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Fig. 1. Three examples of edge detection in point clouds by our PCEDNet neural network. It handles both: (a) the imperfect edges of large scale scans (here 12

million vertices) subject to irregular sampling and noise while detecting both sharp (in red) and smoother (in yellow) edges in few minutes (here less than 6) -

and - (b) accurate CAD data on which it can focus on sharp edges if desired, in a few seconds for this model. (c) Our network can also be trained in a few

seconds to detect edges following the edge definition provided by a user in an interactive model annotation. We show two annotations corresponding to

different user expectations. Most of the processing is precomputed and at runtime edges of this model are classified in less than a second.

In recent years, Convolutional Neural Networks (CNN) have proven to be

efficient analysis tools for processing point clouds, e.g., for reconstruction,

segmentation and classification. In this paper, we focus on the classification

of edges in point clouds, where both edges and their surrounding are de-

scribed. We propose a new parameterization adding to each point a set of

differential information on its surrounding shape reconstructed at different

scales. These parameters, stored in a Scale-Space Matrix (SSM), provide a

well suited information from which an adequate neural network can learn

the description of edges and use it to efficiently detect them in acquired

point clouds. After successfully applying a multi-scale CNN on SSMs for the

efficient classification of edges and their neighborhood, we propose a new

lightweight neural network architecture outperforming the CNN in learn-

ing time, processing time and classification capabilities. Our architecture

is compact, requires small learning sets, is very fast to train and classifies

millions of points in seconds.
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1 INTRODUCTION

Nowadays, acquired point clouds is a very common and widespread

representation. The large range of acquisition devices and Computer

Vision techniques massively generate clouds with tens or hundreds

of millions of points. The shapes sampled by these large unstruc-

tured data are arbitrarily complex, and their processing remains

extremely tedious. Edges are fundamental features for processing

point clouds and their automatic detection is thus useful in a wide

range of applications in the fields of computer vision (e.g. feature

extraction), computer graphics (e.g. contour line reconstruction)

and others. Despite regular advances over the years, it remains an

open, very challenging problem.

In general, edges are defined strictly as sharp edges, e.g. for man-

ufactured objects [Koch et al. 2019], or as feature lines for objects.

When asked to draw feature lines, users tend to follow more com-

plex rules that may vary from people to people [Cole et al. 2008].

This leads to a lack of clear theoretical definition of an edge, espe-

cially on 3D surfaces acquired from models including features of

different scales and more or less damaged/clean edges (e.g. stone

or plastered buildings, progressively smoothed edges, polished me-

chanical parts, etc). In addition, an edge can be considered as sharp
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or smooth depending on the observation scale. This generates con-

textualized and potentially ambiguous interpretation of what edges

are. For instance, different persons produced different annotations

on the models provided for the recent feature curve detection con-

test [Thompson et al. 2019]. These models include a large variety of

different edges, from sharp to smooth and rounded. This underlines

that the frontier between an edge and a smooth surface (i.e. a feature

boundary and a feature continuity) remains subjective, especially

in the case of real world models.

Machine Learning (ML) approaches have gain a lot of interest for

their ability to efficiently reproduce theoretically łfuzzyž or compli-

cated classifications for which we are able to provide a sufficiently

large set of annotated data. At first glance, they thus seem particu-

larly attractive to create efficient edge detectors. However, in the

context of point cloud processing, ML remains very challenging to

use as there is neither natural ordering [Zaheer et al. 2017] nor in-

trinsic parameterization of the input data. In the past years, patches

of points have been used by several approaches to apply Convolu-

tion Neural Networks (CNN) for classification [Qi et al. 2017], local

shape property estimation [Guerrero et al. 2018], and continuous

sharp edges classification/ reconstruction [Wang et al. 2020].

For edge detection, geometric approaches avoid using patches by

considering geometric descriptors parameterizing each individual

point [Demarsin et al. 2007; Weinmann et al. 2013]. Following this

idea, Hackel et al. [2016] propose to train a random forest classifier

taking as input geometric quantities obtained at multiple scales by

linear regression in order to classify points belonging to edges.

In this paper, we introduce both a new way to individually param-

eterize points, together with a dedicated edge detection lightweight

neural network classifier called Point Cloud Edge Detection Network

(PCEDNet). Points are parameterized with a so-called Scale-Space

Matrix (SSM) (Section 3.2) encoding extrinsic geometric properties

of a locally reconstructed surface surrounding each point of the

input point cloud at multiple scales. The use of this multi-scale

parameterization allows us to propose a compact architecture (Sec-

tion 3.3) based on a simple neural network enabling both its training

in seconds or few minutes on small data sets, and the processing

of 500 thousands of points per second on average with our current

CPU implementation (Table 10). This fast training and the limited re-

quirement on annotated data allow to easily specialize our network

to specific edge definitions, as illustrated in Figures 1-a and 1-b. It

is fast enough to allow a user to interactively label small sub-parts

of a point cloud and let our network annotate millions of points in

seconds (Figure 1-c, Section 5.7).

The choice of our SSM values is validated by an ablation study

(Section 5.1), and we evaluate the effectiveness of our network by

comparing its speed and accuracy with existing geometric edge

detection approaches, point-based processing networks, and two

baselines: a Convolutional Neural Network (CNN) and a Fully Con-

nected neural network (FC) (Section 3.4). Our results (Section 5)

demonstrate the superiority of our PCEDNet over previous works,

and illustrate its efficiency on a large variety of data, from CADmod-

els to real world examples with tens of millions of points (Figures 1-a

and 25).

Current networks processing point clouds rely on very deep

architectures in an end-to-end strategy. While the way our point pa-

rameterization is computed is not novel in geometry processing, the

use of these parameters structured in our SSM as input of a network

is new. Our proposition illustrates how a simple network exploiting

these multi-scale geometric surface descriptors overpasses current

approaches. We believe that its superiority in training and evalu-

ation speed, scalability and resource requirements (computation,

memory) makes it an example for the creation of lightweight point

cloud processing solutions opening new perspectives regarding the

system interactivity and adaptation to user’s wishes. This is also a

step forward to reach real-time point cloud processing with limited

resources and low energy consumption (Section 5.8), which are

both becoming very important challenges when also considering

embedded systems and environmental impact.

2 RELATED WORK

In this section, we first present the way unorganized point clouds

are parameterized before being processed for geometric learning

(Section 2.1). We introduce the different existing architectures for

point-based machine learning and we discuss methods for edge

detection from point clouds (Section 2.2). We then review geometric

approaches (Section 2.3) dedicated to this topic.

2.1 Point cloud parameterization

Point clouds are most of the time defined as unordered and un-

structured set of points sampling an unknown surface. When using

neural networks on point clouds, a first challenge is to define a

regular structure of the cloud that fits a network architecture, i.e. to

parameterize the point cloud according to the network architecture.

Several approaches have been proposed to tackle this challenge. A

first class of approaches parameterizes unstructured point clouds

in regular grids, e.g. using series of images taken from different

viewpoints [Boulch et al. 2018, 2017; Kalogerakis et al. 2017; Su et al.

2015], or using voxel grids [Maturana and Scherer 2015; Qi et al.

2018, 2016; Wu et al. 2015; Zhou and Tuzel 2018]. The main limita-

tion of these approaches is the cells memory requirement that limits

their scalability to very large models especially when detecting thin

structures and details, as edges.

A second class of approaches processes each point and its neigh-

borhood, so that the point coordinates are directly processed by the

network. PointNet and its variants [Guerrero et al. 2018; Qi et al.

2017; Qi et al. 2017] use multi-layer perceptron (MLP) to consec-

utively sample and group point coordinates and build geometric

features around a point. Several approaches have been proposed to

extend convolution to 3D point clouds, using local spectral convo-

lution [Wang et al. 2018], parameterized convolutional filters [Xu

et al. 2018], transformed points [Li et al. 2018], sparse lattices [Su

et al. 2018], adaptive kernels [Boulch 2019] and kernel point convo-

lution [Thomas et al. 2019].

The strong benefit of point-based convolutions is to allow the de-

sign of networks whose first layers learn features at multiple scales

directly from the point locations. On the other hand, the characteri-

zation of geometric structures relies on the way convolution layers

capture those features, only based on the local spatial organization
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of points. On real data, point sets also include sampling variation,

noise, outliers and missing data that also have to be learned.

2.2 Network architectures

Most of the point-based geometry analysis neural networks are

tailored for point cloud segmentation [Dai et al. 2017] and classi-

fication [Hackel et al. 2017; Zhirong Wu et al. 2015]. They follow

the rational introduced by PointNet, where point coordinates are

abstracted by successive layers, then reduced using max pooling

for feature extraction and finally processed with MLP for the final

decision. Such architectures aim at abstracting the input point cloud

and estimating high level or semantic properties.

Some approaches also aim at processing point clouds according

to their local geometric properties, e.g. normal estimation [Boulch

and Marlet 2016]. PCPNet [Guerrero et al. 2018] learns local shape

properties (e.g. normal vectors) directly from raw point clouds. Inter-

estingly, this work suggests a multi-scale architecture where several

networks process the surrounding of the analyzed point at increas-

ing neighborhood size (one network per size). The features learned

by the different networks are stacked to form a feature vector, and

processed by a fully connected network to produce the final deci-

sion. Recently, the deep Learning Point Network architecture [Lê

et al. 2020] improves the implementation of convolution-based point

cloud processing networks such as PointNet, DGCNN [Wang et al.

2019] and SpiderNet [Zhao et al. 2020].

Overall, all these networks have been designed to extract semantic

information from point clouds, which justify their both deep and

large architectures. In our more geometric and specialized context,

these architectures become unnecessarily complex while requiring

long training and processing times.

2.3 Edge detection

Detecting edges in unstructured point clouds is usually cast as a

sharp feature, a feature contour or a curve detection problem. It

is often the first step of constrained surface reconstruction algo-

rithms and over the years, many approaches have been proposed in

this context. We refer the interested reader to the survey by Berger

et al. [2017]. A standard approach is to compute at each point a

geometric descriptor using the eigenstructure of the covariance

matrix [Gumhold et al. 2001]. It can be a ratio between the eigenval-

ues, taking into account their evaluation at different scales [Pauly

et al. 2003] or not [Xia and Wang 2017], or directly a curvature

estimation [Lin et al. 2015; Nguyen et al. 2018]. The ratio between

eigenvalues is considered as a more reliable parameter and it is,

for instance, used in the CGAL Library [Alliez et al. 2021] with

a Delaunay-based feature estimation [Mérigot et al. 2011]. While

well established, all these approaches suffer from a sensibility to

noise and they perform at a given scale with a strong dependence

to a decision threshold. The methods introduced by Pauly et al.

[2003] and Bazazian et al. [2015] consider curvature ratio at dif-

ferent scales that reduces the dependence to the scale of analysis

and the sensibility to noise, but they remain subject to a decision

threshold.

Another family of methods relies on Moving Least Squares sur-

face reconstruction [Demarsin et al. 2007; Ni et al. 2016; Weber et al.

2012]. Using this reconstruction, edge detection can be performed on

a Gaussian map clustering computed in a local neighborhood [We-

ber et al. 2010]. Adaptive reconstruction kernels [Fleishman et al.

2005] can also be combined with polynomial fit [Daniels II et al.

2008]. Other approaches rely either on subspace detection and fea-

ture intersection computation [Fernandes and Oliveira 2012], on the

mean-shift algorithm to select the farthest points from the centroid

of their neighborhood [Ahmed et al. 2018], on the average of neigh-

bors altitude over a local tangent plane [Li and Hashimoto 2017], or

on the intersection of planes detected using RANSAC [Mitropoulou

and Georgopoulos 2019]. In other contexts, edges are defined as a

specific type of lines on the surface. Lin et al. [2015] use RANSAC

to spatially regularize the response of a sharp feature detector. Re-

cently, Hackel et al. [2016] proposed a data-driven method where

the points are classified and then structured using a graph-based ap-

proach. Extending local sharp feature detectors by a global analysis

improves the robustness of the detection but limits the scalability, a

critical aspect when processing large sets of point clouds defined

by tens of millions of points or more.

With an architecture extending PU-Net [Yu et al. 2018], ECNet [Yu

et al. 2018] is a network consolidating edges after up-sampling the

point cloud and detecting its edges. ECNet is thus a very deep net-

work requiring important resources for training and processing

points at inference time, while being limited in scalability by its up-

sampling. Finally, the recent PIENet [Wang et al. 2020] first trains

two networks based on PointNet++ [Qi et al. 2017] for respectively

classifying edge points and corner points. The classified points are

filtered with a non-maximal suppression, and clustered by feature

using the third variant of PointNet++. A resulting set of curves is

then generated by a two-headed PointNet network [Qi et al. 2017].

Even if it is closely related to our proposal, the Pie-Net edge classifi-

cation is based on a concatenation of several networks with deep

architecture, and it is thus also prone to high resource requirements.

In this work, as suggested by Hackel et al. [2016], we propose to

take advantage of the discrimination offered by geometric descrip-

tors in a machine learning approach. We increase the robustness to

noise and the adaptation to the different feature size and shape by

the use of stable multi-scale descriptors including derivatives over

scales. We then use these parameters together with a specifically

designed neural network. By relying on this set of descriptive pa-

rameters, our network avoids the deep design of existing approaches

by only requiring a very compact architecture that recursively com-

bines the features learned at different analysis scales.

3 METHOD

3.1 Problem statement

Given a surface sampled by a point cloud, a sharp edge is commonly

defined as a tangential discontinuity.Weber et al. [2010] define edges

as sharp features (crests and valleys) between two meeting planes,

as well as corners at the point of intersection between three or more

planes. Hackel et al. [2016] call them "wire-frame contours", and

define edges as linear features along which the orientation (normals)

of the underlying surface exhibits an unusual discontinuity.

There are at least two main reasons why these definitions are

restrictive and not really practical for the analysis of point clouds:

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:4 • Himeur, et al.

Fig. 2. Synthetic point cloud sampling a cube with sharp edges (red lines).

Due to the sparse sampling and noise, only a few points lie on edges (red

points). Detecting the edge surrounding (yellow points) improves the ro-

bustness to noise and sampling variation.

(1) Sparsity: Points of acquired point clouds are unequally dis-

tributed over the object surfaces. Sharp edges are by nature

very sparse, and it is very unlikely that the points of a point

cloud actually sample the exact edge of the underlying surface

as illustrated by the red points in Figure 2.

(2) Rounding: Acquired point clouds are composed by points

sampling real-world objects, on which edges are always more

or less rounded (Figure 16)/damaged (Figure 25). For instance,

two facades of a building might be locally connected by a

continuous curved surface considered as an edge at the scale

of the building, which may be unlikely to be detected at finer

scales such as the one of the bricks.

In order to handle these situations, we propose to classify points

as sharp-edgewhen they lie on a sharp edge, and as smooth-edge

when they are (1) near a sharp edge or (2) on a rounded edge. Other

points are then labeled as non-edge. Depending on the application

context and the artifacts found in the data, one might consider either

one or the two edge classes in the results (we experimentally validate

this proposition of two edge classes in Section 5.1). In this paper, we

denote our network as PCEDNet when it is used with three classes

and as PCEDNet-2C when it is used with two classes. Considering

that we do not have a universal and practical definition of an edge,

we propose to learn the point-based classification of this feature

from examples. For instance, when edges have similar geometries

and discretization over all models, PCEDNet-2C may be preferred

while PCEDNet is suggested when the edge definition is more fuzzy.

In that case, the sharp-edge class is to be used to annotate what is

considered as an edge (whatever sharp or smooth/rounded) and the

smooth-edge class is rather to annotate points at proximity of the

points tagged as sharp-edges or on features that are close to what

is considered to be an edge. We do not suggest any automatic or

threshold-based annotation approach as, so far, they are not robust

enough and they do not enable the flexibility of letting the user

defining his definition of edges through annotations.

In order to be robust to acquisition artifacts, sampling issues and

edge roundness, we first reconstruct the surface described by the

input points using a robust reconstruction algorithm at multiple

scales. We then compute geometric descriptors of the reconstructed

surfaces, which are parameters to be processed by a machine learn-

ing algorithm (see Section 3.2). We show how this parameterization

can be used with a common CNN and a fully connected neural

network (Section 3.4), and we propose a dedicated architecture (Sec-

tion 3.3) that outperforms these networks as well as previous edge

classification approaches.

3.2 Scale-Space Matrix

Our approach is inspired by the Growing Least Squares (GLS) ap-

proach [Mellado et al. 2012], where the geometry surrounding a

point is described by the differential properties of the surfaces re-

constructed from neighborhoods of increasing size. We first present

the basics of GLS, and then introduce the Scale-Space Matrix (SSM),

which wraps in a regular structure the differential properties of the

surfaces reconstructed at different scales.

The GLS extends the concept of Scale-Space analysis [Lindeberg

1993; Witkin 1987] to point-based shape analysis. The key idea is to

detect pertinent geometric structures and scales as stabilities in scale-

space. Stabilities are found when the magnitude of the derivatives of

the surface is minimized when the scale varies. Due to its multi-scale

nature, this approach disambiguates between noise and features, and

detects geometric features defined at arbitrary scales. As such, points

on a rounded and a sharp edge have discriminative descriptors and

can be disambiguated during classification.

We denote S𝑡 the continuous surface reconstructed at scale 𝑡 , de-

fined as the 0-isosurface of a scalar field 𝑆𝑡 (x) : R3 → R. We use

the Algebraic Point Set Surfaces (APSS) [Guennebaud and Gross

2007] to reconstruct continuous surfaces from raw point clouds. This

approach has been proven to be fast and stable at large scales [Guen-

nebaud et al. 2008]. As many other previous work, the scale is con-

trolled by varying the size of a neighborhood ball centered around

the evaluation point.

In its original formulation, the pertinent scale extraction intro-

duced by Mellado et al. [2012] combines several descriptors mea-

suring the variation of local relief (i.e. the algebraic distance from

the point to the locally reconstructed surface)
𝛿𝜏 (x,𝑡 )

𝛿𝑡
, normal orien-

tation
𝛿𝜂 (x,𝑡 )

𝛿𝑡
and mean curvature

𝛿𝜅 (x,𝑡 )
𝛿𝑡

, where 𝜏 (x, 𝑡) : R4 → R,

𝜂 (x, 𝑡) : R4 → R3 and 𝜅 (x, 𝑡) : R4 → R are scale-invariant proper-

ties of the surfaces S𝑡 (x) (mathematical formulations are presented

in Appendix A). They also use 𝜙 (S𝑡 (x)), the residuals of the fitting

process, as confidence value.

In this work we propose to extend this idea further by measuring

the surface variation in scale and space around each sample p𝑖 of

the input point cloud. We do not seek at defining an hand-crafted

descriptor, but rather providing differential properties of the surface

that are discriminative for edge detection. According to the GLS

formalism, the parameters 𝜏 , 𝜂 and 𝜅 are differentiable both in scale

and space, which leads to a Jacobian matrix of 5 × 4 entries (see the

description in Appendix A). By keeping only the quantities that are

invariant by rigid transformations and not linearly dependent, we

obtain the following feature vector 𝑋 𝑡
𝑖 :

𝑋 𝑡
𝑖 =

[
𝜏𝑡𝑖 𝜅𝑡𝑖 𝑘1𝑡𝑖

𝛿𝜏𝑡𝑖
𝛿𝑡

𝛿𝜅𝑡𝑖
𝛿𝑡

𝜙 (𝑆𝑡p𝑖 )

]
(1)

where 𝜏𝑡𝑖 = 𝜏 (p𝑖 , 𝑡) and 𝜅
𝑡
𝑖 = 𝜅 (p𝑖 , 𝑡). 𝑘1

𝑡
𝑖 measures the magnitude

of the first principal curvature of the surface, and is computed from
𝛿𝜂𝑡𝑖
𝛿x

. According to our experiments, high values of 𝜏 , which measure

the local relief, helps to disambiguate between rounded and sharp
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edges. The scale derivatives
𝛿𝜏𝑡𝑖
𝛿𝑡

and
𝛿𝜅𝑡𝑖
𝛿𝑡

denote the stability of the

reconstruction scale 𝑠 𝑗 .

The Scale-Space Matrix (SSM) defines a structured parameteriza-

tion of the surfacesS𝑡 described by the feature vectors𝑋 𝑡
𝑖 computed

at 𝑁 scales on each of the𝑀 points of the cloud. It is thus defined

as follows:

𝑆𝑆𝑀 =



𝑋 1
1 𝑋 1

2 𝑋 1
3 . . . 𝑋 1

𝑀
𝑋 2
1 𝑋 2

2 𝑋 2
3 . . . 𝑋 2

𝑀
...

...
...

. . .
...

𝑋𝑁
1 𝑋𝑁

2 𝑋𝑁
3 . . . 𝑋𝑁

𝑀
.



. (2)

The minimum scale 𝑠min is defined as the mean distance between

points computed using the k nearest neighbors of each point (k=10),

and the maximum scale 𝑠max is 10% of the diagonal of the point cloud

axis aligned bounding box (the effect of the variation of these values

is presented in Section 5.9). According to previous work [Bronstein

and Kokkinos 2010; Mellado et al. 2015], we use a logarithmic scale

sampling to obtain scale-invariant feature vectors, such that:

𝑠𝑖 =

(
𝑠max

𝑠min

) 𝑖−1
𝑁−1

∗ 𝑠min , 𝑖 = 1..𝑁 . (3)

For all our experiments we use 16 scales distributed according to

Equation 3 (the use of different number of input scales is discussed

in Section 5.2). Even though we carefully selected the set of descrip-

tors defining our SSM for their geometric meaning with respect

to edge detection, we validate the optimality of this choice when

parameterizing our neural network by an ablation study presented

in Section 5.1.

3.3 Our network: PCEDNet

The architecture of our Point Cloud Edge Detection Network, de-

noted PCEDNet, is depicted in Figure 3. The input data is provided to

the network as sixteen 6-dimensional vectors𝑋 𝑡
𝑖 per point, each vec-

tor corresponding to a scale (Figure 3-left column). The sixteen scale

vectors are concatenated by groups of two in order to form eight

12-dimensional vectors. More precisely, the first scale is grouped

with the second one, the third one with the fourth one, and so on.

The idea is to halve the number of scales iteratively until obtaining

a single 12-dimensional vector as a final feature representation (four

left columns of black circles in Figure 3).

All the layers are fully-connected layers, also called dense layers

(linear layer with biases, depicted in Figure 3-green box), followed

by a sigmoid activation function. For the first layer, each vector of

size 12 is given to a dense layer comprised of 6 neurons. There are

eight input vectors and each vector is fed to its own 6-neuron layer.

The weights are not shared between these small layers, allowing to

process the scales differently, as would do a convolution layer, but

here, we combine scales by groups of two. The subsequent three

layers perform similarly, but with 48, 24, 12 neurons, respectively.

The final 12-dimensional feature vector is given to a multi-layer

perceptron (MLP) responsible for the classification (MLP architec-

ture is presented in Figure 3-blue/purple/red boxes). This MLP is

composed of two 16-neurons dense+sigmoid layers followed by the

output layer with 3 neurons and a softmax activation function. The
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Fig. 3. Our PCEDNet architecture. The left column of circles represents the

input sixteen 6-dimensional vectors 𝑋 𝑡
𝑖 . They are successively pairwise

concatenated and processed by dense layers coupled with 6 neurons as

depicted in the green box (W: weights, In: input and B: bias). The output

vector of size 12 is then processed by a multi-layer perceptron (boxes blue,

purple and red) for providing the output classification.

total number of weights is about 2.1k, which makes our architecture

very compact.

The goal of grouping different scales together is to observe the

input shape at different scales in a simultaneous and more intri-

cate way than without grouping them. We expect that this eases

the simultaneous detection of higher-scale and sharp geometric

properties of the input point clouds. Another reason is that such

a representation helps the model to cope with noise in the point

clouds.

The "tree structure" merging scales two by two iteratively can be

seen as a variant of a grouped convolution operation. It preserves

the high computing speed of keeping the scales separate while

also mixing the scales layer after layer. It is expected to reduce the

chance of being biased by a specific scale and the sensitivity to

scale-dependent noise.

Fig. 4. Architecture of the FC baseline
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Fig. 5. Architecture of the CNN baseline

3.4 Baseline models

The use of this new architecture is justified only if it performs better

than more common choice of networks. We thus incorporate as

baselines two networks in our evaluation:

• FC: A Fully Connected variant of PCEDNetwhere all scales are

connected (Figure 4).

• CNN: A 1-d Convolutional Neural Network with a number of

layers similar to our PCEDNet architecture (Figure 5).

FC. This architecture presented in Figure 4 allows us to measure

the impact of the pairwise scale connection introduced in PCEDNet.

FC and PCEDNet architectures differ by the four first layers: instead

of consecutively combining scales by pairs, the FC baseline com-

bines all the scales in unique dense layers while keeping the same

reduction rate, i.e. 16-8-4-2 scales. We use the same number of neu-

rons than PCEDNet to get comparable architectures. In total, the FC

baseline is comprised of about 6663 weights (three times more than

PCEDNet). The input data is provided to the network by concatenat-

ing the sixteen 6-dimensional vectors used by PCEDNet in a single

96-dimensional vector.

CNN. We chose a standard convolutional neural network archi-

tecture presented in Figure 5, composed of two blocks: a first block

for representation learning with two 1D convolution layers, each

followed by a ReLU activation function, and a second block ded-

icated to classification with three fully-connected layers and one

3D output layer. We tried a large number of variants and the one

we present is the best we obtained by trials and errors. The two

convolution layers are composed of 15 filters, with a kernel size of

6 and 5, respectively. Zero padding of size 2 was used to get outputs

of shape 15 × 5. The three dense layers are composed of 75, 15 and

15 neurons, respectively, followed by the output layer with 3 neu-

rons. A sigmoid activation function is used after all the dense layers,

except the output layer that uses a softmax non-linearity function.

In total, CNN is composed of about 8.7k weights. The input data

is also provided to the network as sixteen 6-dimensional vectors.

Using the different scales as channels enables a potentially larger

expressivity power to the model since each convolution filter uses

different weights to combine the scales.

4 EXPERIMENTAL SETUP

4.1 Point cloud dataset

We measure the efficiency and adaptability of our network on three

different datasets with ground truth for learning and evaluation:

edges on point clouds with acquisition artifacts (Default), sharp

edges on CAD models (ABC) and annotated curves on challeng-

ing shapes (SHREC). Each dataset is split in three sets: training set

(denoted T, used for training), validation set (denoted V, used for

learning to monitor accuracy) and evaluation set (denoted E). Vi-

sual evaluations are also conducted on a set of acquired models.

Point clouds with classification results are shown in the website

accompanying the submission.

In addition to annotated learning sets, we also show in Section 5.7

how PCEDNet can learn from small set of data annotated interac-

tively by a user and classify point clouds without requiring addi-

tional predefined training data.

Default dataset. We design this dataset to emulate geometric

structures regularly found in acquired point clouds. It is as small

as possible, in order to demonstrate that a few annotated data used

for training our network in a short time are enough for an effective

detection (see timings in Table 2). The Default dataset is composed

of 8 synthetic models containing edges of different shapes illustrated

in Figure 6 and 7, and detailed in Table 1. We also included some

of our models characterized by varying densities and shapes (i.e.

Cube, Cone, Fandisk and 2-cube), with different levels of noise

generated by a random motion on the points following a Gaussian

distribution with standard deviation denoted 𝜎 (the different values

of 𝜎 per model are given in Table 1-Noise). We defined the validation

set by selecting a random subset within the training set with an

equal number of points across the three classes (1k per class, 3k

in total). We also created an evaluation set with specific features

to better evaluate the networks against noise and sharp angles.

Fig. 6. Training set of the dataset Default, with sharp edges points in red,

and smooth edges points in yellow.
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Fig. 7. Evaluation set of the dataset Default. Left: 2-cube, with increasing

Gaussian noise (𝜎 ranging between 0 and 0.14 units, cube edge length 1).

Right: Angle (90 degrees).

Dataset Model Usage
#k

points
% points/class Noise

(𝜎 )Edge S-Edge Other

Default

Cube T, V 1.5 12.2 21.8 65.9 0-0.1
Icosahedron T, V 0.6 34.6 46.7 18.6 -

Cone T, V 7.7 6.1 11.7 82.2 0-0.1
Dodecahedron T, V 12 3.5 7.7 88.7 -

Fandisk T, V 106.5 5.5 5 89.4 0-0.1
4-cube T,V 43.9 6.8 6.6 86.5 -

2-cube E 7.2 6 17.3 76.6
0 - 0.01

0.02 - 0.03
0.12 - 0.14

Angle E 6 0.6 1.6 97.8 -

T 287.9 9 11 80 -
Default (total) V 3 33.3 33.3 33.3 -

E 55 4.9 14.54 80.56 -
T 89.4 13.98 - 86.02 -

SHREC V 94.4 8.68 - 91.32 -
E 654.7 10.57 - 89.43 -
T 3212.4 4.66 - 95.34 -

ABC V 690 5.79 - 94.21 -
E 312314 5.52 - 94.48 0 - 0.04

Table 1. Statistics of the datasets used for training (T), validation (V) and

evaluation (E). The Edge column gives the percentage of points of the class

sharp-edge, the S-Edge, the one of the class smooth-edge and Other is for

the non-edge class.

These point clouds, not used for training, are taken from the testing

set introduced by Bazazian et al. [2015] to evaluate the algorithm

Covariance Analysis (denoted CA in the following). The models used

for training, validation and evaluation are detailed in Table 1-Usage.

Table 1 presents quantitative details (including the values used for

𝜎), and the point clouds are shown in Figures 6, 7 and in the joined

website.

ABC dataset. We use the ABC dataset [Koch et al. 2019] to evaluate

the performance of our network on the detection of sharp edges in

CAD models. We use the chunk 000, which contains 7167 models

represented as OBJ files. We generate the point clouds by exporting

the vertices and the normal vectors of the meshes. The ground

truth classification is produced using the vertices associated to a

sharp feature in the feature files. A notable difference with the

Default dataset is that no ground truth information is provided

for the smooth-edge label. Only sharp edges are considered and

other smoother features are thus labeled as non-edge. We define

the training and evaluation sets by randomly selecting 200 and 50

models respectively (see the model list in the joined website).

SHREC dataset. We use the dataset produced for feature curve

extraction by Thompson et al. [2019] in order to evaluate the per-

formance of our network on challenging data annotated by humans.

As for ABC, we consider the vertices and normal vectors of the given

meshes, and mark the annotated vertices as edge vertices. Similarly,

we define the training and evaluation sets by randomly selecting

models, e.g., (M5, M6 and M14) and (M2, M11) respectively. This

procedure is not ideal as these models exhibit very heterogeneous

edge shapes, but we found it fairer than randomly sampling the

point clouds.

Acquired point clouds. We also perform visual evaluations on 9

acquired point clouds whose number of vertices are reported in

Table 10. Loudun 1 and Loudun 35 are down-sampled versions (of

respectively 1 and 35 million vertices) of a photogrammetric acquisi-

tion of the Square Tower of Loudun (France).We used Euler, Empire

and Lans as provided by Monszpart et al. [2015], Pisa Cathedral

as provided by Mellado et al. [2015], Munich as provided by Hackel

et al. [2016], Paris rue Madame as provided by Serna et al. [2014],

and we downloaded Church and Train Station from Sketchfab1.

Normal estimation. The normals used for the GLS computation

are either directly those estimated with the acquisition technique

(e.g. photogrammetry, laser scanner), which are actually provided for

most current acquisition devices, or those computed automatically

from the point samples (we used Meshlab [Cignoni et al. 2008] to

estimate normals on Default dataset and on Euler, Lans, Church

and Train Station). We did not encounter any difficulty related

to normal estimation. Eventually, oriented normals may be avoided

and replaced by unoriented normals [Chen et al. 2013a], which could

be easily estimated using local fitting.

4.2 Networks training

Implementation details. We implemented PCEDNet in C++ and

ran our experiments on a 10-cores Intel Xeon(R) CPU E5-2640 v4

(20 threads), with 128GB RAM. We use the Ponca library [Mellado

et al. 2020] for surface fitting and derivative computation. These sur-

face fitting computations (GLS) are performed on two 10-cores Intel

Xeon(R) CPU E5. The network modeling and evaluation for PCEDNet

and FC is implemented in our own prototype using Eigen [Guen-

nebaud et al. 2010] for linear algebra. The baseline CNN is imple-

mented, trained and evaluated using Pytorch.

Categorical cross-entropy is used as objective function for both

the baseline architectures and PCEDNet. On each dataset, CNN, FC

and PCEDNet are trained for 200, 200 and 40 epochs respectively, all

reaching 98% accuracy on the validation sets. Weights are initialized

randomly using the Glorot and Bengio [2010] method. For the three

architectures, learning rate is set to 0.01, momentum to 0.9, with

batch size of 100 points.

Training. As illustrated in Table 1, the three training sets contain

mostly non-edge surfaces. The small number of sharp and smooth

edge samples (4-14% of the points) implies that we are in presence of

a highly unbalanced training set biased towards the non-edge class.

1Church: https://sketchfab.com/3d-models/christ-church-and-dublin-city-council-
b5f6bcce8ebc44a3b4bbb6b0fef067b3. Train Station: https://sketchfab.com/3d-models/
station-rer-6c636ca4793345e8ae12beb97b7d6359
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Fig. 8. PCEDNet: learning curves measured on Training (T) and Validation

(V) sets on the (left) Default and (right) ABC. For the latter, learning stops

automatically at epoch 10, when loss and accuracy stop to be improved.

Wehandle this issue by generating balanced batches of points during

training and validation. Batches are balanced by replicating sharp

and smooth edge points until the number of points in each class is

equal. We recorded training curves for PCEDNet on Default and ABC

datasets (see Figure 8 and Table 6). As we can see in Figure 8-bottom-

left, the behavior of the validation loss may appear unusual, even

though in practice, it is sometimes observed in machine learning.

During the first epochs, starting from a random initialization, the

network does not generalize yet on the validation set, which may

result in an increase of the loss. Then, during the following epochs,

even though decreasing, the loss may remain higher than its value at

the random initialization, which may be due to the strong impact of

wrong predictions on the loss value. The validation accuracy keeps

increasing during training, probably because it is less sensitive to

wrong predictions than the loss. Overall, training usually takes a

couple of minutes for PCEDNet, a dozen for the baseline FC, and

more than one hour for CNN.

GLS Training Total

PCEDNet (Default) 19.32 s 2:52 m 3:11 m

FC (Default) 19.32 s 13:58 m 14:17 m

CNN (Default) 19.32 s 1:19:08 h 1:19:27 h

PCEDNet-2C (ABC) 2:11 m 20:00 m 22:11 m

FC-2C (ABC) 2:11 m 2:01:05 h 2:03:16 h

CNN-2C (ABC) 2:11 m 9:00:00 h 9:02:11 h

PCEDNet-2C (SHREC) 4 s 28.09 s 32.09 s

FC-2C (SHREC) 4 s 10:03 m 10:07 m

CNN-2C (SHREC) 4 s 26:01 m 26:05 m

Table 2. Training times of our networks on the different datasets.

5 RESULTS

In this Section, we first validate our choice of input parameters

with an ablation study (Section 5.1) and discuss the number of input

scales (Section 5.2). We then compare our network with our baseline

(i.e. CNN and FC), with ECNet [Yu et al. 2018] and PCPNet [Guer-

rero et al. 2018] and two geometric feature detection methods, i.e.

the covariance analysis method proposed by Bazazian et al. [2015]

(CA) and the Feature Edge Estimation (FEE) implemented in the

CGAL Library [Alliez et al. 2021; Mérigot et al. 2011]. We also report

the evaluation of PIENet and ECNet performed on the ABC dataset

by Wang et al. [2020]. For clarity, we denote A(D) the approach A

trained on dataset D, e.g., PCEDNet trained on Default is denoted

PCEDNet (Default). We present training and classification times

(Section 5.3), quantitative comparisons (Section 5.4), visual compar-

isons (Section 5.5), networks behavior on noisy data (Section 5.6), the

way our PCEDNet can be used for interactive learning (Section 5.7)

and some complementary experiments (sensibility to variation in

sampling, choice of the maximum scale and choice of the surface

reconstruction method - Section 5.9). All of the Figures of the next

sections are available in full resolution on the joined website home-

page, with left/right interactive comparisons between the methods.

Results of the quantitative experiments on each dataset are docu-

mented in dedicated webpages presenting interactive distribution

plots, histograms, tables, and a 3D point cloud viewer.

Comparison metrics. We compare positive and negative matches

of the classifications w.r.t. ground truth by measuring True Positives

(TP), True Negatives (TN), False Positives (FP) and False Negatives

(FN). To do so, we consider the following metrics: Precision, Re-

call, F1-Score, Intersection over Union (IoU), Matthews Correlation

Coefficient (MCC), and Accuracy, whose formulations are given in

Appendix B. Note that F1 and IoU scores ignore the True Negatives

and thus may be misleading for unbalanced classes, which is our

case in general, i.e. the number of TP edge points is in general very

small in comparison to the TN non-edge points. It is however re-

ported for comparison as F1 and IoU are commonly used in similar

contexts and it still provides a score aggregating Precision and Re-

call. Also note that the IoU metric is known to be very correlated

to the F1 score (see their Equations in Appendix B) and they differ

as the IoU is more sensitive to high errors (i.e. it is more affected

by worst cases) while the F1 score tends to measure an average per-

formance. In our case (i.e. with a low number of highly unbalanced

classes), the number of TP significantly influences the result evalua-

tion and Chicco and Jurman [2020] explain in details how a measure

of the correlation between observation and prediction relying on

all TP, TN, FP, FN, as the MCC, better represent the quality of the

network classification.

Comparison of classifications with two and three classes. As previ-

ously stated, PCEDNet outputs three classes corresponding to sharp-

edges, smooth-edges and non-edges. However if edges are defined

as sharp features only (e.g. the ABC dataset), results from the smooth-

edge class does not bring significant quantitative information and

only the sharp-edge class is of interest. In that case, we consider the

sharp-edge as the unique positive class, and merge the smooth-edge

and non-edge classes as the negative class. When a fuzzier defini-

tion is used for edges, as for the SHREC dataset where both rounded

and sharp edges co-exists, we present additional results where the

positive class is defined either as sharp edge only, or, as the union of

sharp-edges and smooth-edges classes. Accordingly, three-classes

approaches are trained on two-classes datasets as if no vertex is

labelled as smooth-edge, but only has sharp-edge or non-edge.
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2-cube (𝜎 )
Angle

0 0.01 0.02 0.03 0.12 0.14
All GLS P 0.529 0.305 0.348 0.413 0.310 0.340 0.327

derivatives R 0.415 0.424 0.454 0.481 0.427 0.45 0.5
(28 parameters) F1 0.465 0.355 0.394 0.445 0.360 0.387 0.396

MCC 0.435 0.310 0.353 0.407 0.315 0.345 0.400
Invariant to rigid P 0.983 0.839 0.866 0.882 0.845 0.853 0.871
transformations R 0.823 0.904 0.921 0.912 0.904 0.919 0.984
(7 parameters) F1 0.897 0.871 0.893 0.897 0.874 0.885 0.925

MCC 0.870 0.828 0.858 0.864 0.832 0.848 0.924

Our P 0.966 0.807 0.832 0.868 0.817 0.826 0.724
configuration R 0.897 0.960 0.970 0.934 0.961 0.964 0.984
(6 parameters) F1 0.931 0.877 0.896 0.901 0.884 0.890 0.835

MCC 0.908 0.839 0.864 0.869 0.847 0.856 0.840
Remove P 0.360 0.217 0.250 0.265 0.217 0.233 0.428
scale R 0.340 0.489 0.513 0.696 0.475 0.495 0.416

(4 parameters) F1 0.350 0.301 0.337 0.385 0.298 0.317 0.423
MCC 0.305 0.260 0.299 0.373 0.256 0.277 0.419

Remove P 0.173 0.103 0.115 0.355 0.105 0.109 0.242
curvature R 0.292 0.290 0.277 0.783 0.290 0.286 0.222

(3 parameters) F1 0.217 0.152 0.163 0.489 0.155 0.158 0.232
MCC 0.152 0.079 0.094 0.484 0.084 0.087 0.227

Table 3. Precision, recall, F1 and MCC computed on the 2-cube (with a

Gaussian noise generated with different value of 𝜎) and Angle models of

the Default evaluation set (see Table 1) for the different parameterization

of PCEDNet.

5.1 Ablation study

In this Section, we validate both the choice of input parameters

and the number of output classes (i.e two or three) of PCEDNet.

Quantitative results are given respectively in Tables 3 and 4.

SSM. Our Scale-Space Matrix is composed of 6 parameters com-

puted by differentiating the GLS implicit surface both in scale and

space. In order to measure the relevance of our parameterization,

we tested four alternative sets of parameters, ranging from 28 to 3

parameters per scale. For each scenario, the PCEDNet architecture

is modified as follows: the number of weights of the four first lay-

ers is set according to the number of input parameters, as well as

the connection between the fourth and fifth layers. We define the

different parameter sets as follows:

• 28 parameters: taking all the derivatives of the GLS descriptor

in scale and space,

• 7 parameters: keeping only the derivatives that are invari-

ant to rigid transformations (rotation, translation and scale),

leading to
[
𝜏𝑡𝑖 𝜅𝑡𝑖 𝑘1𝑡𝑖 𝑘2𝑡𝑖

𝛿𝜏𝑡𝑖
𝛿𝑡

𝛿𝜅𝑡𝑖
𝛿𝑡

𝜙 (𝑆𝑡p𝑖 )

]
,

• 6 parameters (selected PCEDNet input): removing 𝑘2, which

is linearly dependent to 𝑘1 and 𝜅,

• 4 parameters: removing scale information from PCEDNet in-

put, leading to
[
𝜏𝑡𝑖 𝜅𝑡𝑖 𝑘1𝑡𝑖 𝜙 (𝑆𝑡p𝑖 )

]

• 3 parameters: removing curvature information from PCEDNet

input, leading to
[
𝜏𝑡𝑖

𝛿𝜏𝑡𝑖
𝛿𝑡

𝜙 (𝑆𝑡p𝑖 )

]
.

We trained these five parameter configurations on Default and

reported in Table 3 the Precision, Recall and F1 scores when applied

on the evaluation set. As we compare 3-classes approaches on a 3-

classes dataset in this experiment, we sum-up TP and FP for both the

sharp-edge and smooth-edge labels, and use non-edge for negatives.

Our choice of 6 parameters is validated as it always has the higher

Recall, F1 and MCC, while providing a good precision in comparison

with the other sets of parameters.

2-cube (𝜎 )
Angle

0 0.01 0.02 0.03 0.12 0.14
PCEDNet-2C P 0.576 0.298 0.366 0.364 0.308 0.330 0.435
(Default) R 0.564 0.610 0.652 0.689 0.611 0.614 0.278

F1 0.570 0.400 0.469 0.477 0.410 0.430 0.339
MCC 0.539 0.374 0.445 0.458 0.383 0.402 0.344

PCEDNet P 0.966 0.807 0.832 0.868 0.817 0.826 0.724
(Default) R 0.897 0.960 0.970 0.934 0.961 0.964 0.984
(Ours) F1 0.931 0.877 0.896 0.901 0.884 0.890 0.835

MCC 0.908 0.839 0.864 0.869 0.847 0.856 0.840

Table 4. Precision, Recall, F1 and MCC computed on the 2-cube (with

different Gaussian noise) and Angle models of the Default evaluation

set (presented in Table 1) for PCEDNet and its two-classes implementation

PCEDNet-2C. As we can see, the addition of the third class improves the

classification quality of the sharp-edge class.

Number of output classes. We measure the impact of the smooth-

edge class on the quality of the sharp-edge classification by imple-

menting a version, denoted PCEDNet-2C, in which the decision lay-

ers return scores for 2 classes instead of 3. We trained PCEDNet-2C

on the Default dataset by considering points labelled as sharp-

edge for one class and as the union of non-edge and smooth-edge

for the other class. We report in Table 4 the scores obtained by

PCEDNet and PCEDNet-2C on the evaluation set. We can see that the

addition of the third class allows PCEDNet to obtain higher scores

than PCEDNet-2C, for all the metrics. Note that one class could have

been the union of sharp and smooth edges and the other the non-

edges. This increases the false positive rate and leads to the same

best parameterization, with overall lower performance. This gain

in performance can be due to the unequal sampling of point clouds

and the lack of robustness of geometric thresholding, that makes

the accurate labeling of edges very tedious. The addition of the

smooth-edge class enables a more conservative labeling of points.

5.2 Different number of input scales

We now discuss the performances in training and processing times,

and edge detection capabilities of our PCEDNet for 4, 8, 16, 32, 64

and 128 input scales. We modify our architecture by changing the

number of pairwise concatenation/processing layers (respectively

1, 2, 3, 4, 5, 6) in its first stage (Figure 3-left, green dense layers). For

all configurations, the training curves of our network on Default

and ABC are similar to those presented in Figure 8. We report the

timings obtained with the different number of input scales in Table 5

and we illustrate the results in Figure 9 on the Pisa Cathedral and

on a model of the ABC dataset. In Figure 10 we also show the distribu-

tion of precision/recall scores for each number of input scales. Not

surprisingly, computation times increase with the number of input

scales. Depending on the number of different scales representing im-

portant features in a model, 8 to 32 scales may be used. For instance,

as illustrated in Figures 9-bottom and 10, on the ABC dataset where

edges are of similar scale and sharpness, 8 scales may be enough

while Figure 9-top shows on the Pisa Cathedral model that 32

scales would improve the results on large models with several scales

of interest. As a default architecture, we present PCEDNet with 16

scales as a good compromise between speed and detection rate. It

provides both accurate detection on all the models we tested while

enabling interactive training sessions (as presented in Section 5.7),

however, if less emphasis is put on computation times, the input
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Fig. 9. Different classifications produced by PCEDNet with, from left to right, 4, 8, 16, 32, 64 and 128 input scales, on the Pisa Cathedral model (two top rows)

and model 7024 of the ABC dataset (bottom row).
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Fig. 10. Distribution of the Precision (abscissa)/Recall (ordinate) scores displayed as a scatter plot (each point cloud is a sample) and its associated density

function for the ABC dataset, for the different number of input scales in PCEDNet (from left to right : 4, 8, 16, 32, 64 and 128 input scales) (except when explicitly

stated, we use 16 scales for all our experiments).

configuration with 32 scales may be considered. In our experiments,

64 and 128 input scales did not improve over 32 scales while being

significantly slower.

5.3 Training and classification times

In this section we compare the learning and evaluation speed of

our specialized approach to more versatile networks based on Point-

Net [Qi et al. 2017], the state of the art solution for point-based

learning and semantic shape analysis. Among the different pos-

sibilities, we selected ECNet [Yu et al. 2018] , PCPNet [Guerrero

et al. 2018] as they can be easily adapted to our more geometric

and focused problem. We also include the evaluation of the edge

classification presented on PIENet on the ABC dataset by Wang et al.

[2020].

Experimental setup for compared approaches. For PCPNet, we ran

a specialization training in order to adapt its original output from

point normals estimation to point classification. We removed the

output normalization from their architecture, and trained the last

layers of the network (using the default hyperparameters provided

by the authors) using our data (400 epochs on Default, and 50

epochs on ABC). This allows us to take advantage of PCPNet original

training for the first layers. For ECNet, we use the pre-trained ver-

sion provided by the authors (denoted ECNet (EC)), and we report

the evaluation provided in Wang et al. [2020] for ECNet (ABC) and

PIENet (ABC), respectively the ECNet network and PIENet trained

on ABC, when applied on the ABC dataset. Note that ECNet oversam-

ples the input point cloud, and label each generated point as edge or

non-edge. We retrieve the classification of the input point cloud by

assigning to each input point the label of the closest output sample.

PCPNet, ECNet and PIENet approaches require more computation

power and memory than provided by our 10-cores Intel Xeon-E5

to handle large data sets as ABC. For training PCPNet, and evaluat-

ing both PCPNet and ECNet, we thus used an NVIDIA Quadro RTX

6000 with 24GB of G-RAM and PIENet was trained on an NVIDIA

TITAN X GPU in [Wang et al. 2020]. This is reminded by a ∗ in the

text and in tables when we report timings.

Training. We trained PCPNet with three classes on our Default

dataset (denoted PCPNet (Default)) and with two classes on ABC (de-

noted PCPNet-2C (ABC)). As shown by the loss plot in Figure 11-left,

training of the deep architecture of PCPNet converge to relatively

high loss on our Default training set. Also, despite several attempts,

PCPNet couldn’t stabilise on SHREC due to the high variability of

the annotations. Training on a larger dataset such as ABC (see the
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4 8 16 32 64 128

Training on Default 4.32 (47.17) s 0:06 (1:30) m 0:19 (3:11) m 3:59 (9:44) m 4:10 (15:37) m 6:18 (29:23) m

ABC 6:50 (44:38) m 0:11:20 (1:30:12) h 0:25:30 (3:00:30) h 0:51:02 (6:01:02) h 1:40:00 (12:00:00) h 3:20:00 (20:40:00) h

Pisa Cathedral 1.34 (13.80) s 2.23 (27.65) s 4.12 (58.61) s 0:07 (1:55) m 0:15 (3:44) m 0:31 (7:19) m

Table 5. Timings for training (first row) and processing (second and third) point clouds using PCEDNet for the different number of input scales (from 4 to 128).

We report the network training/classification time followed in brackets by the total_time with total_time = GLS_precomputation+processing_time.

For the ABC dataset (second row) we provide the times for processing the 7167 models.

PCPNet PIENet (ABC) PCEDNet

Default 40:00 m * - 0:19 (3:11) m
ABC 19:00:00 h * 23:00:00 h * 2:11 (22:11) m

Table 6. Timings for training PCPNet on the Default dataset with three

classes and on the ABC dataset with two classes. For PCEDNet, we report first

the training time, followed in brackets by the total_time = GLS+training

_time. We also remind the PCEDNet training times with the same number of

classes for comparisons. The training time of PIENet is reported fromWang

et al. [2020]. Timings with a ∗ have been performed on recent high perfor-

mance GPUs (e.g., NVIDIA TITAN X).

loss plot in Figure 11-right) is better adapted and enables the con-

vergence of PCPNet training with low loss. Regarding the timings,

PCPNet and PIENet require significantly longer training than our

approach (more than 500 times slower on ABC), as reported in Ta-

ble 6.

Classification. In addition to PCPNet, ECNet and PIENet, we com-

pare our approach with CA [Bazazian et al. 2015] (for all our ex-

periments, we used 10 neighbors and threshold=0.65, except for

Munich for which we used 20 neighbors to handle sparse sampling),

FEE [Mérigot et al. 2011] (we specifically adjusted parameters for

each dataset), our baselines CNN and FC. We report in Figure 12 the

evolution of the classification timings (in logarithmic scale) when

increasing the point cloud size. We observe for PCEDNet, FC and

CNN that scale-space calculation (which can be done in pre-process)

requires more time than the classification itself. It also illustrates

how fast our compact network architecture is, compared to more

complex and computationally intensive architectures as PCPNet,

ECNet, and PIENet. Finally, PCPNet and ECNet require more than

24 GB G-RAM to handle large point clouds and we thus could not

provide the timings for the classification of our larger models by

these networks.

5.4 Quantitative evaluation

We now compare the classification produced by the aforementioned

approaches with ground truth classification on datasets Default,

ABC and SHREC.
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Fig. 11. PCPNet: learning curves measured on Training (T) and Validation

(V) sets on the (left) Default and (right) ABC datasets.

Fig. 12. Time (in seconds) required by the approaches presented in Table 10

to classify different models.

Default dataset. Results are reported in Table 7 and illustrated

in both Figure 14 and the accompanying website. Both CNN and FC

Method Precision Recall MCC F1 Accuracy IoU
CA 0.490 0.880 0.506 0.628 0.752 0.457
FEE 0.341 0.814 0.471 0.480 0.879 0.316

FC (Default) 0.618 0.958. 0.682 0.753 0.849 0.604
CNN (Default) 0.546 0.955 0.623 0.694 0.807 0.532
PCPNet (Default) 0.722 0.198 0.301 0.310 0.789 0.183
PCEDNet (Default) 0.826 0.952 0.857 0.890 0.946 0.802

PCEDNet-2C (Default) 0.364 0.611 0.402 0.430 0.908 0.274

ECNet (EC) 1.000 0.457 0.656 0.620 0.960 0.450
PCEDNet-2C (EC) 0.201 0.991 0.383 0.334 0.759 0.200

Table 7. Quantitative evaluation on Default: median scores (see scores of

the other approaches in the accompanying website).

Method Precision Recall MCC F1 Accuracy IoU
CA 0.348 0.944 0.520 0.504 0.881 0.338
FEE 0.135 1.000 0.062 0.235 0.278 0.132

FC (Default) 0.452 0.679 0.469 0.513 0.921 0.327
CNN (Default) 0.530 0.995 0.648 0.689 0.922 0.519
PCEDNet (Default) 0.746 0.745 0.688 0.713 0.966 0.548
PCEDNet-2C (Default) 0.662 0.936 0.708 0.730 0.958 0.574

ECNet (EC) 0.425 0.648 0.423 0.460 0.910 0.294
PCEDNet-2C (EC) 0.378 0.849 0.480 0.503 0.888 0.334

ECNet (ABC) 0.487 0.573 - 0.526 - 0.356
PIENet (ABC) 0.692 0.858 - 0.766 - 0.622
FC-2C (ABC) 0.470 0.871 0.555 0.581 0.920 0.408
CNN-2C (ABC) 0.507 0.983 0.646 0.662 0.928 0.491
PCPNet-2C (ABC) 0.954 0.756 0.797 0.807 0.979 0.668

PCEDNet-2C (ABC) 0.735 0.984 0.808 0.822 0.970 0.597

Table 8. Quantitative evaluation on ABC: median scores (see scores of the

other approaches in the accompanying website). ECNet (ABC) and PIENet

(ABC) are reported from Wang et al. [2020]
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Fig. 13. Distribution of the Precision (abscissa)/Recall (ordinate) scores displayed as a scatter plot (each point cloud is a sample) and its associated density

function for the ABC dataset. Interactive plots are provided in the joined website. All maps share the same color scale.

CA FEE PCPNet PCPNet-2C ECNet PCEDNet

Fig. 14. Classification on Default, model 2-cube: 𝜎 = 0 (top) and 0.14

(bottom). See results of the other approaches in the accompanying website.

are strong baselines getting significantly higher MCC scores than

most methods from previous work. PCPNet (Default) shows a very

limited detection of sharp edges. ECNet (EC) produces very precise

classifications, but overall misses to classify 50% of the points la-

beled as edges in ground truth (high precision and low recall). This

classification by ECNet (EC) of a small subset of the edge points is

emphasized by the low F1 and MCC scores that aggregate precision

and recall. Regarding single-scale fitting-based approaches (i.e. CA

and FEE), both approaches fail at handling outliers (for FEE, we used

the following parameters: r= 0.025, R= 0.05 and th= 0.16). PCEDNet

(Default) produces the best results on this dataset, getting signifi-

cantly higher indicators than other approaches. Overall, PCEDNet

trained on the Default dataset provides the best balance between

precision and recall with the highest F1 and, more importantly, MCC

scores.

Finally, we observe that PCEDNet-2C (EC) provides a better re-

call and a lower precision than ECNet (EC), with a lower MCC on

Default. The same behavior is observed on the SHREC (Table 9)

and ABC (Table 8) datasets, with a higher MCC for PCEDNet-2C on

the ABC dataset. It illustrates the more conservative behavior of

PCEDNet-2C (EC) while ECNet (EC) tends to detect subsets of correct

edges.

ABC dataset. Due to the large size of ABC (7167 models) we present

in Figure 13 (and in the accompanying website) the results as a preci-

sion/recall scatter plots, which provide a more readable overall view

of the performance of the different approaches. For each approach,

we plot each 3D model as a point sample, and display the resulting

density maps as 2D-contour maps. We use the Hot colormap, with

density values ranging from 50 (light yellow) to 1000 (dark red).

A perfect classification result would lead to a Dirac distribution

centered at location (1,1) and with magnitude 7167. Most of the

analysed approaches are producing classifications with high recall,

but differ by their capacity to reach high precision. Table 8 shows

the median statistical scores obtained by each method on the whole

dataset. Single-scale fitting-based approaches, e.g., CA and FEE (we

use r= 0.4, R= 0.8 and th= 0.16 for this dataset) exhibit very high

recall but low precision (lower than 0.4) with the classification of a

lot of FP. As shown in supplementary materials, these approaches

produce good results for very clean and simple geometries, but

fail at analyzing thin objects (i.e. neighborhood might include two

pieces of opposite surfaces, see FEE in Figure 15) and other intricate

shapes. CNN follows a similar pattern, but is able to produce better

classifications with high precision (MCC ≈ 0.65). FC produces re-

sults with lower quality (MCC < 0.55) and higher dependency to

the training set. Both FC (Default) and FC-2C (ABC) are however

competitive compared to state of the art methods.

Overall, the evaluation of ECNet (EC) (in terms of MCC, F1 and Ac-

curacy) is better than fitting-based approaches. ECNet (ABC) exhibits

a higher precision and a lower recall than ECNet (EC), resulting in

better general behavior. It remains however less efficient than our

baselines trained on ABC, which, in terms of F1 score, are also less

effective than PIENet (ABC). All the variants of our PCEDNet produce
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ground truth ECNet PCPNet (Default) CNN (Default) FC (Default) PCEDNet (Default)

CA FEE PCPNet (ABC) CNN-2C (ABC) FC-2C (ABC) PCEDNet-2C (ABC)

Fig. 15. Model 7029 of the ABC dataset.

varying precision and recall but similar F1 scores above 0.7, and

PCEDNet-2C (ABC) shows the best results with anMCC and F1 scores

above 0.8. Despite the large difference between the training sets of

Default and ABC, our approach PCEDNet (Default) produces clas-

sifications with better MCC than competitors (MCC = 0.688), but at

the cost of a recall loss. As shown in the joined website, the classifi-

cations produced by both PCEDNet (Default) and PCEDNet-2C (ABC)

remain visually convincing despite quantitative differences against

the ground truth. A notable exception to the global trend high-

recall/variable-precision is PCPNet-2C (ABC), which exhibits higher

precision/lower recall than any other approach. It also reaches com-

parable scores as our approach (e.g. MCC, F1, Accuracy), but visual

inspection reveals that PCPNet-2C (ABC) tends to miss some edges

entirely (lower recall), while our approach finds relatively thicker

edges (lower precision). Also, PCPNet-2C (ABC) requires 3 days to

process the entire dataset (instead of 3 hours for PCEDNet-2C (ABC)).

SHREC dataset. This dataset has been originally designed to eval-

uate curve detection algorithms on organic and relatively smooth

objects with a comparison to human labelling. In addition, some

objects have strong semantics (e.g. human face), and we observe

that the ground-truth classification seems to take into account this

semantic rather than strictly respecting geometric features. This

makes this SHREC dataset very challenging to classify, as illustrated

in Table 9 by the lower scores obtain by all approaches, in compar-

ison to the other datasets. In particular, PCPNet (Default) fails at

classifying edge points (MCC = 0). On this dataset, ECNet tends to

Method Prec. Recall MCC F1 Accuracy IoU
CA 0.434 0.449 0.390 0.442 0.876 0.284
FEE 0.191 0.527 0.151 0.278 0.727 0.160

PCPNet (Default) 0.000 0.000 0.000 0.009 0.893 0.000
FC (Default) 0.392 0.538 0.391 0.455 0.880 0.294
FC (Default)+ 0.313 0.909 0.428 0.461 0.793 0.300
CNN (Default) 0.468 0.928 0.570 0.611 0.911 0.440

CNN (Default)+ 0.299 0.945 0.429 0.446 0.802 0.287
PCEDNet-2C (Default) 0.462 0.623 0.455 0.510 0.868 0.342
PCEDNet (Default) 0.495 0.377 0.344 0.437 0.916 0.280
PCEDNet (Default)+ 0.349 0.898 0.444 0.489 0.814 0.323

ECNet (EC) 0.365 0.503 0.341 0.397 0.845 0.248
PCEDNet-2C (EC) 0.254 0.747 0.285 0.365 0.676 0.223

FC-2C (SHREC) 0.406 0.715 0.392 0.480 0.849 0.316
CNN-2C (SHREC) 0.207 0.881 0.202 0.248 0.622 0.142
PCEDNet-2C (SHREC) 0.441 0.872 0.426 0.522 0.874 0.353

Table 9. Quantitative evaluation on SHREC: median scores. For 3-classes

methods marked with +, we compare both the smooth and sharp edges

classes with the ground truth, i.e. Positives=Sharp+Smooth.

ground truth ECNet PCPNet (Default) PCEDNet (Default)

PCEDNet-2C (ABC)PCPNet (ABC)FEECA

Fig. 16. Model 7 of the SHREC dataset. Results for CNN and FC can be found

in the joined website.

produce noisy and thick edges, getting lower score than CA. CA and

FEE (we use r= 2, R= 4 and th= 0.16 for this dataset) produce more

convincing results, with CA reaching MCC= 0.39. CNN (Default) get

the best scores on this dataset (both MCC and F1), but the same

architecture trained on SHREC gets lower detection rate. Both FC

and PCEDNet show better stability w.r.t. the training set (MCC ≈ 0.4

for all variants), but lower score than CNN. Regardless to the quan-

titative analysis, the results produced by PCEDNet (Default) are

very interesting on this dataset. By enforcing the detection of both

smooth and sharp edges, it better adapts to the smooth nature of the

analysed objects and it provides very pertinent results as illustrated

in Figure 16.

5.5 Visual evaluation

In this section we present visual results on acquired datasets without

ground truth labelling. All these scenes are presented in more details

in the accompanying video and in the joined website. For all the

results presented in this section, we compare PCPNet (Default),

PCPNet (ABC) and ECNet (EC) (on smallest scenes only), FC (Default),

CNN (Default), PCEDNet (Default), CA and FEE. Table 10 shows

precomputation (GLS) and classification times for all approaches.

We see that processing time for PCEDNet (including precomputation)

remains of the same order of magnitude than less robust approaches

as CA and FEE, and outperforms PCPNet and ECNet (up to two orders

of magnitude). Once trained, our approach also avoids the tedious

parameter tuning of geometric methods.

Figure 17 represents a part of Lanswithout outliers and with very

few noise. In this example, FEE detects larger scale edges cleanly,

yet it misses fine details. CA detects edges, but it still struggles with

surface noise and irregularities. PCPNet has an improved behavior

over the noisy model and is able to detect smooth-edges. However,

it still fails at classifying sharp-edges. Similar to FEE and PCPNet,
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Dataset #obj #vert. CA FEE PCPNet ECNet GLS CNN (total) FC (total) PCEDNet (total)

Loudun 1 1 1M 14.30 s 1:30 m 35:00 m * - 19.30 s 0:54 (1:13) m 1.80 (21.10) s 2.10 (21.40) s

Empire 1 1.2M 15.70 s 2:55 m 54:22 m * 5:43 m * 36.40 s 0:53 (1:29) m 1.80 (38.20) s 2.10 (38.50) s

Lans 1 1.23M 16.40 s 3:46 m 1:00:08 h * 6:13 m * 21.00 s 0:55 (1:16) m 1.80 (22.80) s 2.10 (23.10) s

Church 1 1.9M 23.40 s 5:53 m 1:46:40 h * - 58.40 s 1:26 (2:24) m 0:02 (1:01) m 0:03 (1:01) m

Pisa Cathedral 1 2.5M 31.80 s 6:03 m 2:56:40 h * - 53.60 s 1:57 (2:50) m 3.90 (57.50) s 4.70 (58.30) s

Euler 1 3.9M 51.20 s 13:22 m - - 1:55 m 3:00 (4:55) m 0:06 (2:01) m 0:07 (2:02) m

Munich 1 6M 1:31 m 26:33 m - - 1:59 m 4:41 (6:41) m 0:09 (2:09) m 0:11 (2:10) m

Train St. 1 12.45M 2:35 m 50:44 m - - 5:31 m 9:17 (14:49) m 0:19 (5:50) m 0:25 (5:57) m

Loudun 35 1 35M 7:29 m 1:30:25 h - - 9:52 m 26:38 (36:30) m 1:06 (10:59) m 1:09 (11:02) m

Paris rue Madame 1 XX - - - - XX - - XX

Default 8 55k 0.53 s 4.41 s 22.11 s* 2.09 s* 1.08 s 2.03 (3.11) s 0.30 (1.38) s 0.25 (1.33) s

SHREC 15 654k 9.70 s 41.47 s 5:54 m * 2:48 m * 14 s 28.58 (42.58) s 3.10 (17.10) s 3.10 (17.10) s

ABC 7167 312.3M 3:15:00 h 17:50:00 h 7 d * 20 d * 2:35:00 h 1:25:00 (4:00:00) h 0:25:40 (3:00:40) h 0:25:30 (3:00:30) h

Table 10. Timing comparison for classification, where (s) stands for seconds, (m) for minutes, (h) for hours, and (d) for days. For datasets (e.g., Default, SHREC

and ABC) we report the time needed to process all the models. The column GLS corresponds to the precomputation of the GLS descriptors. For columns CNN,

FC and PCED, we report first the classification time, followed in brackets by the total_time = GLS+classification_time. Timings marked with * have

been obtained using dedicated hardware (NVIDIA RTX 6000).

CA FEE PCPNet (Default) PCPNet (ABC) ECNet PCEDNet (Default)

Fig. 17. Lans model. Results for CNN and FC can be found in the joined website.

FC extracts large scale edges leaving out finer details, which high-

lights the importance of scale separation layers in PCEDNet network

architecture. Both CNN and PCEDNet produce visually convincing

results, but CNN does not detect some fine details that are adequately

detected by PCEDNet. ECNet also produces good results on this ex-

ample, detecting most of the edges and some of the thin details.

CA FEE PCPNet PCPNet ECNet PCEDNet
(Default) (ABC) (Default)

Fig. 18. Empire model. This point cloud contains a clean structure with a

severe amount of outliers. Results for CNN and FC can be found in the joined

website.

Figure 18 presents the behavior of each method when processing

models with important noise and a lot of outliers. As observed on

synthetic datasets, ECNet is strongly penalized by the outliers, and

most of the flat areas are misclassified as edges. CA detects all the

edge points on the synthetic models but also considers the outliers

as edges. PCPNet classification is weakened by the outliers and does

not provide any positive results. FC shows results similar to CA, the

network is capable of extracting different edges, yet it is still very

sensitive to outliers. CNN and PCEDNet both obtain a high recall on

edges, with PCEDNet being the least sensitive to noise.

CNN (Default) FC (Default) PCEDNet (Default)

Fig. 19. Church. Results for FEE, FC and PCPNet can be found in the joined

website.

CNN, FC and PCEDNet rely on the same parameterization. We thus

provide in Figures 19 a closer comparison of the results produced

by these architectures. In Figures 19, even though all networks
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generate similar results, the CNN and FC become less accurate when

processing irregular surfaces as trees, cars, light poles, etc.

Figure 21 shows how our approach performs on a large point

cloud (6M points) in comparison with CA and FEE (other approaches

require too much memory/time). Munich exhibits common irregu-

larities of acquired data, i.e. variable point densities, large gaps, scan

noise, and volumetric objects (e.g., trees). PCEDNet (Default) pro-

duces cleaner detection and is less affected by acquisition artefacts

than the other approaches.

5.6 Behavior on noisy data

Method Precision Recall MCC F1 Accuracy IoU

ECNet (EC) 0.247 0.687 0.317 0.358 0.824 0.216

PCEDNet-2C (EC) 0.163 0.950 0.236 0.275 0.633 0.158

PCEDNet (Default) 0.323 0.375 0.267 0.319 0.903 0.185

PCEDNet (Default)+ 0.231 0.920 0.358 0.366 0.768 0.222

PCPNet-2C (ABC) 0.159 0.363 0.155 0.204 0.833 0.113

PCEDNet-2C (ABC) 0.121 0.793 0.181 0.213 0.626 0.117

Table 11. Quantitative evaluation on ABC dataset altered with a Gaussian

noise of deviation 𝜎 = 0.04 (median scores). For PCEDNet trained on the

Default dataset (with three classes), we show the results when considering

the points of both the sharp and smooth edge classes as edges (4𝑡ℎ row,

denoted with +), and when considering only the sharp-edge class as edges

(3𝑟𝑑 row).

We compare the classification produced by PCPNet-2C, ECNet,

PCEDNet and PCEDNet-2C on the ABC dataset altered in the normal

direction by a Gaussian noise of deviation 𝜎 = 0.04. See Figure 20-

bottom for classification results on model 0133 (other models are

included in joined website), and Figure 22 for scatter plots illustrat-

ing the distribution of the (Precision, Recall) scores on the entire

dataset. As illustrated on Figure 20-bottom, the two approaches

trained on ABC (PCPNet-2C and PCEDNet-2C) cannot disambiguate

between noise and edges. This is due to the lack of noise in the

ABC training set. Trained on more versatile data, both ECNet and

PCEDNet (EC) are more robust to noise and still exhibit high recall,

despite a loss in precision. In presence of noise, PCEDNet tends to

classify inaccurate edge points as smooth edges. We thus propose

to also evaluate the classification results considering the edge and

smooth edge classes as positive matches (denoted with + in Table 11

and Figure 22). With this setting, PCEDNet (Default)+ produces the

best quantitative scores in Recall, MCC and F1, slightly overpassing

ECNet, while being trained on smaller dataset and requiring 3 hours

of computation instead of 20 days. PCEDNet (Default)+, however,

detects smoother edges, as on chamfers, that are avoided by ECNet,

as illustrated in Figure 20 1𝑠𝑡 , 3𝑟𝑑 and 4𝑡ℎ columns.

Figure 23 shows the capability of PCEDNet to classify edges on

an acquired noisy model Paris rue Madame (we could not pro-

cess this 12M-points dataset with PCPNet-2C and ECNet because of

their hardware requirements). Figure 14-bottom provides a qualita-

tive evaluation of the different classification methods on the model

2-cube of the Default dataset with a severe Gaussian noise (devia-

tion 𝜎 = 0.14). In this case also, ECNet and PCEDNet exhibit a more

convincing behavior.

5.7 Interactive learning

As shown in Table 6, PCEDNet requires very low training time, and

is stable for very small training sets as our Default. We illustrate

how such a flexible network can be trained interactively to better

adapt to user wishes and data specificity.

Our interactive training system performs as follows: the user

loads a point cloud on which GLS descriptors are precomputed.

This is done in less than 20 seconds for 1M points. Then, the user

manually labels some points of the two classes (sharp edge and

non-edge) or the three classes (sharp edge, smooth edge and non-

edge). We observed that the non-edge class should contain more

points than the two others. This training sets are provided to the

PCEDNet network initialized with random values, which learns for

5k epochs in around 10 seconds for approximately 10k input points.

As for any other dataset, the number of points per class is automati-

cally balanced during training. Once trained, the network classifies

the whole point cloud in around 2 seconds per 1M points. Upon

classification, the user can refine the training set according to the

network output. If he does so, the network is trained again from a

random initialization with the updated learning sets (as training is

fast enough and modifying the previous training is less efficient).

We illustrate in Figures 1-c and 24, and in the accompanying video

how a user can generate a high-quality classification corresponding

to a specific edge definition defined by the annotations he provides

during an interactive training session. For instance, in Figure 1-c-

top, edges are defined sharp, while in Figure 1-c-bottom, edges are

defined as a large scale feature including chamfers.

5.8 Energy efficiency

Energy consumption is a critical aspect of processing methods when

considering their application in embedded systems or their envi-

ronmental impact on global warming. In addition to evaluating the

results in terms of classification and timings, we present an empir-

ical study of the energy consumption of the different approaches

for training and classification, based on their hardware requirement

and processing time.

Methodology. Ideally, energy consumption should be measured

during processing in order to account for the modulation of pro-

cessor charge. Since we do not have such measuring device yet, we

propose to roughly estimate the energy consumption based on the

Thermal Design Power (TDP) of the processing unit (CPU or GPU),

which measures the energy consumption under high workload.

This thus provides over-estimations of the energy consumption that

remain useful for the comparison of approaches with significant

differences (in our case, up to several orders of magnitude, as can

be seen in Tables 12 and 13). The TDP is expressed in Watts and it

is provided by manufacturers. We denote 𝐸K the energy, expressed

in Joule (1J = 1Ws), used for processing 1K points, and we define it

as follows:

𝐸K = 𝑇𝐷𝑃.𝑡K and 𝑡K =

𝑃𝑡 .1000

𝑁
,

where 𝑡K is the time required for processing 1K points, 𝑃𝑡 is the

processing time and 𝑁 is the number of processed points in the

time 𝑃𝑡 . The TDP of our 10 cores Intel Xeon E5-2640 v4 @2.4 GHz

is 90W, the one of an NVIDIA TITAN X GPU is 250W and for an
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Ground Truth PCPNet-2C ECNet PCEDNet (Default) PCEDNet-2C (ABC)

Fig. 20. Top: Classification produced by the different networks on model 0133 of the ABC dataset. Bottom: Same model altered with a random Gaussian noise

of deviation 𝜎 = 0.04.

Training PCPNet (Default) ECNet (EC) PIENet (ABC) GLS CNN (average) FC (average) PCEDNet (average)
Time 𝑡K 8.34* 7.32* 25.77* 0.05 14.68 (14.73) 3.97 (4.02) 0.43 (0.48)

Energy 𝐸K 2167.42* 1831.05* 6443.78* 9.16 1321.43 (1330.59) 357.60 (366.76) 38.60 (47.76)

Table 12. Times 𝑡K (2𝑛𝑑 row) and processing unit energy consumption 𝐸K (3𝑟𝑑 row) required for processing 1K points when training the different networks

(1𝑠𝑡 row) denoted as name(training dataset). (average) represents the average of the times obtained when training on the different datasets Default, ABC and

SHREC. PCPNet is trained on an NVIDIA TITANQuadro RTX 6000 GPU, and ECNet and PIENet are trained on an NVIDIA TITAN X GPU. The times and energy

consumption for ECNet and PIENet are computed respectively from the statistics provided in [Yu et al. 2018] and [Wang et al. 2020].

Classification CA FEE PCPNet ECNet PIENet (8K pts) GLS CNN FC PCEDNet

Time 𝑡K 0.015 0.16 2.28* 1.32* 0.062* 0.023 0.043 (0.066) 0.0024 (0.0254) 0.0026 (0.0256)
Energy 𝐸K 1.36 14.79 592.87* 345.77* 15.63* 4.24 3.87 (8.11) 0.22 (4.46) 0.23 (4.47)

Table 13. Times 𝑡K (2𝑛𝑑 row) and processing unit energy consumption 𝐸K (3𝑟𝑑 row) required for classifying 1K points with the different methods (1𝑠𝑡 row).

PCPNet and ECNet are run on an NVIDIA TITAN Quadro RTX 6000 GPU, and PIENet is run on an NVIDIA TITAN X GPU. The times and energy consumption

for PIENet are computed from the statistics provided in [Wang et al. 2020].

CA FEE PCEDNet (Default)

Fig. 21. Munich model (see Results for CNN and FC in the joined website).

NVIDIA Quadro RTX 6000 it is 260W. Based on Tables 1, 2, 6, 10,

and the statistics provided by Wang et al. [2020] and Yu et al. [2018]

for training and classification times and number of points, we show

in Tables 12 and 13 the mean processing unit energy consumption

𝐸K of each approach for respectively training and classifying 1K

points.

When training (see Table 12), our approach requires significantly

less energy than our baselines (one order of magnitude) and than

very deep neural networks running on the GPU, e.g. PCPNet, ECNet

and PIENet (up to two orders of magnitude). The low efficiency

of CNN can be explained by its higher number of weights (about 4

times higher than PCEDNet) and by its implementation based on

Tensorflow.

Similar trends can be observed during classification (see Table 13).

We report the performance of PIENet provided byWang et al. [2020]

on models composed of around 8 thousand points. Other approaches

are evaluated on larger models, up to several millions of points.

Complementary experiments would be required to better evaluate

PIENet classification efficiency on larger point clouds. CA requires

a very little energy while PCEDNet and its baselines remains more

efficient than FEE.

5.9 Complementary experiments

Variation of sampling (minimum scale). The features computed

in the SSM are influenced by the minimum scale 𝑠min, estimated

from the density of the point cloud. We show in Figure 25 how

our approach behaves when changing the point cloud density by

subsampling, while keeping the automatic estimation of 𝑠min. This

is illustrated on the Loudun tower, initially composed of 35 mil-

lions points, and subsampled down to 15, 5 and 1 million points.

Unsurprisingly, decreasing the resolution reduces the quantity of

details and leads to thicker edges. However, our classification re-

mains stable and PCEDNet still finds the position of edges, even for

low densities, and without requiring the user to set any parameter

value.
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Fig. 22. Distribution of the Precision (abscissa)/Recall (ordinate) scores displayed as a scatter plot and its associated density function for the ABC dataset

altered with a Gaussian noise of deviation 𝜎 = 0.04. From left to right, the detection produced by PCPNet-2C, ECNet, PCEDNet, PCEDNet (Default)+ (see

Table 7) and PCEDNet-2C trained on ABC.

Fig. 23. Illustration of the classification produced by PCEDNet on the noisy acquired model Paris rue Madame.

User input

Non-edge

Sharp

Smooth

Classification

User input

Classification

Fig. 24. Interactive training: user inputs and classification results.

Variation of maximum scale. We also show in Figure 26 how our

classification behaves when changing the maximum scale. Thanks

to the logarithmic scale sampling and the scale invariance property

Fig. 25. Loudun: PCEDNet classification with different densities: 1, 5, 15 and

35 million points from top left to bottom right.

𝑠max = 0.02 𝑠max = 0.05 𝑠max = 0.20 𝑠max = 0.50

Fig. 26. Classification results when varying the maximum scale when com-

puting the GLS for the analyzed object.

of the SSM entries, our approach provides stable results even though

the maximum scale is divided by 10 or multiplied by 2.5.

Surface reconstruction algorithm. Our network is parameterized

using the Algebraic Point Set Surfaces (APSS) [Guennebaud and

Gross 2007], which are known to be stable and reliable even at large

scales. We illustrate in Figure 27 the performance of our classifier

when computing the parameterization with different approaches:

covariance plane fitting (also used in Bazazian et al. [2015]), plane-

based point set surfaces [Alexa et al. 2001] and algebraic sphere

fitting (same fitting as APSS but without the Moving Least Squares

-MLS- projection). For each variant we compute similar values as our

GLS descriptor, with derivatives estimated using finite differences.

We clearly observe that the use of sphere fitting rather than plane

fitting improves the classification, and the best results are always

obtained using MLS projection. Eventually, recent more stable deriv-

ative evaluations of the APSS may also be experimented [Lejemble

et al. 2021].
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Fig. 27. Impact of the surface reconstruction algorithm on the classification.

From left to right: covariance plane fitting (used by Bazazian et al. [2015]),

point set surfaces [Alexa et al. 2001], algebraic sphere fitting, algebraic point

set surfaces [Guennebaud and Gross 2007] (used in this work).

6 DISCUSSION

SSM and patch-based architectures. Our network relies on the SSM,

a point cloud parameterization based on a set of GLS descriptors.

An open question is whether the SSM could be efficiently used to

provide additional parameters to the points used as input in patch-

based point cloud deep processing architectures such as PointNet.

This may be investigated, but we point out two issues that should

be considered. The first is the significant memory overhead that will

be generated on architectures that are already resource-demanding.

The second is more conceptual: the goal of using the SSM is to

capture local multi-scale shape descriptors at each point without

having to explicitly handle their neighborhood in the network. This

makes a lot of sense for a point cloud processed by point individually

in the network, as we do for edges. This is less clear for a processing

relying on point patches (e.g. for style or large features recognition).

The first layers of these networks learn features from the spatial

organisation of neighbor points and it is not easy to predict which

additional parameter would be redundant (i.e. the information it

brings is already captured by the network first layers) and which

parameter would increase the network efficiency.

Need of local surface reconstruction. The need for locally recon-

structing an approximating surface at different scales may be seen

as a drawback of our method. In fact, this reconstruction does not

allow to explicitly reconstruct or detect edges, and once the surface

reconstructed, the problem remains unsolved. However, it enables

the computation of the SSM shape descriptors that, used as input in

our network, allow us to efficiently label edge points.

7 LIMITATIONS AND CONCLUSION

We introduced a new parameterization together with its dedicated

neural network architecture (PCEDNet) specially designed for the

classification of edges in point clouds. PCEDNet outperforms both

state of the art methods such as CA, FEE, ECNet, PCPNet and PIENet,

and baselines as CNN and FC. PCEDNet is also remarkably compact by

being only composed of about 2100 weights. Given this small size, it

is faster than the other approaches tested in this work. Both CNN and

PCEDNet achieve similar very good results on synthetic point clouds,

which shows that our parameterization based on GLS descriptors is

very efficient to encode the point clouds features required for edge

classification. Coupled with PCEDNet, it provides a very compact

multi-scale representation that captures local geometric properties

with reduced sensitivity with respect to noise, as can be seen on

the various tests performed on real point cloud scans. The training

and classification of our approach is also sufficiently fast to enable

interactive training and classification from direct user inputs.

Limitations. APSS requires oriented normals, which may be te-

dious to compute accurately in some cases. For all our experiments

with point clouds without normals, we obtained good classifica-

tion results by estimating consistent normal vectors using Mesh-

lab [Cignoni et al. 2008], without requiring human intervention.

An interesting future work would be to consider alternative fit-

ting techniques that do not require oriented normals [Chen et al.

2013b]. Regarding performance, SSM precomputation is currently

the bottleneck of the approach, however we believe that a GPU

implementation would enable near real-time classification, the most

computationally intensive task being the neighborhood queries.

Theoretically, SSM is by nature limited to surfaces only, alternative

representations [Digne et al. 2018] might be considered in future

work to handle lines and volumes.

Perspectives. Other experiments may be conducted to improve

the network layout, for instance n by n scales concatenation. An

interesting direction for future work could be the study of the ex-

tension of this architecture to other geometrical labelling tasks, but

also to semantic analysis.
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APPENDICES

A GLS DESCRIPTORS AND DERIVATIVES

TheAPSS [Guennebaud andGross 2007] defines a scalar field 𝑆 (p)u =

[1 p𝑇 p𝑇 p] · u, where u = [𝑢𝑐 uℓ 𝑢𝑞] is the vector of field pa-

rameters. The parameters of the algebraic sphere are obtained by

normalizing these field parameters: û = u/
√
| |uℓ | |2 − 4𝑢𝑐𝑢𝑞 . In the

GLS [Mellado et al. 2012], the algebraic sphere parameters are repa-

rameterized to compute its geometric parameters: 𝜏 = 𝑆 (p)û (p) the

local relief, 𝜂 =

∇𝑆 (p)û (p)
| |∇𝑆 (p)û (p) | |

the normal vector and 𝜅 = 2𝑢𝑞 the

mean curvature.

The Scale-Space Jacobian of the GLS parameters if defined as a

5 × 4 matrix:
[
𝛿𝜏
𝛿x

𝛿𝜂𝑥
𝛿x

𝛿𝜂𝑦
𝛿x

𝛿𝜂𝑧
𝛿x

𝛿𝜅
𝛿x

𝛿𝜏
𝛿𝑡

𝛿𝜂𝑥
𝛿𝑡

𝛿𝜂𝑦
𝛿𝑡

𝛿𝜂𝑧
𝛿𝑡

𝛿𝜅
𝛿𝑡

]

,

where 𝛿x and 𝛿𝑡 are the derivatives in scale and space respectively.

𝑘1 is computed by projecting
𝛿𝜂
𝛿x

on the surface tangent plane, which

provides an estimate of the second fundamental form.

B SCORES USED FOR QUANTITATIVE COMPARISON

The scores used in Section 5 are defined as follows:

Precision (also denoted positive predictive value ś PPV) measures

the proportion of positive identifications that are actually correct

(the higher, the better). It is defined as:

precision =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
.

Recall (also denoted sensitivity, hit rate, or true positive rate ś

TPR) measures the proportion of actual positives that are correctly

identified (the higher, the better). It is defined as:

recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
.

The Matthews Correlation Coefficient (MCC) is a correlation co-

efficient between the observed and predicted binary classifications;

it returns a value in [-1 : 1]. A coefficient of 1 represents a perfect

prediction, 0 no better than random prediction and -1 indicates a

total disagreement between prediction and observation. It is defined

as:

MCC =

𝑇𝑃 ×𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁
√
(𝑇𝑃 + 𝐹𝑃) (𝑇𝑃 + 𝐹𝑁 ) (𝑇𝑁 + 𝐹𝑃) (𝑇𝑁 + 𝐹𝑁 )

.

F1 score is a measure of a test accuracy. For binary classification,

F1 is defined as follows:

F1 = 2.
precision × recall

precision + recall
=

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
.

Accuracy measures is the fraction of predictions our model got

right. For binary classification, accuracy is defined as:

accuracy =

𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
.

The Intersection over Union score (IoU) is a value between 0 and

1 specifying the overlap between the prediction and the observation.

A value of 1 means that the union of the predicted and the reference
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sets is the same as their overlap (intersection) while a value of

0 means that there is no overlap between the predicted and the

reference sets. It is defined as follows:

IoU =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
.
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