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On non-autonomous maximal Lp-regularity under

Besov regularity in time in weighted spaces

Mahdi Achache ∗

September 21, 2021

Abstract

We consider the problem of maximal regularity for non-autonomous
Cauchy problems

u′(t) +A(t)u(t) = f(t), t-a.e., u(0) = u0.

The time dependent operators A(t) are associated with (time depen-
dent) sesquilinear forms on a Hilbert space H. We prove the maxi-
mal regularity result in temporally weighted Lp-spaces for p > 2 and
other regularity properties for the solution of the previous problem un-
der minimal regularity assumptions on the forms and the initial value
u0. Our main assumption is that (A(t))t∈[0,τ ] are in the Besov space

B
1−

1

p
,2

p with respect to the variable t and u0 ∈ (H;D(A(0)))θ,p, where

θ = p−1−β

p
. Our results are motivated by boundary value problems.

keywords: Besov spaces, maximal regularity, non-autonomous evolu-
tion equations, sesquilinear forms. weighted spaces.
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1 Introduction

The present paper deals with maximal Lp-regularity for non-autonomous
evolution equations in the setting of Hilbert spaces. Before explaining our
results we introduce some notations and assumptions.
Let (H, (·, ·), ‖ · ‖) be a Hilbert space over R or C. We consider another
Hilbert space V which is densely and continuously embedded into H. We
denote by V ′ the (anti-) dual space of V so that

V →֒d H →֒d V ′.

We denote by 〈, 〉 the duality V-V ′ and note that 〈ψ, v〉 = (ψ, v) if ψ, v ∈ H.
Given τ ∈ (0,∞) and consider a family of sesquilinear forms

a : [0, τ ] × V × V → C

such that

• [H1]: D(a(t)) = V (constant form domain),

• [H2]: |a(t, u, v)| ≤ M‖u‖V‖v‖V (uniform boundedness),

• [H3]: Re a(t, u, u)+ν‖u‖2 ≥ δ‖u‖2
V (∀u ∈ V) for some δ > 0 and some

ν ∈ R (uniform quasi-coercivity).

Here and throughout this paper, ‖ · ‖V denotes the norm of V.
To each form a(t) we can associate two operators A(t) and A(t) on H

and V ′, respectively. Recall that u ∈ H is in the domain D(A(t)) if there
exists h ∈ H such that for all v ∈ V: a(t, u, v) = (h, v). We then set
A(t)u := h. The operator A(t) is a bounded operator from V into V ′ such
that A(t)u = a(t, u, ·). The operator A(t) is the part of A(t) on H. It is
a classical fact that −A(t) and −A(t) are both generators of holomorphic
semigroups (e−rA(t))r≥0 and (e−rA(t))r≥0 on H and V ′, respectively. The
semigroup e−rA(t) is the restriction of e−rA(t) to H. In addition, e−rA(t)

induces a holomorphic semigroup on V (see, e.g., Ouhabaz [27, Chapter 1]).
A well known result by J.L. Lions asserts that the Cauchy problem

u′(t) + A(t)u(t) = f(t), u(0) = u0 ∈ H (1.1)

has maximal L2-regularity in V ′, that is, for every f ∈ L2(0, τ ; V ′) there
exists a unique u ∈ W 1,2(0, τ ; V ′)∩L2(0, τ ; V) which satisfies (1.1) in the L2-
sense. The maximal regularity in H is however more interesting since when
dealing with boundary value problems one cannot identify the boundary
conditions if the Cauchy problem is considered in V ′. Maximal regularity
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in H differs considerably from the same property in V ′ and more difficult
to prove. In this note we consider the question of maximal regularity for
weighted Lp−spaces Lp

β(0, τ ; H). The weights we consider are power weights
in time.

Definition 1.1. We say that the problem (1.1) has maximal Lp
β-regularity

in H, if for all f ∈ Lp
β(0, τ ; H) there exists a unique u ∈ W 1,p

β (0, τ ; H) which

satisfies (1.1) in the Lp
β-sense.

Thus all three functions u′, A(.)u and f are in Lp
β(0, τ ; H), which is the

reason for the terminology “maximal Lp
β-regularity” in H. As a consequence,

the solution is in the maximal Lp
β-regularity space, namely,

MR(p, β) := {u ∈ W 1,p
β (0, τ ; H) ∩ Lp

β(0, τ ; V) : A(.)u ∈ Lp
β(0, τ ; H)}.

This is a Banach space for the norm

‖u‖2
MR(p,β) = ‖u′‖2

L
p

β
(0,τ ;H) + ‖A(.)u‖2

L
p

β
(0,τ ;H).

We define the corresponding trace space by Tr(p, β) = {u(0) : u ∈ MR(p, β)}
which is a Banach space for the norm

‖x‖T r(p,β) = inf{‖u‖MR(p,β) : u ∈ MR(p, β), u(0) = x}.

Note that u ∈ MR(p, β) if and only if u(0) ∈ Tr(p, β). Consequently, there
are two tasks: Finding conditions on the form a(.) that imply maximal Lp

β-
regularity in H, and then identifying the trace space Tr(p, β).
Lions himself proved maximal L2-regularity in H if the form a(t, ., .) is sym-
metric for all t ∈ [0, τ ] and t → a(t, u, v) ∈ C1([0, τ ]) for all u, v ∈ V (see
[23]). The proof is based on a representation theorem of linear functionals
due to himself and usually known in the literature as Lions’s representation
theorem. Using a different approach, maximal Lp-regularity was established
in [28], assuming that t → a(t, u, v) ∈ Cα([0, τ ]) for all u, v ∈ V, for some
α > 1

2 . This result was further improved in [20], where the Hölder condition
is replaced by a weaker ”Dini” condition for a(., ., .).
For maximal L2−regularity, this result was improved to the fractional Sobolev
regularity t → A(t) ∈ H

1
2

+α([0, τ ]; L(V,V ′)) for α > 1
2 (see [13]). The proof

is surprisingly elementary and based on the Lax-Milgram lemma. Further-
more, it is proved in [4] that maximal L2-regularity holds if t → A(t) ∈

H
1
2 ([0, τ ]; L(V,V ′)) (with some integrability conditions). Fackler [18], on

the other hand was able to construct a symmetric non-autonomous form
that is α-Hölder continuous for every α ≤ 1

2 but does not have maximal L2-
regularity in H. Fackler [19], generalized the result in [13] for any p ∈ (1,∞)
by assuming fractional Sobolev regularity. In fact, he proved that maximal
Lp-regularity is satisfied if
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(i) A(.) ∈ Ḣ
1
2

+ǫ(0, τ ; L(V,V ′)) for p ≤ 2

(ii) A(.) ∈ Ẇ
1
2

+ǫ,p(0, τ ; L(V,V ′)) for p > 2.

An example from [12] shows that A(.) ∈ Ẇ
1
2

,p(0, τ ; L(V,V ′)) for p > 2 is
not enough to obtain maximal Lp-regularity. We refer to the recent papers
[4] or [6] for more details and references.
Maximal Lp

β-regularity can be used to establish existence and uniqueness
of solutions for quasilinear parabolic evolution equations. The choice of the
weighted spaces has a big advantages. One of them is to reduce the necessary
regularity for initial conditions of evolution equations. Time-weights can be
used also to exploit parabolic regularization which is typical for quasilinear
parabolic problems. Prüss and Simonett [29], proved maximal Lp

β-regularity
for β ∈ [0, p− 1) in the autonomous case (i.e. A(t) = A(0) for all t ∈ [0, τ ])
in a Banach space assuming that (1.1) has maximal Lp-regularity. In the
present paper, we extend their results to β ∈ [−1, p − 1) and the result
in [19] to the case of the weights spaces and assuming less regularity on
the operators A(t) with respect to t for the case p > 2, which is our main
motivation. We show maximal Lp

β-regularity on Hilbert spaces assuming
Besov regularity regularity in time. Our main result shows that if t 7→ A(t)

is in the Besov space B
1− 1

p
,2

p (0, τ ; L(V,V ′)) then maximal Lp
β−regularity in

H is satisfied. We remark that W
1
2

+ε,p ⊂ B
1− 1

p
,2

p ⊂ W
1
2

,p for all ε > 0. Then
this regularity assumption is minimal and our results are the most general
ones on this problem. The initial data u0 is arbitrary in the interpolation
space (H;D(A(0)))θ,p for −1 < β < p− 1. Here, θ = p−1−β

p
.

In section 2, we start with basic properties of the weighted spaces, while in
section 3 we prove several key estimates and develop the necessary tools for
the proofs of the main results. The main results are proved in sections 5, 6
and several examples are given in section 7.
Notation.

- We denote by L(E,F ) (or L(E)) the space of bounded linear operators
from E to F (from E to E). The spaces Lp(a, b;E) and W 1,p(a, b;E)
denote respectively the Lebesgue and Sobolev spaces of function on
(a, b) with values in E. Cα(a, b;E) denote the space of Hölder con-
tinuous functions of order α. Recall that the norms of H and V are
denoted by ‖ · ‖ and ‖ · ‖V . The scalar product of H is (·, ·).

- We denote by C, C ′ or c... all inessential positive constants. Their
values may change from line to line.

- On some cases we will use the notation a . b to signify that there
exists an inessential positive constant C such that a ≤ Cb.

- Finally, by (E,F )θ,p, [E,F ]θ, θ ∈ (0, 1), p ∈ (1,∞) we denote the real
and complex interpolation spaces respectively between E and F.
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2 Properties of weighted spaces

In this section we briefly recall the definitions and we give the basic proper-
ties of vector-valued function spaces with temporal weights.

For p ∈ (1,∞) and −1 < β < p − 1 we set Lp
β(0, τ ; H) := {u : t 7→

t
β

p u(t) ∈ Lp(0, τ ; H)}, endowed with the norm

‖u‖p

L
p

β
(0,τ,H)

:=

∫ τ

0
‖u(t)‖ptβ dt.

In the case p = ∞, L∞
β (0, τ ; H) is defined as follows

L∞
β (0, τ ; H) := {u ∈ L1(0, τ ; H) : s → sβu(s) ∈ L∞(0, τ ; H)},

with norm ‖u‖L∞
β

(0,τ ;H) := ‖s 7→ sβu(s)‖L∞(0,τ ;H).

It is very seen that Lp
β(0, τ ; H) →֒ L1(0, τ ; H). Indeed, for u ∈ Lp

β(0, τ ; H)
we find by Hölder’s inequality

∫ τ

0
‖u(t)‖ dt ≤ (

∫ τ

0
t
− β

p−1 dt)
p−1

p ‖u‖L
p

β
(0,τ ;H).

It clearly holds that Lp(0, τ ; H) →֒ Lp
β(0, τ ; H) for β > 0 and Lp

β(0, τ ; H) →֒
Lp(0, τ ; H) for β < 0.
We define the corresponding weighted Sobolev spaces

W 1,p
β (0, τ ; H) := {u ∈ W 1,1(0, τ ; H) : u, u′ ∈ Lp

β(0, τ ; H)},

W 1,p
β,0(0, τ ; H) := {u ∈ W 1,p

β (0, τ ; H) : u(0) = 0},

which are Banach spaces for the norms, respectively,

‖u‖2
W

1,p

β
(0,τ ;H)

:= ‖u‖p

L
p

β
(0,τ ;H)

+ ‖u′‖p

L
p

β
(0,τ ;H)

,

‖u‖
W

1,p

β,0
(0,τ ;H)

:= ‖u′‖L
p

β
(0,τ ;H).

Lemma 2.1 (Weighted Hardy inequality ). Let p ∈ (1,∞) and β ∈ (−1, p−
1). Then for all f ∈ Lp

β(0, τ,H),

∫ τ

0
(
1

t

∫ t

0
‖f(s)‖ ds)ptβ dt . ‖f‖p

L
p

β
(0,τ ;H)

.

Lemma 2.1 is proved in [31][Lemma 6].

Proposition 2.2. We have the following properties

1- For all u ∈ Lp
β(0, τ,H), t → v(t) = 1

t

∫ t
0 u(s) ds ∈ Lp

β(0, τ,H).
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2- We define the operator Φ : Lp
β(0, τ ; H) → Lp(0, τ ; H), such that (Φf)(t) =

t
β

p f(t) for f ∈ Lp
β(0, τ ; H) and t ∈ [0, τ ]. Then Φ is an isometric iso-

morphism. We note also that Φ ∈ L(Lp(0, τ ; H), Lp
−β(0, τ ; H)).

3- Lp′

− β

p−1

(0, τ ; H) is the dual space of Lp
β(0, τ ; H) by the duality defined

in L2(0, τ ; H).

4- If u ∈ W 1,p
β (0, τ ; H), we obtain that u has a continuous extension on

H and
W 1,p

β (0, τ ; H) →֒ C([0, τ ]; H).

5- C∞
c ((0, τ); H) and C∞([0, τ ]; H) are dense in Lp

β(0, τ ; H).

Remark 2.3. The restriction on β comes from several facts. The first
one is the embedding Lp

β(0, τ ; H) →֒ L1(0, τ ; H). The second one is due to
Hardy’ inequality and the third reason comes from the fact that functions in
W 1,p

β (0, τ ; H) have a well-defined trace in case that −1 < β < p− 1.

Proof. Prove ca svp et ajouter le lemme en bas a la proposition.

Lemma 2.4. Let β ∈ (−1, p−1) and p ∈ (2,∞). Suppose that 2(1+β) < p,
then Lp

β(0, τ ; H) →֒ L2(0, τ ; H).

Proof. Let f ∈ Lp
β(0, τ ; H). Hölder’s inequality gives

∫ τ

0
‖f(s)‖2ds =

∫ τ

0
s

−2β

p ‖f(s)‖2s
2β

p ds

≤ (

∫ τ

0
s

−2β

p−2 ds)
p−2

p ‖f‖
2
p

L
p

β
(0,τ ;H)

= τ
−2β+p−2

p ‖f‖
2
p

L
p

β
(0,τ ;H)

.

This finishes the proof.

3 Preparatory lemmas

In this section we prove several estimates which will play an important role
in the proof of the main results. We emphasize that one of the important
points here is to prove estimates with constants which are independent of t.
From now we assume without loss of generality that the forms are coercive,
that is [H3] holds with ν = 0. The reason is that by replacing A(t) by
A(t) + ν, the solution v of (1.1) is v(t) = e−νtu(t) and it is clear that
u ∈ W 1,p

β (0, τ ; H) ∩ Lp
β(0, τ ; V) if and only if v ∈ W 1,p

β (0, τ ; H) ∩ Lp
β(0, τ ; V).
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For f ∈ Lp(0, τ ; H), p ∈ (1,∞) and for almost every t ∈ [0, τ ] we define
the operator L by

L(f)(t) := A(t)

∫ t

0
e−(t−s)A(t)f(s) ds.

Note that in the autonomous case (i.e. A(t) = A(0) for any t ∈ [0, τ ]) L is
called the maximal regularity operator.
Our aim is to prove that L ∈ L(Lp

β(0, τ ; H)) for all p ∈ (1,∞). It is proved in
[20] that L is bounded on Lp(0, τ ; H) for all p ∈ (1,∞) provided t 7→ a(t, ., .)
is Cε for some ε > 0 (or similarly, t 7→ A(t) is Cε on [0, τ ] with values in
L(V,V ′)). The proof for the case p = 2 is based on vector-valued pseudo-
differential operators.

Lemma 3.1. Assume that t 7→ a(t, ., .) is Cε for some ε > 0. Then L is
bounded on Lp

β(0, τ ; H) for all β ∈ (−1, p− 1) and p ∈ (1,∞).

Proof. Let β ∈ (−1, p− 1), p ∈ (1,∞) and f ∈ Lp
β(0, τ ; H). It is easy to see

that t 7→ t
β

p f(t) ∈ Lp(0, τ ; H).
We split the integral into two parts to get

(Lf)(t) = A(t)

∫ t
2

0
e−(t−s)A(t)f(s) ds+A(t)

∫ t

t
2

e−(t−s)A(t)f(s) ds

:= I1(t) + I2(t).

We begin by estimating the first one

‖I1(t)‖ = ‖A(t)

∫ t
2

0
e−(t−s)A(t)f(s) ds‖ .

∫ t
2

0

1

t− s
‖f(s)‖ ds

.
2

t

∫ t
2

0
‖f(s)‖ ds.

Hardy’s inequality gives

∫ τ

0
‖A(t)

∫ t
2

0
e−(t−s)A(t)f(s) ds‖ptβ dt

.

∫ τ

0
(
2

t

∫ t
2

0
‖f(s)‖ ds)ptβ dt

. ‖f‖p

L
p

β
(0,τ ;H)

.

Now we estimate the second integral I2(t). Indeed,

t
β

2 ‖I2(t)‖ = t
β

2 ‖A(t)

∫ t

t
2

e−(t−s)A(t)f(s) ds‖ . ‖A(t)

∫ t

0
e−(t−s)A(t)(1( t

2
,t)s

β

2 f(s)) ds‖

= ‖(Lg)(t)‖.
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Here, g(s) = 1( t
2

,t)s
β

2 f(s). Since L is bounded on Lp(0, τ ; H) we infer that

t 7→ t
β

2 I2(t) ∈ Lp(0, τ ; H). Therefore, L ∈ L(Lp
β(0, τ ; H)) for all p ∈ (1,∞).

Proposition 3.2. For p−1 ≤ β the operator L is not bounded on Lp
β(0, τ ; H)

in general.

Proof. Let u ∈ H and g ∈ Lp′

− β

p−1

(0, τ ; H), p′ = p
p−1 . Noting that

(L∗g)(t) =

∫ τ

t
A(s)∗e−(s−t)A(s)∗

g(s) ds, t ∈ (0, τ)

is the adjoint operator and L ∈ L(Lp
β(0, τ ; H)) if and only if L∗ ∈ L(Lp′

− β

p−1

(0, τ ; H)).

Suppose thatA(s)∗ = A(0)∗ for all s ∈ [0, τ ], then (L∗g)(t) =
∫ τ

t A(0)∗e−(s−t)A(0)∗
g(s) ds.

Assume now that t < 1 < τ and take g(s) = 1[1,τ ](s)u, so

(L∗g)(t) = e−(1−t)A(0)∗
u− e−(τ−t)A(0)∗

u,

which converges to e−A(0)∗
u− e−τA(0)∗

u as t → 0.
We claim that

e−A(0)∗
u− e−τA(0)∗

u 6= 0,

then

‖L∗g‖p′

L
p′

− β
p−1

(0,τ ;H)
≥ ‖L∗g‖p′

L
p′

− β
p−1

(0,1;H)

=

∫ 1

0
‖e−(1−t)A(0)∗

u− e−(τ−t)A(0)∗
u‖p′ dt

t
β

p−1

= ∞.

Now, suppose that e−A(0)∗
u− e−τA(0)∗

u = 0. Thus

e−A(0)∗
u = e−(2τ−1)A(0)∗

u.

Using induction, for all n ∈ N we obtain

e−A(0)∗
u− e−(n(τ−1)+1)A(0)∗

u = 0.

By letting n → ∞, it follows that e−A(0)∗
u = 0. Hence, e−tA(0)∗

u = 0 for
all t ≥ 1, and we deduce that u = 0 by an application of the isolated point
theorem and the analyticity of the semigroup.

Lemma 3.3. Let f ∈ Lp
β(0, τ ; H) and p > 2, β ∈ (−1, p − 1). We have

t
β

p
− 1

2
+ 1

p (L1f)(t) ∈ V, where

(L1f)(t) :=

∫ t

0
e−(t−s)A(t)f(s) ds, t ∈ [0, τ ].

As a consequence for 2(β + 1) ≤ p, (L1f)(t) ∈ V for all t ∈ [0, τ ].
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Proof. Write

t
β

p (L1f)(t) = t
β

p

∫ t
2

0
e−(t−s)A(t)f(s) ds+ t

β

p

∫ t

t
2

e−(t−s)A(t)f(s) ds. (3.1)

A straightforward computation gives

‖t
β

p

∫ t
2

0
e−(t−s)A(t)f(s) ds‖V . t

β

p

∫ t
2

0
‖e−(t−s)A(t)‖L(H,V)‖f(s)‖ ds

. t
β

p
− 1

2 (

∫ t
2

0
s

− p′β

p ds)
1
p′ ‖f‖L

p

β
(0,τ ;H)

. t
1
p′ − 1

2 ‖f‖L
p

β
(0,τ ;H)

= t
1
2

− 1
p ‖f‖L

p

β
(0,τ ;H).

Here, p′ = p
p−1 is the conjugate of p. For the second term in RHS of (3.1),

‖t
β

p

∫ t

t
2

e−(t−s)A(t)f(s) ds‖V .

∫ t

t
2

‖e−(t−s)A(t)‖L(H,V)s
β

p ‖f(s)‖ ds

.

∫ t

t
2

1

(t− s)
1
2

s
β

p ‖f(s)‖ ds

. t
1
2

− 1
p ‖f‖L

p

β
(0,τ ;H).

This shows the result.

Proposition 3.4. Let p > 2 and −1 < β < p−1. Assume that
∫ τ

0

‖A(t)−A(0)‖p

L(V,V′)

t
p
2

dt <

∞. Then for all u0 ∈ (H;D(A(0)))θ,p, we have

t → (Fu0)(t) = t
β

pA(t)e−tA(t)u0 ∈ Lp(0, τ ; H).

Proof. Write

(Fu0)(t) = t
β

pA(t)e−tA(t)u0

= t
β

p (A(t)e−tA(t)u0 −A(0)e−tA(0)u0)

+ t
β

pA(0)e−tA(0)u0.

Choose a contour Γ in the positive half-plane and write by the holomorphic
functional calculus for the sectorial operators A(t), A(0)

A(t)e−tA(t)−A(0)e−tA(0) =
1

2πi

∫

Γ
λe−tλ(λI−A(t))−1

(

A(t)−A(0)
)

(λI−A(0))−1 dλ.

9



Consequently,

‖A(t)e−tA(t)u0 −A(0)e−tA(0)u0‖

≤ C

∫ ∞

0
|λ|e−t| cos γ||λ|‖(λI − A(0))−1‖L((H,D(A(0)))θ,p;V)

× ‖(λI − A(t))−1‖L(V ′;H) d|λ|‖A(t) − A(0)‖L(V,V ′)

× ‖u0‖(H,D(A(0)))θ,p
.

Therefore

- for 2(β + 1) < p, we have by Lemma 5.3 that (H, D(A(0)))θ,p →֒ V.
Hence,

‖(A(t)e−tA(t)−A(0)e−tA(0))u0‖ ≤ C
‖A(t) − A(0)‖L(V,V ′)

t−β+ p

2

‖u0‖(H,D(B(0)))θ,p
.

- for p < 2(β + 1), Lemma 5.3 shows that (H, D(A(0)))θ,p = (H,V)2θ,p.
Then

‖(A(t)e−tA(t)−A(0)e−tA(0))u0‖ ≤ C
‖A(t) − A(0)‖L(V,V ′)

t
1
p

‖u0‖(H,V)2θ,p
.

- for p = 2(β + 1), we obtain (H, D(A(0)))θ,p = (H, D(A(0))) 1
2

,p. Using

Lemma 5.3 we get for all ε > 0

‖(A(t)e−tA(t)−A(0)e−tA(0))u0‖ ≤ C
‖A(t) − A(0)‖L(V,V ′)

t
1
p

+ε
‖u0‖(H,D(A(0))) 1

2 ,p
.

On the other hand, since A(0) is invertible, it is well-known that t →
A(0)e−tA(0)u0 ∈ Lp

β(0, τ ; H) if and only if u0 ∈ (H, D(A(0)))θ,p (see e.g.
[25] [Proposition 5.1.1]) and

∫ ∞

0
‖A(0)e−tA(0)u0‖ptβdt ≤ ‖u0‖p

(H,D(A(0)))θ,p
. (3.2)

Then for 2 < p 6= 2(β + 1) (or p = 2(β + 1) we get by taking ε < 1
2 − 1

p
),

‖Fu0‖L
p

β
(0,τ ;H) ≤ C

[(

∫ τ

0

‖A(t) − A(0)‖p
L(V,V ′)

t
p

2

dt
)

1
p
+1

]

‖u0‖(H,D(A(0)))θ,p
< ∞.

The next lemma shows the quadratic estimate for A(t) with constant
independent of t. This lemma was proved in [5] or in [2]. Quadratic estimates
are an important tool in harmonic analysis and we will use them at several
places in the proofs of maximal regularity.

Lemma 3.5. Let x ∈ H and t ∈ [0, τ ]. We have
∫ τ

0
‖A(t)

1
2 e−sA(t)x‖2 ds ≤ c‖x‖2, (3.3)

where c is a positive constant independent of t.
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4 Maximal regularity for autonomous problems

In this section we are interested in the regularity of the following problem











u′(t) + A(0)u(t) = f(t), t-a.e.

u(0) = u0.
(4.1)

Theorem 4.1. Let f ∈ Lp
β(0, τ,H), p ∈ (1,∞) and u0 ∈ (H;D(A(0)))θ,p for

−1 < β < p− 1. Here, θ = p−1−β
p

. Then (??) has maximal Lp
β-regularity in

H. Moreover, Tr(p, β) = (H;D(A(0)))θ,p, u ∈ C([0, τ ]; (H;D(A(0)))θ,p) and

‖u‖
W

1,p

β
(0,τ ;H)∩C([0,τ ];(H;D(A(0)))θ,p)

+‖A(0)u‖L
p

β
(0,τ ;H) ≤ C

[

‖u0‖(H;D(A(0)))θ,p
+‖f‖L

p

β
(0,τ ;H)

]

,

where C is a positive constant independent of u0 and f.
For p− 1 ≤ β, maximal Lp

β−regularity may fails.

As mentioned in the introduction, this theorem was proved by Prüss and
Simonett [29] but they only consider the case 0 ≤ β < p− 1.

Proof. Since A(0) is a generator of an analytic semigroup in H, it is well
known that by the variation of constants formula the solution of problem
(4.1) is given by

u(t) = e−tA(0)u0 +

∫ t

0
e−(t−s)A(0)f(s) ds.

Thus,

A(0)u(t) = A(0)e−tA(0)u0 +A(0)

∫ t

0
e−(t−s)A(0)f(s) ds

:= (F1u0)(t) + (Lf)(t).

Hence, to prove that u ∈ W 1,p
β ((0, τ ; H) ∩ Lp

β(0, τ ;D(A(0))) it is enough to

show that Lf and F1u0 are bounded in Lp
β(0, τ,H). Lemma 3.1 shows that

L ∈ L(Lp
β(0, τ,H)) and F1u0 ∈ Lp

β(0, τ,H) by (3.2).
Note that for u0 = 0 and β ≥ p− 1 we have A(0)u = Lf. Using the example
in Proposition 3.2, we get that A(0)u /∈ Lp

β(0, τ,H). Therefore maximal Lp
β-

regularity may fails in the case β ≥ p− 1.
Next, we prove that u(s) ∈ (H;D(A(0)))θ,p for all s ∈ [0, τ ], where u ∈
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W 1,p
β (0, τ,H) ∩Lp

β(0, τ,D(A(0))). First we consider the case s = 0. We have

‖u(0)‖p
(H;D(A(0)))θ,p

=

∫ 1

0
‖t

β

pA(0)e−tA(0)u(0)‖p dt+ ‖u(0)‖p

.

∫ 1

0
‖t

β

pA(0)e−tA(0)(u(0) − u(t))‖p dt+ ‖u(0)‖p

+

∫ 1

0
‖t

β

pA(0)e−tA(0)u(t)‖p dt

.

∫ 1

0
tβ(

1

t

∫ t

0
‖u̇(l)‖ ds)p dl

+

∫ τ

0
tβ‖A(0)u(t)‖p dt+ ‖u(0)‖2

. ‖u̇‖p

L
p

β
(0,τ ;H)

+ ‖A(.)u‖p

L
p

β
(0,τ ;H)

+ ‖u(0)‖2. (4.2)

Now, we prove the result for all s ∈]0, τ ]. Indeed, let t ∈]0, τ [ and set

v(t) :=

{

u(t+ s), t ∈ [0, τ − s].
u( τ

s
(τ − t)), t ∈ [τ − s, τ ].

Since v ∈ W 1,p
β (0, τ,H) ∩ Lp

β(0, τ,D(A(0))),

v(0) = u(s) ∈ (H;D(A(0)))θ,p.

For the case s = τ, we take v(t) = u(τ − t). This shows that u(s) ∈
(H;D(A(0)))θ,p, for all s ∈ [0, τ ].
For 0 ≤ s ≤ l ≤ t ≤ τ, we set v(l) = e−(t−l)A(0)u(l). This yields

u(t) − u(s) = v(s) − u(s) +

∫ t

s
v′(l) dl

= (e−(t−s)A(0) − I)u(s) +

∫ t

s
e−(t−l)A(0)f(l) dl. (4.3)

Observe that e−(t−s)A(0) is strongly continuous on (H;D(A(0)))θ,p. In par-
ticular, this ensures that

‖(e−(t−s)A(0) − I)u(s)‖(H;D(A(0)))θ,p
→ 0, as t → s.

The estimate (4.2) for the case u0 = 0 gives that

‖

∫ t

s
e−(t−l)A(0)f(l) dl‖(H;D(A(0)))θ,p

. ‖f‖L
p

β
(s,t;H).

It follows that u is right continuous on (H;D(A(0)))θ,p.
Now, set v(l) = e−(l−s)A(0)u(r), for 0 ≤ s ≤ l ≤ t.
Then

u(s) − u(t) = v(t) − u(t) −

∫ t

s
v′(l) dl

= (e−(t−s)A(0) − I)u(t) −

∫ t

s
e−(l−s)A(0)(f(l) − 2A(0)u(l)) dl.
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The same argument shows that u is left continuous on (H;D(A(0)))θ,p.
Thus, u ∈ C([0, τ ]; (H;D(A(0)))θ,p). This completes the proof.

5 Maximal regularity for non-autonomous prob-

lems.

In this section we focus with non-autonomous maximal Lp
β-regularity for

p > 2.
We start by recalling the definition of vector-valued Besov space.

Definition 5.1. Let X be a Banach space, p, q ∈ [1,∞] and α ∈ (0, 1). A
Bochner measurable function f : [0, τ ] → X, is in the homogeneous Besov
space Ḃα,p

q (0, τ ;X) if

‖f‖q

Ḃ
α,p
q (0,τ ;X)

:=

∫ τ

0
(

∫ t

0

‖f(t) − f(s)‖p
X

|t− s|
pα+ p

q

ds)
q

p dt < ∞.

A function f ∈ Lp(0, τ ;X) is in the Besov space Bα,p
q (0, τ ;X) if

‖f‖q

B
α,p
q (0,τ ;X)

:= ‖f‖q
Lp(0,τ ;X) + ‖f‖q

Ḃ
α,p
q (0,τ ;X)

< ∞.

We refer the reader to section 6 for more details about this spaces type.

Maximal Lp
β-regularity may fail even for ordinary non-autonomous equa-

tion, letting H = R.

Example 5.2. Consider φ(t) = t
− β+1

p and p ∈ (1,∞), β ∈ (−1, p − 1).
Then φ ∈ Lq

β(0, 1
2) for all q ∈ (1, p[. Set a(t) := |φ(t − 1

4)|. Consequently,

a ∈ Lq
β(0, 1

2) for all q ∈ (1, p[ but a /∈ Lp
β(0, 1

2).
Consider now the ordinary non-autonomous equation

u′(t) + a(t)u(t) = 1, u(0) = 0.

Then by variation of constants formula, u(t) =
∫ t

0 e
−

∫ s

t
a(r) dr ds. Since a(r) ≥

0,

|a(t)u(t)| = a(t)

∫ t

0
e−

∫ s

t
a(r) dr ds

≥ a(t)

∫ t

0
e−

∫ 1

0
a(r) dr ds

= e−
∫ 1

0
a(r) drta(t).

Therefore, ‖a(.)u‖L
p

β
(0, 1

2
) ≥ C‖t 7→ ta(t)‖L

p

β
(0, 1

2
) = ∞.

On the other hand, if we replace the constant function 1 by f ∈ Lq
β(0, 1

2) we
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infer

|a(t)u(t)| = a(t)|

∫ t

0
e−

∫ s

t
a(r) drf(s) ds|

≤ a(t)

∫ t

0
|f(s)| ds

≤ a(t)t
− β

q
+ 1

q′ ‖f‖L
q

β
(0, 1

2
)

≤ a(t)‖f‖L
q

β
(0, 1

2
).

This shows that maximal Lq
β−regularity holds for all q ∈]1 + β, p[. Notice

however, this example is not a counterexample to the questions we raise,
since our standing hypothesis [H2] is not satisfied here.

It is known that −A(t) is sectorial operator and generates a bounded
holomorphic semigroup on H. The same is true for −A(t) on V ′. From
[27] [Theorem 1.52 and Theorem 1.55], we have the following lemma which
points out that the constants involved in the estimates are uniform with
respect to t.

Lemma 5.3. Let γ = π
2 − arctan(M

δ
) and t ∈ [0, τ ]. For all θ > 1

2 and
p ∈ (1,∞) we infer that (H, D(A(t)))θ;p →֒ V. In the case θ < 1

2 , we have
(H, D(A(t)))θ;p = (H,V)2θ;p. Moreover,

(1) ‖e−tA(t)‖L((H,D(A(t)))θ;p,V) .
1

t
1
2 −θ

.

(2) ‖(λ+A(t))−1‖L((H,D(A(t)))θ;p,V) .
1

|λ|
1
2 +θ

, whereλ ∈ Σπ−α andα < γ.

Proof. Applying [10][Theorem 4.6.1], we get for all θ ∈ [0, 1
2 [

(H, D(A(t)))θ;2 = (H,V)2θ;2 = [H,V]2θ. (5.1)

The reiteration theorem for the real method [32][1.10.3, Theorem 2] or the
property of power of positive operator [25][Theorem 4.3.11] shows that,

(H, D(A(t)))θ,p = (H, [H, D(A(t))] √
2θ
2

)√
2θ,p

. (5.2)

Combining (5.1) and (5.2), we obtain

(H, D(A(t)))θ,p = (H, [H,V]√2θ
)√

2θ,p

= (H,V)2θ,p.

Let θ > 1
2 and p ∈ (1,∞). [5] [Lemma 3.15] shows that for all γ ∈ (0, 1

2)

(H, D(A(0))) 1
2

+γ;2 →֒ V.

14



Hence, for any ε < (θ − 1
2),

(H, D(A(0)))θ;p = (H, D(A(0))) 1
2

+(θ− 1
2

);p →֒ (H, D(A(0))) 1
2

+(θ− 1
2

)−ε;2 →֒ V.

Due to [4] [Lemma 3.1], we obtain ‖e−tA(t)‖L(H,V) . 1

t
1
2

for all t > 0 and

‖e−tA(t)‖L(V) . 1. So an interpolation argument gives for all θ ∈ [0, 1
2 [,

‖e−tA(t)‖L((H,D(A(t)))θ;p,V) .
1

t
1
2

−θ
.

We prove the estimate (2) similarly.

In the following result, p > 2 and A ∈ Cε([0, τ ]; L(V,V ′)).

Proposition 5.4. Let f ∈ Lp
β(0, τ ; H) and u0 ∈ (H;D(A(0)))θ,p where

θ = p−1−β
p

. There exists a unique u such that u ∈ L∞(0, τ ; V) if 2(1+β) < p

and u ∈ L∞
α (0, τ ; V) otherwise, where α = β

p
− 1

2 + 1
p

and u satisfies











u′(t) + A(t)u(t) = f(t), t-a.e.

u(0) = u0.
(P)

Proof. Let f ∈ Lp
β(0, τ ; H) and u0 ∈ (H;D(A(0)))θ,p. Set v(s) = e−(t−s)A(t)u(s).

Since u(t) = e−tA(t)u0 +
∫ t

0 v
′(s) ds,

u(t) = e−tA(t)u0 +

∫ t

0
e−(t−s)A(t)(A(t) − A(s))u(s) ds+

∫ t

0
e−(t−s)A(t)f(s) ds

:= (Mu0)(t) + (M1u)(t) + (L1f)(t). (5.3)

We consider two cases. The first one is when p ≤ 2(β + 1) and the second
is 2(β+ 1) < p. For 2(β+ 1) < p we have by Lemma 2.4 that Lp

β(0, τ ; H) →֒

L2(0, τ ; H) and due to Lemma 5.3, (H;D(A(0)))θ,p →֒ V. Hence, a direct
application of [4][Proposition 4.5] gives u ∈ L∞(0, τ ; V). Now, we consider
the first case. Using Lemmas 3.3, 5.3, we get that tα(Mu0)(t) and tα(L1f)(t)
are bounded in V for all t ∈ [0, τ ]. Now, we show that M1u ∈ L∞

α (0, τ ; V),
for all u ∈ L∞

α (0, τ ; V).
We write

(M1u)(t) =

∫ t
2

0
e−(t−s)A(t)(A(t) − A(s))u(s) ds

+

∫ t

t
2

e−(t−s)A(t)(A(t) − A(s))u(s) ds

:= (M11u)(t) + (M12u)(t).
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Taking x ∈ V ′, we obtain by Cauchy-schwarz inequality and the analyticity
of the semigroup s 7→ e−sA(t)∗

,

|((M12u)(t), x)V ′×V |

= |

∫ t

t
2

(e− (t−s)
2

A(t)(A(t) − A(s))u(s), A(t)∗ 1
2 e− (t−s)

2
A(t)∗

A(t)∗− 1
2x) ds|

≤ (

∫ t

t
2

‖e− (t−s)
2

A(t)‖2
L(V ′,H)‖(A(t) − A(s))u(s)‖2

V ′ ds)
1
2

× (

∫ t

t
2

‖A(t)∗ 1
2 e− (t−s)

2
A(t)∗

A(t)∗− 1
2x‖2 ds)

1
2

. (

∫ t

t
2

‖A(t) − A(s)‖2
L(V,V ′)

t− s
s−2α ds)

1
2 ‖u‖L∞

α (0,τ ;V).

Hence,

tα‖(M12u)(t)‖V . tε‖A(.)‖Cε([0,τ ];L(V,V ′))‖u‖L∞
α (0,τ ;V).

Now, we estimate the norm of (M11v)(t) in V as follows

tα‖(M11v)(t)‖V

. tα
∫ t

2

0
‖e− (t−s)

2
A(t)‖L(V ′,V)‖A(t) − A(s)‖L(V,V ′)s

−α ds‖s 7→ sαu(s)‖L∞(0, t
2

;V)

. tα
∫ t

2

0

s−α

(t− s)1−ε
ds sup

s∈[0, t
2

]

‖A(t) − A(s)‖L(V,V ′)

(t− s)ε
‖s 7→ sαu(s)‖L∞(0, t

2
;V).

Note that

tα
∫ t

2

0

s−α

(t− s)1−ε
ds = tε

∫ 1
2

0

l−α

(1 − l)1−ε
dl.

Therefore

tα‖(M11v)(t)‖V
. tǫ‖A‖Cǫ([0,τ ];L(V,V ′))‖u‖L∞

α (0, t
2

;V).

Choosing τ small enough, M1 ∈ L(L∞
α (0, τ ; V)), with norm ‖M1‖L(L∞

α (0,τ ;V)) <
1. Therefore, (I −M1) is invertible in L∞

α (0, τ ; V). Hence,

u = (I −M1)−1(Mu0 + L1f) ∈ L∞
α (0, τ ; V).

For arbitrary τ we proceed analogously as [4][Proposition 4.5]. We split [0, τ ]
into a finite number of subintervals with small sizes and proceed exactly as
in the previous proof. Finally, we stick the solutions of each interval to get
the desired result. This finishes the proof.
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For simplicity of notation, we set

E := B
1− 1

p
,2

p (0, τ ; L(V,V ′)).

The following is our main result in this section.

Theorem 5.5. Assume that A(.) ∈ E. Then for all f ∈ Lp
β(0, τ ; H) and

u0 ∈ (H;D(A(0)))θ,p with p > 2, there exists a unique u ∈ W 1,p
β (0, τ ; H)

such that A(.)u ∈ Lp
β(0, τ ; H) be the solution to (P).

As mentioned in the introduction, since by Propositions 7.1, 7.2, W
1
2

+ε,p ⊂

B
1− 1

p
,2

p ⊂ W
1
2

,p, then the regularity assumption in time for A(.) (or the forms
a(.)) is minimal and our results are the most general ones on this problem.

Notice however, B
1− 1

p
,2

p ⊂ W
1
2

,2 by Proposition 7.2. Hence, an important

case left open is that of A(.) ∈ W
1
2

,2(0, τ ; L(V,V ′)), which we are not able
to answer at the moment.

Proof. For 0 ≤ s ≤ t ≤ τ, we set v(s) = e−(t−s)A(t)u(s). We remark that
v(t) = u(t), v(0) = e−tA(t)u(0) and

v′(s) = e−(t−s)A(t)(A(t) − A(s))u(s) + e−(t−s)A(t)f(s).

Since v(t) = v(0) +
∫ t

0 v
′(s) ds,

u(t) = e−tA(t)u(0) +

∫ t

0
e−(t−s)A(t)(A(t) − A(s))u(s) ds+

∫ t

0
e−(t−s)A(t)f(s) ds.

Therefore

A(t)u(t) = A(t)e−tA(t)u(0) +A(t)

∫ t

0
e−(t−s)A(t)(A(t) − A(s))u(s)ds

+A(t)

∫ t

0
e−(t−s)A(t)f(s)ds

= (Ru0)(t) + (Su)(t) + (Lf)(t).

We shall prove that A(.)u ∈ Lp
β(0, τ ; H). Noting that L ∈ L(Lp

β(0, τ ; H))

by Lemma 3.1 and Ru0 ∈ Lp
β(0, τ ; H) thanks to Lemmas 3.4, 7.3. Then it

remains only to prove that Su ∈ Lp
β(0, τ ; H).

Consider the case 2(β + 1) < p. Applying Proposition 5.4 we get that u ∈
L∞(0, τ ; V) is the unique solution to (P). Take g ∈ Lp′

(0, τ ; H), where
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p′ = p
p−1 is the conjugate of p. We have

|(.
β

p Su, g)L2(0,τ ;H)|

≤ τ
β

p

∫ τ

0
|((Su)(t), g(t))| dt

= τ
β

p

∫ τ

0
|

∫ t

0
〈(A(t) − A(s))u(s), A(t)∗e−(t−s)A(t)∗

g(t)〉V ′×V ds| dt

= τ
β

p

∫ τ

0
|

∫ t

0
|〈(A(t) − A(s))u(s), A(t)∗e−(t−s)A(t)∗

g(t)〉V ′×V ds| dt

.

∫ τ

0

∫ t

0
‖A(t) − A(s)‖L(V,V ′)‖e

− (t−s)
2

A(t)∗
‖L(H,V)

× ‖A(t)∗ 1
2 e− (t−s)

4
A(t)∗

‖L(H)‖A(t)∗ 1
2 e− (t−s)

4
A(t)∗

g(t)‖ ds dt‖u‖L∞(0,τ ;V).

Therefore

|(.
β

p Su, g)L2(0,τ ;H)|

.(a)

∫ τ

0

∫ t

0

‖A(t) − A(s)‖L(V,V ′)

t− s
‖A(t)∗ 1

2 e− (t−s)
4

A(t)∗
g(t)‖ ds dt‖u‖L∞(0,τ ;V)

≤(b)

∫ τ

0
(

∫ t

0

‖A(t) − A(s)‖2
L(V,V ′)

(t− s)2
ds)

1
2

× (

∫ t

0
‖A(t)

1
2

∗e−(t−s)A(t)∗
g(t)‖2 ds)

1
2 dt‖u‖L∞(0,τ ;V)

.(c)

∫ τ

0
(

∫ t

0

‖A(t) − A(s)‖2
L(V,V ′)

(t− s)2
ds)

1
2

× ‖g(t)‖ dt‖u‖L∞(0,τ ;V)

.(d) (

∫ τ

0
(

∫ t

0

‖A(t) − A(s)‖2
L(V,V ′)

(t− s)2
ds)

p

2 dt)
1
p ‖u‖L∞(0,τ ;V)‖g‖Lp′

(0,τ ;H)

= ‖A(.)‖E‖u‖L∞(0,τ ;V)‖g‖Lp′
(0,τ ;H),

where we used in (a) the analyticity of the semigroup s 7→ e−sA(t)∗
, Lemma

3.5 in (c) and Hölder’s inequality in (b) and (d). Therefore, Su ∈ Lp
β(0, τ ; H)

and hence A(.)u ∈ Lp
β(0, τ ; H).

Now, consider the case p ≤ 2(1+β). Due to Proposition 5.4, u ∈ L∞
α (0, τ ; V).
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For g ∈ Lp′
(0, τ ; H) we infer that

|(.
β

p Su, g)L2(0,τ ;H)|

= |

∫ τ

0
t

β

p

∫ t

0
〈(A(t) − A(s))u(s), A(t)∗e−(t−s)A(t)∗

g(t)〉V ′×V ds dt|

≤ |

∫ τ

0
t

β

p

∫ t
2

0
〈(A(t) − A(s))u(s), A(t)∗e−(t−s)A(t)∗

g(t)〉V ′×V ds dt|

+ |

∫ τ

0
t

β

p

∫ t

t
2

〈(A(t) − A(s))u(s), A(t)∗e−(t−s)A(t)∗
g(t)〉V ′×V ds dt|

:= I1 + I2.

For I2 we find similarly to (??)

I2 . ‖A(.)‖E‖u‖L∞
α (0,τ ;V)‖g‖Lp′

(0,τ ;H).

Concerning I1,

I1 .

∫ τ

0
t

β

p

∫ t
2

0

s−α

(t− s)
3
2

−ε
‖g(t)‖ ds dt

× ‖A‖Cε([0,τ ];L(V,V ′))‖s 7→ sαu(s)‖L∞(0,τ ;V)

.

∫ τ

0
t

β

p
− 3

2
+ε

∫ t
2

0
s−α ds‖g(t)‖ dt‖A‖Cε([0,τ ];L(V,V ′))‖s 7→ sαu(s)‖L∞(0,τ ;V)

=

∫ τ

0
t
− 1

p
+ε

‖g(t)‖ dt‖A‖Cε([0,τ ];L(V,V ′))‖u‖L∞
α (0,τ ;V)

. ‖g‖Lp′
(0,τ,H)‖A‖Cε([0,τ ];L(V,V ′))‖u‖L∞

α (0,τ ;V).

Combining theses estimates we get that Su ∈ Lp
β(0, τ ; H) and so A(.)u ∈

Lp
β(0, τ ; H). Since u′ = f −A(.)u then u ∈ W 1,p

β (0, τ ; H) and this completes
the proof.

Proposition 5.6. Assume that A(.) ∈ E. Then for all g ∈ Lp(0, τ ; H), p > 2
and −1 < β < p − 1 there exists a unique v ∈ W 1,p(0, τ ; H) such that
A(.)v ∈ Lp(0, τ ; H) be the solution of the singular equation











v′(t) + A(t)v(t) + β
p

v(t)
t

= g(t), t-a.e.

v(0) = 0.

(5.4)

Proof. We set f(t) = t
β

p g(t) with t ∈ [0, τ ], so f ∈ Lp
β(0, τ ; H). Let u ∈

W 1,p
β,0(0, τ ; H) be the unique solution to the problem











u′(t) + A(t)u(t) = f(t), t-a.e.

u(0) = 0.
(5.5)

19



Now, set v = t
− β

p u. Then v ∈ W 1,p(0, τ ; H) and v is the unique solution to
problem (5.4).

6 Applications

This section is devoted to some applications of the results given in the
previous sections. We give examples illustrating the theory without seek-
ing for generality. Here we study maximal Lp

β-regularity for p > 2 and
−1 < β < p− 1.
– Elliptic operators on R

n.

Let H := L2(Rn) and V := H1(Rn) and define the sesquilinear forms

a(t, u, v) :=
n

∑

k,l=1

∫

Rn
ckl(t, x)∂ku ∂lv dx, u, v ∈ V.

We define the operator P (t) ∈ L(V,H) by P (t)u :=
∑n

j=1 bj(t)∂ju, where
u ∈ V and t ∈ [0, τ ].
We assume that the matrix C(t, x) = (ckl(t, x))1≤k,l≤n satisfies the usual

ellipticity condition. Next we assume that C ∈ B
1− 1

p
,2

p (0, τ ;L∞(Cn2
)) and

bj ∈ Lp(0, τ ;L∞(Rn)) where j ∈ {1, ..., n}. We note that

‖A(t) − A(s)‖L(V,V ′) ≤ M ′‖C(t, .) − C(s, .)‖
L∞(Cn2

)

for some constant M ′. This implies that A ∈ B
1− 1

p
,2

p (0, τ ; L(V,V ′)).
We are now allowed to apply Theorem 5.5. We obtain maximal Lp

β-regularity
and apriori estimate for the parabolic problem

{

u′(t) +A(t)u(t) + P (t)u(t) = f(t)
u(0) = 0.

That is, for every f ∈ Lp
β(0, τ ;L2(Rn)) there is unique solution

u ∈ W 1,p
β (0, τ ;L2(Rn)) ∩ Lp

β(0, τ ;H1(Rn)).

– Schrödinger operators with time-dependent potentials.

Let 0 ≤ m0 ∈ L1
loc(Rn) and m : [0, τ ] × R

n → R be a measurable function
for which there exist positive constants α1, α2 and M such that for a.e. x
and all t ∈ [0, τ ]

α1m0(x) ≤ m(t, x) ≤ α2m0(x).

We define the form

a(t, u, v) :=

∫

Rn
∇u∇vdx+

∫

Rn
m(t, x)uv dx,
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with domain

V := {u ∈ H1(Rn) :

∫

Rn
m0(x)|u|2dx < ∞}.

It is clear that V is a Hilbert space for the norm ‖u‖V given by

‖u‖2
V =

∫

Rn
|∇u|2 dx+

∫

Rn
m0(x)|u|2 dx.

In addition, a is V-bounded and coercive. Its associated operator on L2(Rn)
is formally given by

A(t) = −∆ +m(t, .)

with domain

D(A(t)) := {u ∈ V : −∆u+m(t, .)u ∈ L2(Rn)}.

Next we assume that t → m(t, .)m0(.)−1 ∈ B
1− 1

p
,2

p (0, τ ;L∞(Rn)), with p >
2.
We have

‖A(t) − A(s)‖L(V,V ′)

= sup
‖u‖V =1,‖v‖V =1

|a(t, u, v) − a(s, u, v)|

≤ sup
‖u‖V =1,‖v‖V =1

∫

Rn
|m(t, x) −m(s, x)||u||v|dx

≤ ‖(m(t, .) −m(s, .))m−1
0 (.)‖L∞(Rn) sup

‖u‖V =1,‖v‖V =1

∫

Rn
m0(x)|u||v|dx

≤ ‖(m(t, .) −m(s, .))m−1
0 (.)‖L∞(Rn).

Then we get A ∈ B
1− 1

p
,2

p (0, τ ; L(V,V ′)).
Given f ∈ Lp

β(0, τ ;L2(Rn)), we apply Theorem 5.5 and obtain a unique

solution u ∈ W 1,p
β (0, τ ;L2(Rn)) ∩ Lp

β(0, τ ; V) of the evolution equation

{

u′(t) − ∆u(t) +m(t, .)u(t) = f(t) a.e.
u(0) = 0.

7 Appendix

Let X be a Banach space and consider p ∈ [1,+∞). If Dmax is the differ-
entiation operator on Lp(0, τ ;X) with maximal domain i.e.

D(Dmax) := W 1,p(0, τ ;X)

Dmaxf := f ′,
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then we have (X,D(Dmax))θ,q = Bθ,p
q (0, τ ;X)(θ ∈ (0, 1), 1 ≤ q < ∞). In

particular,

(X,D(Dmax))θ,p = Bθ,p
p (0, τ ;X) = W θ,p(0, τ ;X) (θ ∈ (0, 1)).

Let D be the restriction of Dmax on Lp(0, τ ;X) to the domain D(D) :=
{f ∈ W 1,p(0, τ ;X) : f(0) = 0}. Then

(X,D(D))θ,q = Bθ,p
q,(0)(0, τ ;X) = {f ∈ Bθ,p

q (0, τ ;X) : f(0) = 0},

for θ > 1
p
. For θ < 1

p
we get (X,D(D))θ,q = (X,D(Dmax))θ,q = Bθ,p

q (0, τ ;X).
We recall that the operator D is sectorial of angle π

2 , while Dmax is not sec-
totrial. In fact σ(Dmax) = C. For the case where D is the differentiation
operator on C(0, τ ;X) with domain

D(D) := {f ∈ C1(0, τ ;X) : f(0) = 0},

we have (X,D(D))θ,∞ = Cθ
(0)(0, τ ;X) = {f ∈ Cθ(0, τ ;X) : f(0) = 0}.

For more details and references see [11] [Section 2], [25] [Example 1.9, Ex-
ercises 5 and 6, p.18] and [32] [Theorem, p.204].

Proposition 7.1. Let p ∈ [1,∞) and 1 ≤ q1 ≤ q2 < ∞. We have

Bθ,p
q1

(0, τ ;X) →֒ Bθ,p
q2

(0, τ ;X).

Moreover, if θ > 1
p

we find for all q ∈ [1,∞), 0 < ε ≤ θ − 1
p

Bθ,p
q (0, τ ;X) →֒ C

θ− 1
p

−ε
(0, τ ;X).

Proof. The first statement follows immediately by the inclusion properties
of the real interpolation spaces. Let θ > 1

p
, q ∈ [1,∞) and 0 < ε ≤ θ − 1

p
.

The inclusion properties of the real interpolation spaces ([25] [Proposition
1.1.4]) gives Bθ,p

q (0, τ ;X) →֒ Bθ−ε,p
p (0, τ ;X) = W θ−ε,p(0, τ ;X). Now we use

[31][Theorem 29] to get the desired result.

Set

E := B
1− 1

p
,2

p (0, τ ;X).

Proposition 7.2. Let p > 2. We have

W
1
2

+ε,p(0, τ ;X) ⊂ E ⊂ W
1
2

,2(0, τ ;X), for all ε > 0.

Proof. To prove this statement, it is enough to use Hölder’s inequality.

Lemma 7.3. Let X be a Banach space and p > 2. Suppose that A ∈ E.
Then

sup
t∈[0,τ ]

∫ t

0

‖A(t) − A(s)‖p
X

(t− s)
p

2

ds . ‖A(.)‖p
E .

22



Proof. Let p > 2 and t ∈ [0, τ ]. We set for l ∈ [0, t], gt(l) = [A(t) − A(t− l)],
then

∫ t

0

‖A(t) − A(s)‖p
X

(t− s)
p

2

ds =

∫ t

0

‖A(t) − A(t− l)‖p
X

l
p

2

dl

=

∫ t

0

‖gt(l)‖p
X

l
p

2

dl

=

∫ t

0

‖
∫ l

0[gt(l) − gt(r)] dr +
∫ l

0 g
t(r) dr‖p

X

l
p

2
+p

dl

≤

∫ t

0

1

l
p

2
+p

(

∫ l

0
‖[gt(l) − gt(r)]‖X dr)p dl

+

∫ t

0

1

l
p

2
+p

(

∫ l

0
‖gt(r)‖Xdr)

p dl

≤

∫ t

0

1

lp
(

∫ l

0
‖[gt(l) − gt(r)]‖2

X dr)
p

2 dl

+

∫ t

0

1

l
p

2
+p

(

∫ l

0
‖gt(r)‖X dr)p dl

≤

∫ t

0
(

∫ l

0

‖[gt(l) − gt(r)]‖2
X

(l − r)2
dr)

p

2 dl

+

∫ t

0

1

l
p

2
+p

(

∫ l

0
‖gt(r)‖X dr)p dl.

For the first inequality we used the inequality of Minkowski.
For the second one and before the last we used Holder’s inequality.
Now we use Hardy’s inequality, namely

∫ t

0

1

r(1+ 1
2

)p
(

∫ r

0
‖gt(l)‖X dl)p dr ≤

1

(1 + 1
2 − 1

p
)p

∫ t

0
‖gt(l)‖p

X

dl

l
p

2

to get

sup
t∈[0,τ ]

∫ t

0

‖A(t) − A(s)‖p
X

(t− s)
p

2

ds ≤ C(p)‖A(.)‖p
E ,

where C(p) =
(1+ 1

2
− 1

p
)p

(1+ 1
2

− 1
p

)p−1
.

References

[1] M. Achache, Maximal regularity for the damped wave equations. J El-
liptic Parabol Equ (2020). https://doi.org/10.1007/s41808-020-00084-
8.

[2] M. Achache, T. Hossni, Maximal regularity for non-autonomous Cauchy
problems in weighted spaces. Electron. J. Differential Equations, Vol.
2020 (2020), No. 124, pp. 1-24..

23



[3] M. Achache, E.M. Ouhabaz, Non-autonomous right and left multiplica-
tive perturbations and maximal regularity. Studia Math. 242 (1) (2018),
1-30.

[4] M. Achache, E.M. Ouhabaz, Lions’ maximal regularity problem with

H
1
2 -regularity in time. J. Differential Equations, 266 (2019) 3654-3678.

[5] M. Achache, H. Tebaani, Non-autonomous maximal regularity in
weighted spaces.

[6] W. Arendt, D. Dier, S. Fackler, J. L. Lions’ problem on maximal regu-
larity. Arch. Math. (Basel) 109 (2017), no. 1, 5972.

[7] P. Auscher, A. Axelsson, Remarks on maximal regularity, Progress in
Nonlinear Differential Equations and Their Applications, Vol. 80, 45-55.

[8] P. Auscher, Ph. Tchamitchian. Square roots of elliptic second order
divergence operators on strongly Lipschitz domains. J. Anal. Math.90
(2003), 1-12.

[9] P. Auscher, M. Egert, On non-autonomous maximal regularity for ellip-
tic operators in divergence form, Arch. Math (Basel) 107, no 3, (2016)
271-284.

[10] J. Bergh, Jorgen Lofstrom, Interpolation spaces. An introduction.
Grundlehren der Mathematischen Wissenschaften, No. 223. Springer-
Verlag, Berlin, 1976, pp. 207.

[11] Batty, C., Chill, R., Srivastava, S. (2015). Maximal regularity in inter-
polation spaces for second order Cauchy problems (Vol. 250, pp. 49–66).
Springer International Publishing.

[12] M. Cowling, I. Doust, A. McIntosh, A. Yagi, Banach space operators
with a bounded H∞ functional calculus, J. Austral. Math. Soc. Ser. A
60 (1996), no. 1, 51-89.

[13] D. Dier and R. Zacher, Non-autonomous maximal regularity in Hilbert
spaces. Preprint 2016 available http://arxiv.org/pdf/1601.05213.pdf.

[14] J. Preuss, G. Simonett, Maximal Regularity for evolution equations in
weighted Lp-spaces, Arch. Math. 82 (2004) 415–431.

[15] M. Cuesta, L. Leadi, P. Nshimirimana; Maximum and antimaximum
principles for the p-Laplacien with weighted Steklov boundary condi-
tions, Electron. J. Differential Equations, Vol. 2020 (2020), No. 21, pp.
1-17.

[16] J. Diestel, J.J. Uhl, Jr., Vector Measures, American Mathematical So-
ciety, Providence, R.I., 1977.

24



[17] S. N. Ethier, T. G. Kurtz, Markov processes, Wiley Series in Probability
and Mathematical Statistics: Probability and Mathematical Statistics,
John Wiley and Sons, Inc., New York, 1986, Characterization and con-
vergence. MR838085 (88a:60130).

[18] S. Fackler, J.L. Lions’ problem concerning maximal regularity of equa-
tions governed by non-autonomous forms. Ann. Inst. H. Poincaré Anal.
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