source language
Python, we have integrated the epidemic model, in order to illustrate the theoretical stability
statements (see Figure 1);

• finally, we fitted the piecewise constant parameters extension of the initial model with recent
real-world data (see Figure 2).

Overall, the programs presented in this note have been written in a sufficiently general manner, so
that they can easily be adapted to a great number of other epidemic models. In a near future, we aim
to apply our computational approach to an improved version of our complex compartmental model,
so as to consider the effects of the mutations of the virus and the benefits of vaccination.

Acknowledgments
This research is partially supported by the Portuguese Foundation for Science and Technology (FCT)
by the project UIDB/04106/2020 (CIDMA). Cristiana J. Silva is also supported by FCT via the FCT
Researcher Program CEEC Individual 2018 with reference CEECIND/00564/2018.

References
[1] Z. Ahmad, M. Arif, F. Ali, et al. A report on COVID-19 epidemic in Pakistan using SEIR

fractional model, Sci. Rep., 10 (2020), 22268. https://doi.org/10.1038/s41598-020-79405-9

[2] S. Ahmad, A. Ullah, Q. M. Al-Mdallal, H. Khan, K. Shah, A. Khan, Fractional order mathematical
modeling of COVID-19 transmission, Chaos Solitons & Fractals, 139 (2020), 110256. https:
//doi.org/10.1016/j.chaos.2020.110256

[3] M. Amouch, N. Karim, Modeling the dynamic of COVID-19 with different types of transmissions,
Chaos, Solitons & Fractals, (2021), 111188. https://doi.org/10.1016/j.chaos.2021.111188

[4] I. A. Baba, A. Yusuf, K. S. Nisar, A. Abdel-Aty, T. A. Nofal, Mathematical model to assess
the imposition of lockdown during COVID-19 pandemic, Results in Physics, 20 (2021), 103716.
https://doi.org/10.1016/j.rinp.2020.103716

[5] N. Bacaër, McKendrick and Kermack on epidemic modelling (1926–1927), in A Short History
of Mathematical Population Dynamics Springer, London, (2011). https://doi.org/10.1007/
978-0-85729-115-8_16

[6] S. Bugalia, V. P. Bajiya, J. P. Tripathi, M-T. Li, G-Q. Sun, Mathematical modeling of COVID-19
transmission: the roles of intervention strategies and lockdown, Math. Biosci. Eng., 17(5) (2020),
5961–5986. https://doi.org/10.3934/mbe.2020318

[7] S. A. Cheema, T. Kifayat, A. R. Rahman, U. Khan, A. Zaib et al., Is social distancing, and
quarantine effective in restricting covid-19 outbreak? Statistical evidences from Wuhan, China,
Computers, Materials & Continua, 66 (2) (2021), 1977–1985. https://doi.org/10.32604/cmc.
2020.012096

[8] J. Danane, K. Allali, Z. Hammouch, K. S. Nisar, Mathematical analysis and simulation of a
stochastic COVID-19 Lévy jump model with isolation strategy, Results in Physics, 23 (2021),
103994. https://doi.org/10.1016/j.rinp.2021.103994

15

https://doi.org/10.1038/s41598-020-79405-9
https://doi.org/10.1016/j.chaos.2020.110256
https://doi.org/10.1016/j.chaos.2020.110256
https://doi.org/10.1016/j.chaos.2021.111188
https://doi.org/10.1016/j.rinp.2020.103716
https://doi.org/10.1007/978-0-85729-115-8_16
https://doi.org/10.1007/978-0-85729-115-8_16
https://doi.org/10.3934/mbe.2020318
https://doi.org/10.32604/cmc.2020.012096
https://doi.org/10.32604/cmc.2020.012096
https://doi.org/10.1016/j.rinp.2021.103994

[9] Z. B. Dieudonné, Mathematical model for the mitigation of the economic effects of the Covid-
19 in the Democratic Republic of the Congo, PLoS ONE, 16 (5) (2021), e0250775. https:
//doi.org/10.1371/journal.pone.0250775

[10] G. Giordano, et al. Modelling the COVID-19 epidemic and implementation of population-
wide interventions in Italy, Nat. Med., 26 (2020), 855–860. https://doi.org/10.1038/
s41591-020-0883-7

[11] Ghulam Hussain, Tahir Khan, Amir Khan, Mustafa Inc, Gul Zaman, Kottakkaran Sooppy Nisar,
Ali Akg ”ul, Modeling the dynamics of novel coronavirus (COVID-19) via stochastic epidemic
model, Alexandria Engineering Journal, 60 (4) (2021), 4121–4130. https://doi.org/10.1016/
j.aej.2021.02.036

[12] S. Khajanchi, K. Sarkar, J. Mondal, K. S. Nisar, S. F. Abdelwahab, Mathematical modeling
of the COVID-19 pandemic with intervention strategies, Results in Physics, 25 (2021), 104285.
https://doi.org/10.1016/j.rinp.2021.104285

[13] A. Khan, H. M. Alshehri, T. Abdeljawad, Q. M. Al-Mdallal, H. Khan, Stability analysis of
fractional nabla difference COVID-19 model, Results in Physics, 22 (2021), 103888. https:
//doi.org/10.1016/j.rinp.2021.103888

[14] A. P. Lemos-Paião, C. J. Silva, D. F. M. Torres, A New Compartmental Epidemiological Model
for COVID-19 with a Case Study of Portugal, Ecological Complexity, 44 (2020), Art. 100885, 8
pp. https://doi.org/10.1016/j.ecocom.2020.100885

[15] K. Logeswari, C. Ravichandran, K. S. Nisar, Mathematical model for spreading of COVID-
19 virus with the Mittag–Leffler kernel, Numer. Methods Partial Differential Eq., (2020), 1–16.
https://doi.org/10.1002/num.22652

[16] L. López, X. Rodó, A modified SEIR model to predict the COVID-19 outbreak in Spain and Italy:
Simulating control scenarios and multi-scale epidemics, Results in Physics, 21 (2021), 103746.
https://doi.org/10.1016/j.rinp.2020.103746

[17] J. Y. T. Mugisha, J. Ssebuliba, J. N. Nakakawa, C. R. Kikawa, A. Ssematimba, Mathematical
modeling of COVID-19 transmission dynamics in Uganda: Implications of complacency and early
easing of lockdown, PLoS ONE, 16 (2) (2021), e0247456. https://doi.org/10.1371/journal.
pone.0247456

[18] F. Ndairou, I. Area, J. J. Nieto, C. J. Silva, D. F. M. Torres, Fractional model of COVID-19
applied to Galicia, Spain and Portugal, Chaos Solitons Fractals, 144 (2021), Art. 110652, 7 pp.
http://dx.doi.org/10.1016/j.chaos.2021.110652

[19] K. S. Nisar, S. Ahmad, A. Ullah, K. Shah, H. Alrabaiah, M. Arfan, Mathematical analysis
of SIRD model of COVID-19 with Caputo fractional derivative based on real data, Results in
Physics, 21 (2021), 103772. https://doi.org/10.1016/j.rinp.2020.103772

[20] Python Software Foundation. Python Language Reference, version 3.8, 2019. Available from:
http://www.python.org

[21] A. Radulescu, C. Williams, K. Cavanagh, Management strategies in a SEIR-type model
of COVID 19 community spread. Sci. Rep., 10 (2020), 21256. https://doi.org/10.1038/
s41598-020-77628-4

[22] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 9.2), 2020.
Available from: https://www.sagemath.org

16

https://doi.org/10.1371/journal.pone.0250775
https://doi.org/10.1371/journal.pone.0250775
https://doi.org/10.1038/s41591-020-0883-7
https://doi.org/10.1038/s41591-020-0883-7
https://doi.org/10.1016/j.aej.2021.02.036
https://doi.org/10.1016/j.aej.2021.02.036
https://doi.org/10.1016/j.rinp.2021.104285
https://doi.org/10.1016/j.rinp.2021.103888
https://doi.org/10.1016/j.rinp.2021.103888
https://doi.org/10.1016/j.ecocom.2020.100885
https://doi.org/10.1002/num.22652
https://doi.org/10.1016/j.rinp.2020.103746
https://doi.org/10.1371/journal.pone.0247456
https://doi.org/10.1371/journal.pone.0247456
http://dx.doi.org/10.1016/j.chaos.2021.110652
https://doi.org/10.1016/j.rinp.2020.103772
http://www.python.org
https://doi.org/10.1038/s41598-020-77628-4
https://doi.org/10.1038/s41598-020-77628-4
https://www.sagemath.org

[23] A.S. Shaikh, I. N. Shaikh, K. S. Nisar, A mathematical model of COVID-19 using fractional
derivative: outbreak in India with dynamics of transmission and control, Adv. Differ. Equ.,
373(2020). https://doi.org/10.1186/s13662-020-02834-3

[24] S. Sharma, V. Volpert, M. Banerjee, Extended SEIQR type model for COVID-19 epidemic
and data analysis, Mathematical Biosciences and Engineering, 17(6) 2020, 7562–7604. https:
//doi.org/10.3934/mbe.2020386

[25] C. J. Silva, G. Cantin, C. Cruz, R. Fonseca-Pinto, R. Fonseca, E. S. Santos, D. F. M. Torres,
Complex network model for COVID-19: human behavior, pseudo-periodic solutions and multiple
epidemic waves, Journal of Mathematical Analysis and Applications, in press. https://doi.org/
10.1016/j.jmaa.2021.125171

[26] C. J. Silva, C. Cruz, D. F. M. Torres, A. P. Muñuzuri, A. Carballosa, I. Area, J. J. Nieto, R.
Fonseca-Pinto, R. Fonseca, E. S. Santos, W. Abreu, J. Mira, Optimal control of the COVID-19
pandemic: controlled sanitary deconfinement in Portugal, Scientific Reports, 11, Art. 3451
(2021), 15 pp. https://doi.org/10.1038/s41598-021-83075-6

[27] T. N. Sindhu, A. Shafiq, Q. M. Al-Mdallal, On the analysis of number of deaths due to Covid-
19 outbreak data using a new class of distributions, Results in Physics, 21 (2021), 103747.
https://doi.org/10.1016/j.rinp.2020.103747

[28] T. N. Sindhu, A. Shafiq, Q. M. Al-Mdallal, Exponentiated transformation of Gumbel Type-
II distribution for modeling COVID-19 data, Alexandria Engineering Journal, 60 (1) (2021),
671–689. https://doi.org/10.1016/j.aej.2020.09.060

[29] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria
for compartmental models of disease transmission, Mathematical Biosciences, 180 (2002), 29–48.
https://doi.org/10.1016/S0025-5564(02)00108-6

[30] C. Y. Yang, J. Wang, A mathematical model for the novel coronavirus epidemic in Wuhan, China,
Math. Biosci. Eng., 17 (3) (2020), 2708–2724. https://doi.org/10.3934/mbe.2020148

[31] Direção Geral da Saúde – COVID-19, Ponto de Situação Atual em Portugal, 2021. Available
from: https://covid19.min-saude.pt/ponto-de-situacao-atual-em-portugal/.

[32] GitHub, Dados relativos a pandemia COVID-19 em Portugal, 2021. Available from: https:
//github.com/dssg-pt/covid19pt-data.

[33] SciPy.org, scipy.optimize.curve_fit, 2021. Available from: https://docs.scipy.org/doc/
scipy/reference/generated/scipy.optimize.curve_fit.html.

17

https://doi.org/10.1186/s13662-020-02834-3
https://doi.org/10.3934/mbe.2020386
https://doi.org/10.3934/mbe.2020386
https://doi.org/10.1016/j.jmaa.2021.125171
https://doi.org/10.1016/j.jmaa.2021.125171
https://doi.org/10.1038/s41598-021-83075-6
https://doi.org/10.1016/j.rinp.2020.103747
https://doi.org/10.1016/j.aej.2020.09.060
https://doi.org/10.1016/S0025-5564(02)00108-6
https://doi.org/10.3934/mbe.2020148
https://covid19.min-saude.pt/ponto-de-situacao-atual-em-portugal/
https://github.com/dssg-pt/covid19pt-data
https://github.com/dssg-pt/covid19pt-data
scipy.optimize.curve_fit
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html

	Introduction
	Mathematical model
	Equilibrium points and stability analysis
	Computing equilibrium points and basic reproduction number in SageMath
	Stability analysis

	Mathematical model with piecewise constant parameters
	Conclusion

