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Abstract

A finite element procedure is proposed to compute the dynamic response of infinite periodic structures
subject to localized time-dependent excitations. Straight periodic structures which are made up of
cells/substructures of arbitrary shapes (e.g., 2D substructures) are analyzed. The proposed approach
involves considering a periodic structure of finite length with excitation sources and absorbing bound-
ary conditions which are expressed in the time domain. The absorbing boundary conditions are first
described in the frequency domain by means of impedance matrices using a wave approach. After-
wards, they are switched to the time domain by decomposing the impedance matrices via rational
functions, and expressing these rational functions in terms of polynomials of the frequency iω up to
order 2. The related matrix system involves the usual vectors of displacements, velocities and acceler-
ations, as well as vectors of supplementary variables. As such, it can be simply and quickly convert to
the time domain yielding a classical second-order time differential equation which can be integrated
with the Newmark algorithm. Numerical experiments are proposed which highlight the relevance of
the approach.

Keywords: periodic structures, time response, absorbing boundary conditions, wave finite element
method.

1. Introduction

Many engineering structures are periodic, e.g., railway tracks, pipelines, ribbed plates, metamate-
rials, and so on. Among these are 1D periodic structures made up of cells/substructures of arbitrary
shapes (e.g., 2D substructures). Usually, these structures are analyzed in the frequency domain via dif-
ferent methods, e.g., the semi-analytical finite element (SAFE) method developed in [1–7] for uniform
waveguides. Within this framework, the displacement solution is separated into an analytical harmonic
function, along the direction of a waveguide, and a finite element (FE) field on the cross-section. Con-
cerning the prediction of the dynamic response of truly periodic structures with non-uniform sections
under harmonic loading, the wave finite element (WFE) method is a well established numerical tool.
This consists in computing wave modes (propagation constants, wave shapes) of a periodic structure
from the FE model of a substructure and its related mass, damping and stiffness matrices which can
be obtained from any FE software or MATLAB. Afterwards, these wave modes can be used to calcu-
late the harmonic response of periodic structures in an efficient way, i.e., by computing small matrix
systems for one substructure, or a few of them. The main steps of the method can be found in [8–11].
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Also, some of its recent extensions and applications are reported in [12–21]. So far, these studies have
been conducted in the frequency domain in which the WFE method has been originally formulated.

The time response analysis of periodic structures under time-dependent excitations — e.g., fast
loadings like shocks or blast — is not so well reported. For infinite structures, the main difficulty
is to solve a time differential equation on a given finite domain, and therefore, be able to express
appropriate (time-dependent) absorbing/infinite conditions at the boundary of this domain. Time-
dependent absorbing boundary conditions (BCs) are usually formulated for homogeneous domains
like acoustic or elastic media. For instance, absorbing BCs involving differential operators of different
orders have been proposed in [22–25] and in [26] using sequences of local non-reflecting BCs in spherical
and cylindrical coordinates. This approach has been modified to describe absorbing BCs for waves at
some discrete angles from the surface normal [27, 28]. More efficient BCs can be obtained by adding
supplementary variables to model an exterior surface, see [29–31]. Another possibility is the perfectly
matched layer (PML) method proposed in [32–35] which consists in surrounding a computational
domain with one or several layers of elements in which the wave equation is analytically continued
into complex coordinates. Contrary to the previous approaches which are easy to implement but of
limited accuracy, the PML method does not require analytical expressions of the absorbing BCs, but
instead, one or several additional FE layers with increasing and well selected absorption properties.

Although more complex than the homogeneous case, the time domain analysis of periodic media
has been carried out in various ways, mostly for electromagnetic applications. In [36, 37], PMLs have
been used as absorbing BCs. In [38], it has been found, however, that the PML method can be prone to
divergence issue for analyzing layered periodic electromagnetic media with evanescent waves. In [39],
approximate time domain absorbing BCs have been developed for the analysis of the electromagnetic
wave propagation in periodic media. Also, in [40], the time domain scattering of waves in infinite
media by diffraction gratings has been conducted in a theoretical way using a Dirichlet-to-Neumann
(DtN) map, without numerical results. It should be remarked that the DtN map approach involves
a non-local operator which, as such, yields large sized fully-populated impedance matrices. A similar
approach has been used in [41, 42]. In these works, the transient electromagnetic wave interaction
with diffraction gratings has been analyzed via discontinuous Galerkin methods and exact non-local
absorbing BCs for 3D periodic media. The procedure requires convolution integrals in space and time
on a boundary.

Although well suited to describe absorbing BCs for homogeneous media, or simple periodic media,
all of these approaches appear difficult to apply to complex systems like periodic elastic structures
with arbitrary-shaped cells. Regarding the PML method, the issue mainly concerns the determination
of the absorption properties of the layers to absorb waves emanating from an heterogeneous medium.
Also, most of these approaches focus on the analysis of non-dispersive media having well defined wave
propagation velocities. For dispersive media like beams [43], or multi-layered systems [44], absorbing
BCs can be formulated in terms of boundary operators involving complicated functions of the frequency
— e.g., square roots of the frequency — which, as such, cannot be converted to simple functions of
time after inverse Fourier transforms. Also, these approaches appear difficult to implement given that
a substantial part of the time history of the solutions must be kept, which means computing time
integrals at each time step as discussed in [45]. Another strategy for describing absorbing BCs for
beams involves changing the geometry at the ends by considering tapered beams [46], which, however,
seems difficult to apply to more complicated structures.

Considering the potential of the WFE method for predicting the dynamic behavior of periodic
structures in the frequency domain, in this work it is intended to extend this method to the time
response analysis of infinite periodic structures. This, however, cannot be carried out straightforwardly.
The issue is linked to the wave-based matrix equations involved in the WFE method which represent
complicated functions of the frequency (i.e., iω) and which do not generally possess an analytical
expression. This makes any time domain transform hard to perform. The goal of the present paper is
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to provide a possible answer to this question by targeting the problem of infinite 1D periodic structures
subject to localized time-dependent excitations. These are structures which are frequently encountered
in mechanical engineering, e.g., railway tracks or slender periodic beam-like structures. In order to
stay as close as possible to a classical FE modeling, a finite FE mesh of a structure truncated at
some finite extent from the excitation sources is considered (see Fig. 1). This allows analyzing the
evanescent near-field effect in the vicinity of the excitations, but also, analyzing structures which are
not necessarily strictly periodic in that region and which are modeled by finite elements. In this case,
the coupling effect with the rest of the infinite structure — i.e., two semi-infinite periodic structures
that would expand to the left and right directions at the left and right boundaries of the truncated
structure — are taken into account via absorbing BCs. Although easy established in the frequency
domain via the WFE method — i.e., by retaining only the waves which propagate outwards from the
structure to the left or right semi-infinite structure — these absorbing BCs cannot be easily converted
to the time domain for the reasons mentioned earlier.

In this paper, an original approach well suited for modeling periodic structures with absorbing
BCs in the time domain is proposed. Within the FE framework, the periodic structures are usually
modeled by means of vectors of displacements, velocities and accelerations. The key idea of the
present work is to consider vectors of supplementary variables for modeling absorbing BCs by means of
classical second-order time differential equations. In this sense, a global second-order time differential
equation can be proposed for modeling a periodic structure with absorbing BCs, which can be easily
integrated via the Newmark algorithm. The advantages of the proposed approach compared to the
aforementioned ones are: (i) it is well adapted to the analysis of periodic structures like those made
up of arbitrary-shaped substructures (e.g., 2D substructures); (ii) it can be easily implemented in
an FE model and yields second-order time differential equations which are standard and easy to
solve. The key steps of the proposed approach are summarized as follows. First, the absorbing
BCs are expressed in the frequency domain via impedance matrices and the WFE method. Then,
the impedance matrices are decomposed via rational approximations using rational functions with
computed poles and matrices of residues. These rational functions can be reformulated in terms of
mass, damping and stiffness matrices by using vectors of supplementary variables at the left and right
boundaries of the structure in a similar way to the works in [29–31]. Finally, by assembling these
new matrices together with the FE mass, damping and stiffness of the structure, this yields a classical
dynamic matrix system in the time domain which can be solved by the Newmark algorithm.

The rest of the paper is organized as follows. In Sec. 2, the main steps of the WFE method
are recalled. The FE modeling of a periodic structure of finite length — i.e., with a finite number
of substructures — subject to time-dependent excitations and absorbing BCs at its left and right
ends is presented. The related impedance matrices, in the frequency domain, are formulated. Also,
the strategy to express the absorbing BCs in the time domain is proposed. The Newmark integration
scheme used to solve the equation of motion of the structure is finally detailed. In Sec. 3, the proposed
approach is numerically validated to predict the time response of an infinite Euler-Bernoulli beam lying
on an elastic foundation and subject to a point harmonic force, where analytical solutions exist. In Sec.
4, the proposed approach is used to describe the time response of two periodic structures involving 2D
substructures. Point forces of harmonic type or Ricker wavelet type (shock) are analyzed. Numerical
comparisons with an equivalent infinite full FE model are brought. Concluding remarks are finally
brought in Sec. 5

2. Theory

2.1. General problem

The present paper investigates the dynamic response of infinite 1D periodic structures subject
to time-dependent loadings (e.g., shocks), and the modeling of such infinite structures by means of
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structures of finite length and appropriate absorbing BCs for the waves escaping from excitations.
For instance, a schematic of a periodic structure made up of N = 10 identical substructures subject
to time-dependent forces and absorbing BCs is shown in Fig. 1. The substructures under concern
can be of arbitrary shape — e.g., 2D substructures as shown in Fig. 2 — and are supposed to be
linear, elastic, isotropic and damped (viscous damping). Also, the excitations are supposed to be
confined to a part of the structure encompassing those substructures and bounded by two left and
right boundaries SL and SR, as shown in Fig. 1, where absorbing BCs are considered. From a physical
point of view, these absorbing BCs mean that the energy is escaping towards infinity and that no
wave comes from infinity. The purpose of the present paper is to propose a FE model which is well
suited for time response analysis of such truncated periodic structures via appropriate “time-based”
absorbing conditions on SL and SR to describe semi-infinite structures at both sides.

Figure 1: Schematic of a periodic structure with N = 10 substructures subject to time-dependent excitations and semi-
infinite BCs.

2.2. WFE method

The wave propagation analysis in 1D periodic structures can be conducted with the WFE method
[9, 11, 47]. The basics of the method are recalled hereafter. Let us consider infinite structures under
harmonic disturbance eiωt which are built from identical substructures as shown in Fig. 2. Those
substructures are supposed to share the same FE mesh, and are modeled by means of identical mass,
damping and stiffness matrices Ms, Cs and Ks. The related dynamic equilibrium equation is given
by:

Dsqs = Fs, (1)

where qs and Fs refer to the displacement vector and the force vector (respectively), and where Ds

is the dynamic stiffness matrix of the substructures (similar for all the substructures) expressed by
Ds = −ω2Ms + iωCs + Ks.

The FE mesh of a substructure is shown in Fig. 2, and involves left (L) and right (R) boundaries
which are described with the same number n of degrees of freedom (DOFs). Rearranging Eq. (1)
yields the following transfer matrix relation between the right and left boundaries of the substructure:

usR = SsusL, (2)

where usR and usL are 2n× 1 state vectors expressed by:

usR =

[
qsR
Fs
R

]
, usL =

[
qsL
−Fs

L

]
. (3)

Also, Ss is a symplectic 2n× 2n matrix (also called transfer matrix) expressed by:

Ss =

[
−(Ds∗

LR)
−1Ds∗

LL −(Ds∗
LR)
−1

Ds∗
RL −Ds∗

RR(D
s∗
LR)
−1Ds∗

LL −Ds∗
RR(D

s∗
LR)
−1

]
, (4)
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Figure 2: Periodic structure of infinite length, and FE mesh of a substructure.

where Ds∗ refers to the dynamic stiffness matrix of the substructure condensed on the left and right
boundaries [13].

The eigenvalues and eigenvectors of the transfer matrix Ss occur in pairs as (µj ,φj) and (µ?j =
1/µj ,φ

?
j ) with |µj | < 1 (see [10] for further details about the computation of the eigensolutions of Ss).

Let us denote by d the substructure length, i.e., along the main direction of the periodic structure.
According to the Bloch’s theorem [48], the eigenvalues of Ss have the meaning of wave parameters
which are given by µj = e−ikjd and µ?j = eikjd (kj being the wavenumbers); also, the eigenvectors φj
(resp. φ?j ) have the meaning of wave shapes, for the waves traveling to the right and left directions
(respectively) of the periodic structure. Those vectors of wave shapes are of size 2n×1 and are usually
partitioned as follows:

φj =

[
φqj

φFj

]
, φ?j =

[
φ?qj
φ?Fj

]
, (5)

where φqj and φ?qj (resp. φFj and φ?Fj) are n × 1 vectors involving displacement (resp. force) com-
ponents. The related n× n matrices of wave shapes — namely, Φq, Φ?

q, ΦF and Φ?
F — are given by:

Φq = [φq1 · · ·φqn] , Φ?
q = [φ?q1 · · ·φ?qn] , ΦF = [φF1 · · ·φFn] , Φ?

F = [φ?F1 · · ·φ?Fn]. (6)

2.3. Absorbing boundary conditions in the frequency domain

Consider a periodic structure involving a finite number N of substructures which is enclosed
between two left and right boundaries SL and SR where absorbing BCs are considered (see Fig. 1).
Such BCs are used to describe the coupling effect between the periodic structure and two semi-infinite
periodic structures, not shown here, that would expand to the left and right directions. The related
impedance matrices for the left and right boundaries SL and SR — namely, ZL and ZR — can be
defined, in the frequency domain, as follows:

FL = ZLqL , FR = ZRqR, (7)

where qL and qR (resp. FL and FR) are the displacement (resp. force) vectors (size n × 1) for the
periodic structure on SL and SR. Following the WFE procedure and expanding those vectors on the
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basis of wave shapes, this yields [13]:

qL = Φ?
qQ

?
L , qR = ΦqQR, (8)

and

FL = −Φ?
FQ

?
L , FR = ΦFQR, (9)

where Q?
L (resp. QR) is the vector of wave amplitudes, at position SL (resp. SR), for the waves traveling

to the left (resp. right) direction of the structure. The fact that left-going (resp. right-going) waves are
only considered at SL (resp. SR) results from the absorbing BC, i.e., the fact that no wave comes from
infinity. Eq. (8) yields Q?

L = (Φ?
q)
−1qL and QR = (Φq)

−1qR and, therefore, the following expressions
for the impedance matrices:

ZL = −Φ?
F(Φ

?
q)
−1 , ZR = ΦF(Φq)

−1. (10)

Note that, withing the WFE framework, Φq, Φ?
q, ΦF and Φ?

F, and therefore ZL and ZR, are matrix-
valued functions of the frequency/pulsation ω (or iω). The thing is, the dependency of these matrices
on iω is not straightforward, i.e., complicated functions which do not generally possess an analytical
expression. The issue is linked to the numerical steps involved in the WFE method (derivation of
a transfer matrix, resolution of an eigenproblem, among others) which makes these matrix-valued
functions hard to figure out. To solve this problem, it is proposed to recast Eq. (7) as two alternative
matrix equations involving new impedance matrices which are simply described in terms of second-
order polynomials of iω. This provides a simple way to express absorbing BCs, for the periodic
structure, in the time domain. The strategy is explained as follows.

Let us decompose the impedance matrices ZL and ZR via rational approximations (following similar
ideas as in [49–51] for approximating transfer functions):

ZL =
P∑
k=1

RLk

iω − pLk
+ KL , ZR =

P∑
k=1

RRk

iω − pRk
+ KR, (11)

where pLk and pRk denote poles (k = 1, . . . , P ), and RLk and RRk denote matrices of residues. Some of
these usually appear in conjugate pairs, i.e., (pLk, pLk) and (pRk, pRk), and (RLk,RLk) and (RRk,RRk).
In this case, it can be easily proven that:

RLk

iω − pLk
+

RLk

iω − pLk
= 2

iω<{RLk} − <{pLkRLk}
−ω2 − 2iω<{pLk}+ |pLk|2

,

RRk

iω − pRk
+

RRk

iω − pRk
= 2

iω<{RRk} − <{pRkRRk}
−ω2 − 2iω<{pRk}+ |pRk|2

. (12)

As a result, Eq. (11) leads to:

ZL =

Q∑
k=1

2
iω<{RL(2k)} − <{pL(2k)RL(2k)}
−ω2 − 2iω<{pL(2k)}+ |pL(2k)|2

+

P∑
k=2Q+1

RLk

iω − pLk
+ KL,

ZR =

Q∑
k=1

2
iω<{RR(2k)} − <{pR(2k)RR(2k)}
−ω2 − 2iω<{pR(2k)}+ |pR(2k)|2

+
P∑

k=2Q+1

RRk

iω − pRk
+ KR, (13)

where 2Q < P . To remove the denominator terms in Eq. (13), let us introduce n × 1 vectors of
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supplementary variables XLk and XRk, and let us rewrite Eq. (7) by means of Eq. (13) as follows:

FL =

Q∑
k=1

2
(
iω<{RL(2k)} − <{pL(2k)RL(2k)}

)
XLk +

P∑
k=2Q+1

RLk(iω)XL(k−Q) + KLqL,

FR =

Q∑
k=1

2
(
iω<{RR(2k)} − <{pR(2k)RR(2k)}

)
XRk +

P∑
k=2Q+1

RRk(iω)XR(k−Q) + KRqR, (14)

where:(
−ω2 − 2iω<{pL(2k)}+ |pL(2k)|2

)
XLk = qL for k = 1, . . . , Q,(

−ω2 − 2iω<{pR(2k)}+ |pR(2k)|2
)
XRk = qR for k = 1, . . . , Q,

(−ω2 − iωpLk)XL(k−Q) = qL for k = (2Q+ 1), . . . , P,

(−ω2 − iωpRk)XR(k−Q) = qR for k = (2Q+ 1), . . . , P. (15)

Finally, let us introduce the following (P −Q)n× 1 vectors XL and XR defined by:

XL =



XL1
...

XLQ

XL(Q+1)
...

XL(P−Q)


, XR =



XR1
...

XRQ

XR(Q+1)
...

XR(P−Q)


. (16)

Then, Eqs. (14) and (15) yield:[
KL(qq) KL(qX)

KL(Xq) KL(XX)

] [
qL

XL

]
=

[
FL

0

]
,

[
KR(qq) KR(qX)

KR(Xq) KR(XX)

] [
qR

XR

]
=

[
FR

0

]
, (17)

where

KL(qq) = KL,

KL(qX) =
[

2iω<
{[

RL(2) · · ·RL(2Q)

]}
− 2<

{[
pL(2)RL(2) · · · pL(2Q)RL(2Q)

]}
iω
[
RL(2Q+1) · · ·RLP

] ]
,

KL(Xq) =

[
−1Q×1 ⊗ In

−1(P−2Q)×1 ⊗ In

]
,

KL(XX) =

 blkdiag
{(
−ω2 − 2iω<{pL(2k)}+ |pL(2k)|2

)
In
}Q
k=1

0

0 blkdiag
{

(−ω2 − iωpLk)In
}P
k=2Q+1

 ,
(18)

and

KR(qq) = KR,

KR(qX) =
[

2iω<
{[

RR(2) · · ·RR(2Q)

]}
− 2<

{[
pR(2)RR(2) · · · pR(2Q)RR(2Q)

]}
iω
[
RR(2Q+1) · · ·RRP

] ]
,

KR(Xq) =

[
−1Q×1 ⊗ In

−1(P−2Q)×1 ⊗ In

]
,

KR(XX) =

 blkdiag
{(
−ω2 − 2iω<{pR(2k)}+ |pR(2k)|2

)
In
}Q
k=1

0

0 blkdiag
{

(−ω2 − iωpRk)In
}P
k=2Q+1

 ,
(19)
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where ⊗ denotes the Kronecker product. The block components of the matrices occurring in Eqs.
(18) and (19) represent polynomials of iω of orders 0, 1 or 2, which as such can be simply and quickly
convert to the time domain (see hereafter).

2.4. Absorbing boundary conditions in the time domain

By separating the terms of identical powers of iω in Eq. (17), and by invoking the classical time-
frequency transforms q(ω) → q(t), iωq → q̇, −ω2q → q̈ and X(ω) → X(t), iωX → Ẋ, −ω2X → Ẍ
(where dot and double-dot notations mean single and double time derivatives, respectively), this yields:

ML

[
q̈L

ẌL

]
+CL

[
q̇L

ẊL

]
+KL

[
qL

XL

]
=

[
FL

0

]
, MR

[
q̈R

ẌR

]
+CR

[
q̇R

ẊR

]
+KR

[
qR

XR

]
=

[
FR

0

]
,

(20)

where:

ML =


0 0 0

0 blkdiag {In}Qk=1 0

0 0 blkdiag {In}Pk=2Q+1

 ,

CL =


0 2<

{[
RL(2) · · · RL(2Q)

]} [
RL(2Q+1) · · · RLP

]
0 blkdiag

{
−2<{pL(2k)}In

}Q
k=1

0

0 0 blkdiag {−pLkIn}Pk=2Q+1

 ,

KL =


KL −2<

{[
pL(2)RL(2) · · · pL(2Q)RL(2Q)

]}
0

−1Q×1 ⊗ In blkdiag
{
|pL(2k)|2In

}Q
k=1

0

−1(P−2Q)×1 ⊗ In 0 0

 ,
(21)

and

MR =


0 0 0

0 blkdiag {In}Qk=1 0

0 0 blkdiag {In}Pk=2Q+1

 ,

CR =


0 2<

{[
RR(2) · · · RR(2Q)

]} [
RR(2Q+1) · · · RRP

]
0 blkdiag

{
−2<{pR(2k)}In

}Q
k=1

0

0 0 blkdiag {−pRkIn}Pk=2Q+1

 ,

KR =


KR −2<

{[
pR(2)RR(2) · · · pR(2Q)RR(2Q)

]}
0

−1Q×1 ⊗ In blkdiag
{
|pR(2k)|2In

}Q
k=1

0

−1(P−2Q)×1 ⊗ In 0 0

 .
(22)

Let us denote by M, C and K the mass, damping and stiffness matrices of the periodic structure (N
substructures), and let us write the related equation of motion as follows:

Mq̈ + Cq̇ + Kq = F, (23)
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where q = q(t) and F = F(t) are the displacement and force vectors, respectively. In this case, the
force vector is expressed by F = [FT

I FT
L FT

R ] where FL and FR refer to the force vectors on SL and SR
(absorbing BCs), and FI refers to the force vector for the internal DOFs (I) of the structure. Also,
the displacement vector is expressed by q = [qTI qTL qTR ] where qI is the displacement vector for the
internal DOFs. Then, let us rewrite Eq. (23) as follows:MII MIL MIR

MLI MLL MLR

MRI MRL MRR

q̈I

q̈L

q̈R

+

CII CIL CIR

CLI CLL CLR

CRI CRL CRR

q̇I

q̇L

q̇R

+

KII KIL KIR

KLI KLL KLR

KRI KRL KRR

qI

qL

qR

 =

FI

FL

FR

 . (24)

By considering the absorbing BCs (Eq. (20)), this yields:

Mtot


q̈I

q̈L

q̈R

ẌL

ẌR

+ Ctot


q̇I

q̇L

q̇R

ẊL

ẊR

+ Ktot


qI

qL

qR

XL

XR

 =


FI

0
0
0
0

 . (25)

Eq. (25) represents a second-order differential matrix equation for the displacement vector q and the
vector of supplementary variables X = [XT

L XT
R ]T . This indeed represents a classical dynamic equation,

in the time domain, of a structure with absorbing BCs and subject to an input force vector FI = FI(t),
with the only modification that supplementary DOFs are added at the boundaries. Therefore, this
equation can be solved in a standard way via a time integration numerical scheme (e.g., Newmark
scheme).

In (25), the matrices Mtot, Ctot and Ktot are given by:

Mtot =


MII MIL MIR 0 0
MLI MLL MLR 0 0
MRI MRL MRR 0 0

0 0 0 ML(XX) 0

0 0 0 0 MR(XX))

 ,

Ctot =


CII CIL CIR 0 0
CLI CLL CLR −CL(qX) 0

CRI CRL CRR 0 −CR(qX)

0 0 0 CL(XX) 0

0 0 0 0 CR(XX))

 ,

Ktot =


KII KIL KIR 0 0
KLI KLL −KL(qq) KLR −KL(qX) 0

KRI KRL KRR −KR(qq) 0 −KR(qX)

0 KL(Xq) 0 KL(XX) 0

0 0 KR(Xq) 0 KR(XX)

 ,
(26)
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where:

ML(XX) =

[
blkdiag {In}Qk=1 0

0 blkdiag {In}Pk=2Q+1

]
,

CL(qX) =
[

2<
{[

RL(2) · · · RL(2Q)

]} [
RL(2Q+1) · · · RLN

] ]
,

CL(XX) =

 blkdiag
{
−2<{pL(2k)}In

}Q
k=1

0

0 blkdiag {−pLkIn}Pk=2Q+1

 ,
KL(qq) = KL,

KL(qX) =
[
−2<

{[
pL(2)RL(2) · · · pL(2Q)RL(2Q)

]}
0
]
,

KL(Xq) =

[
−1Q×1 ⊗ In

−1(P−2Q)×1 ⊗ In

]
,

KL(XX) =

[
blkdiag

{
|pL(2k)|2In

}Q
k=1

0

0 0

]
,

(27)

and

MR(XX) =

[
blkdiag {In}Qk=1 0

0 blkdiag {In}Pk=2Q+1

]
,

CR(qX) =
[

2<
{[

RR(2) · · · RR(2Q)

]} [
RR(2Q+1) · · · RRN

] ]
,

CR(XX) =

 blkdiag
{
−2<{pR(2k)}In

}Q
k=1

0

0 blkdiag {−pRkIn}Pk=2Q+1

 ,
KR(qq) = KR,

KR(qX) =
[
−2<

{[
pR(2)RR(2) · · · pR(2Q)RR(2Q)

]}
0
]
,

KR(Xq) =

[
−1Q×1 ⊗ In

−1(P−2Q)×1 ⊗ In

]
,

KR(XX) =

[
blkdiag

{
|pR(2k)|2In

}Q
k=1

0

0 0

]
.

(28)

2.5. Solution by implicit methods

Let us rewrite Eq. (25) in concise form as follows:

Mtotÿ + Ctotẏ + Ktoty = Ftot, (29)

where

y = y(t) =


qI(t)
qL(t)
qR(t)
XL(t)
XR(t)

 , Ftot = Ftot(t) =


FI(t)

0
0
0
0

 . (30)
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Eq. (29) can be solved by means of the classical Newmark algorithm. Hence, consider a time step of
∆t and define the following vector yn = y(n∆t) which represents the vector y expressed at a discrete
time n∆t for n = 0, 1, 2, . . .. Following the Newmark scheme, one has:

yn+1 = ỹn+1 + β∆t2ÿn+1,

ẏn+1 = ˜̇yn+1 + γ∆tÿn+1, (31)

where

ỹn+1 = yn + ∆tẏn + (
1

2
− β)∆t2ÿn,

˜̇yn+1 = ẏn + (1− γ)∆tÿn, (32)

and

ÿn+1 =
1

β∆t2
(yn+1 − ỹn+1). (33)

Also, in Eq. (31), γ and β are the so-called Newmark parameters, e.g., γ = 1/2 and β = 1/4 (average
constant acceleration rule). The residue of relation (29) is given by:

r(y) = Mtotÿ + Ctotẏ + Ktoty − Ftot. (34)

From the knowledge of the solution at n∆t, one has to find the solution at the subsequent time
(n+ 1)∆t such that:

r(yn+1) = Mtotÿ
n+1 + Ctotẏ

n+1 + Ktoty
n+1 − Ftot(tn+1)

=
1

β∆t2
Mtot(y

n+1 − ỹn+1) + Ctot(˜̇yn+1 +
γ

β∆t
(yn+1 − ỹn+1))

+Ktoty
n+1 − Ftot(tn+1)

= 0. (35)

The solution at (n+ 1)∆t follows by solving a linear system:

M̃yn+1 = Fn+1, (36)

where:

M̃ =
1

β∆t2
Mtot +

γ

β∆t
Ctot + Ktot,

Fn+1 =
1

β∆t2
Mtotỹ

n+1 −Ctot(˜̇yn+1 − γ

β∆t
ỹn+1) + Ftot(tn+1). (37)

3. Euler-Bernoulli beam on an elastic foundation

For validation purposes, let us analyze the dynamic response of an infinite Euler-Bernoulli beam
lying on an elastic foundation (lineic stiffness kf) as shown in Fig. 3 and subject to some “localized”
lineic forces f(x, t) for which analytical solutions are available. In this case, the governing equation of
motion of the beam is given by:

ρSv̈ + EI

(
∂4v

∂x4
+ ξ

∂4v̇

∂x4

)
+ kfv = f(x, t), (38)
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where v = v(x, t) represents the transverse displacement, ρ is the density, S is the cross-sectional area,
E is the Young’s modulus, I is the inertia moment, and ξ is a damping parameter. For harmonic
disturbance of the form f(x)eiωt, Eq. (38) leads to:

(−ρSω2 + kf)v + EI(1 + iωξ)
∂4v

∂x4
= f(x), (39)

where v = v(x).

Figure 3: Infinite flexural beam on an elastic foundation.

This simple example of a beam on an elastic foundation aims at illustrating the methodology for
obtaining absorbing BCs in time. There exist plenty of works about the dynamic analysis of beams
with or without elastic foundations. However, even in this simple case, obtaining time absorbing
BCs is not obvious. In fact, only a few works have been conducted on this topic. These mostly
address approximate (not exact) expressions of absorbing BCs for Euler-Bernoulli beams. For instance,
approximate expressions of absorbing BCs in time for Euler-Bernoulli beams have been proposed in
[52]. In this case, the off-diagonal terms of the boundary impedance matrices are ignored, i.e., the
coupling terms between the displacement and the moment and between the force and the rotation.
Also, approximate expressions of absorbing BCs (in time) for beams under moving loads in convected
coordinates have been proposed in [53]. In this case, absorbing BCs are obtained via the use of added
stiffness and damping, tuned at a specific frequency. In [54], absorbing BCs have been derived for
beams discretized by finite difference schemes. In [55], integrodifferential operators have been used
for boundary dynamic feedback control to get absorbing BCs. In [56], artificial absorbing BCs in time
have been proposed, while in [57], the PML method has been used. Finally, in [43], absorbing BCs
for beams lying on a Winkler foundation have been obtained via the use of rational approximations
for low frequencies, and asymptotic analysis and fractional derivatives for high frequencies. In this
case, the proposed rational approximations appear to be roughly similar to those investigated in the
present paper, except that in the present paper, the proposed approach is intended to work for complex
periodic structures (not only for beams) and is not restricted to any low frequency assumptions other
than those raised by the FE modeling.

3.1. Wave shapes: analytical expressions

For this simple case, there exist analytical expressions of the matrices of wave shapes Φq, Φ?
q,

ΦF and Φ?
F, see Eq. (6). Here, the number of boundary DOFs is n = 2. The determination of

these matrices involves solving Eq. (39) with f(x) = 0 (free wave propagation), which yields v =
Q1e

−ikx +Q2e
−kx +Q?1e

ikx +Q?2e
kx where:

k =

(
ρSω2 − kf
EI(1 + iωξ)

)1/4

. (40)

12



Hence, by expressing the transverse displacement v together with the rotation θ = ∂v/∂x, this yields:

[
v
θ

]
= Φq

[
e−ikx 0

0 e−kx

] [
Q1

Q2

]
+ Φ?

q

[
eikx 0

0 ekx

] [
Q?1
Q?2

]
, (41)

where:

Φq =

[
1 1
−ik −k

]
, Φ?

q =

[
1 1
ik k

]
. (42)

Also, by expressing the shearing force V = −EI(∂3v/∂x3) and the bending momentM = EI(∂2v/∂x2),
this yields:[

V
M

]
= ΦF

[
e−ikx 0

0 e−kx

] [
Q1

Q2

]
+ Φ?

F

[
eikx 0

0 ekx

] [
Q?1
Q?2

]
, (43)

where:

ΦF = EIk2
[
−ik k
−1 1

]
, Φ?

F = EIk2
[
ik −k
−1 1

]
. (44)

3.2. Impedance matrices: analytical expressions

Analytical expressions of the impedance matrices follow as ZL = −Φ?
F(Φ

?
q)
−1 and ZR = ΦF(Φq)

−1,

see Eq. (10). In the present case, the matrix inverses (Φ?
q)
−1 and (Φq)

−1 are expressed by:

(Φ?
q)
−1 =

1

1− i

[
1 − 1

k
−i 1

k

]
, (Φq)

−1 =
1

1− i

[
1 1

k
−i − 1

k

]
. (45)

Therefore, the impedance matrices are written as:

ZL = −Φ?
F(Φ

?
q)
−1 = −EIk

2

1− i

[
2ik −(1 + i)

−(1 + i) 2
k

]
, (46)

and

ZR = ΦF(Φq)
−1 = −EIk

2

1− i

[
2ik 1 + i

1 + i 2
k

]
. (47)

These are analytical expressions of the impedance matrices that could also have been obtained nu-
merically by means of the WFE method. For more complex structures (see next section), only those
obtained with the WFE method will be available.

3.3. Numerical results

Consider an infinite beam of rectangular cross-section having the following parameters: height
h = 0.001 m, width b = 0.01 m (i.e., S = bh and I = bh3/12), Young’s modulus E = 2.2 × 1011

Pa, density ρ = 7800 kg/m3, damping parameter ξ = 0.001 s. Also, the lineic stiffness of the elastic
foundation is kf = 1 N/m2. The system is at rest at time t = 0 — i.e., v(x, 0) = 0 and v̇(x, 0) = 0 —
and, for t ≥ 0, it is excited by a point harmonic force of frequency f0 = 5 Hz (at x = 0):

f(x, t) = cos(2πf0t)δ(x) for t ≥ 0. (48)

The harmonic solution of this equation is found by solving Eq. (39) analytically, i.e.,

v(x, t) = <
{(
− i

4k30E0I
e−ik0|x| − 1

4k30E0I
e−k0|x|

)
eiω0t

}
, (49)
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which should match the solution of the equation of motion (38) after a certain time, i.e., once the
transient effects become negligible. Here, the wavenumber k0 is given by Eq. (40) when ω = ω0; also,
E0 = E(1 + iξω0).

On the other hand, the time-space response of the beam can be computed by considering the
proposed approach. Within this framework, a beam of finite length L — i.e., x ∈ [−L/2, L/2] where,
for instance, L = 5 m — excited at x = 0 (Eq. (48)) is considered as shown in Fig. 3. Here, the
system beam-foundation is modeled by means of 500 identical substructures that represent identical
two-node Hermitian beam elements of length d = 0.01 m. For f0 = 5 Hz, this gives a wavelength of
λ = 2π/<{k0} = 0.39 m and, therefore, 39 elements per wavelength. Additional numerical tests (not
presented here) with d = 0.1 m and 4 elements per wavelength also give correct, although less accurate,
results. As for the left and right boundaries x = −L/2 (SL) and x = L/2 (SR), they are described
via absorbing BCs, see Secs. 2.3 and 2.4. The rational approximations of the impedance matrices ZL

and ZR with P poles/residues (see Eqs. (11)) are computed with the MATLAB’s rationalfit function.
Especially, the components of the impedance matrix ZR issued from different orders P are plotted and
compared to the analytical expressions given by Eq. (47) as shown in Fig. 4. Results show stable
curves which closely match the analytical solutions for orders larger than P = 7. Besides, the relative
errors between the proposed and analytical curves are given in Table 1 for orders up to P = 12 which
is the value proposed by MATLAB and which will be used hereafter. In this case, the relative error
is smaller than −80 dB, which appears to be enough to meet good convergence. The relative error
elm on the lm component of the impedance matrix is defined as:

elm =

(
∑
i

|Zrat
lm (ωi)− Zlm(ωi)|2)1/2

(
∑
i

|Zlm(ωi)|2)1/2
, (50)

with Zlm(ωi) the lm component of the impedance matrix at the discrete circular frequency ωi, and
Zrat
lm (ωi) its rational approximation.

Table 1: Relative errors between the proposed and analytical solutions (components of the impedance matrix ZR) for
different orders P .

Relative error

Order P 3 7 10 12

Component (1,1) 0.261 0.011 5.46× 10−4 2.88× 10−5

Component (1,2) 0.106 4.51× 10−3 2.54× 10−4 6.83× 10−6

Component (2,2) 0.082 6.90× 10−3 5.49× 10−4 3.47× 10−6

Also, the transverse displacement of the beam can be computed. This involves solving the dif-
ferential matrix equation (29) with the Newmark algorithm where ∆t = 0.01 s, y0 = 0 and ẏ0 = 0.
The related transverse displacement field, at t = 4 s and t = 20 s, are shown in Fig. 5 along with
the analytical harmonic solution, Eq. (39). At time t = 4 s, the proposed and analytical solutions
appear to be slightly different which is explained since transient effects are taken into account in the
proposed solution, while they are not described with the analytical solution. Those transient effects
become negligible after a certain time, e.g., t = 20 s as shown in Fig. 5. In this case, the proposed
solution closely matches the analytical one, as expected.

Finally, Fig. 6 shows the history of the displacement solution at position x = L/2. Again, it
is seen that, after a certain time (transient period), the solution issued from the proposed approach
stabilizes towards the harmonic solution. Fig. 7 presents identical results in term of velocity where
the proposed solution shows better accuracy than the displacement solution. Similar trends can be
found for the acceleration (not displayed here).
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Figure 4: Real and imaginary parts of the components of the impedance matrix ZR: (green crosses) Analytical solutions;
(blue line) proposed solutions with P = 3; (red line) proposed solutions with P = 7; (orange line) proposed solutions
with P = 10; (purple line) proposed solutions with P = 12.
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Figure 5: Transverse displacement field of the beam on the elastic foundation at t = 4 s (left) and t = 20 s (right): (blue
crosses) Proposed approach; (red line) analytical harmonic solution.

Note that the proposed displacement solution is characterized by low frequency “ripples” (Fig. 6,
left side) which are, however, less pronounced for the velocity solution. These correspond to transient
phenomena of low frequencies generated by the initial conditions — i.e., the nullity of the displacement
and the velocity at t = 0 s — which make the proposed solution far from the harmonic solution. The
authors were able to verify through additional simulations that these ripples can be decreased by
adding viscosity, e.g., by increasing ξ or by adding viscosity on the term kf. More generally, these
ripples are decreasing over time as this could be observed on an interval of [0 , 40] s (not reproduced
here).

Figure 6: Time response at x = L/2 for t ∈ [0 , 20] s (left) and t ∈ [19 , 20] s (right). (blue line and crosses) Proposed
approach; (red line) analytical theory, harmonic response.
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Figure 7: Time response of the velocity at x = L/2 for t ∈ [0 , 20] s (left) and t ∈ [19 , 20] s (right). (blue line and
crosses) Proposed approach; (red line) analytical theory, harmonic response.

4. Periodic structure with 2D substructures

4.1. Square substructures with holes

Periodic structures are usually made up of substructures of complex shapes, which as such cannot
be modeled analytically. Such periodic structures may concern, for instance, a 2D beam with periodic
distributions of holes and elastic supports (springs of stiffness Ks) as shown in Fig. 8. Here, square
substructures of dimensions 2 × 2 m2 with holes of radius 0.4 m are considered which are similar to
those depicted in Fig. 2. The FE mesh of a substructure is generated on MATLAB with the DistMesh
algorithm [58], and involves 2D linear plane stress triangular elements (three nodes) with n = 26
DOFs on the left and right boundaries. Regarding the modeling of the periodic supports, a nodal
stiffness of Ks/2 (vertical direction) is added to the FE model of the substructures at the left and
right boundaries (bottom node). Other substructure parameters are: thickness e = 0.005 m, Young’s
modulus E = 7 × 1010 Pa, Poisson’s ratio ν = 0.35, density ρ = 2700 kg/m3, and stiffness Ks = 105

N/m. Rayleigh-type damping matrices Cs = aMs + bKs (see Sec. 2.2) are also considered where
a = 0.01 s−1 and b = 5× 10−5 s.

Figure 8: Schematic of an infinite periodic structure (square substructures with holes) with periodic elastic supports.

The time response of the infinite periodic structure subject to a vertical point force F0(t) at x = 0
(top node) is analyzed. Two kinds of excitations are considered, i.e., a harmonic force and a Ricker
wavelet of frequency 100 Hz. Within the framework of the proposed approach, a periodic structure
involving N = 20 substructures and absorbing BCs is considered as shown in Fig. 8. In this case, the
structure has a length of L = 40 m and is supposed to be long enough to gather useful information
about the local/evanescent displacement field in the vicinity of the excitation. The related FE model
has been detailed in Secs. 2.3 and 2.4. In this case, the rational approximations of the impedance
matrices ZL and ZR (Eq. (11)) are expressed by means of P = 15 poles/residues. The time response
of the structure is computed over a time range of [0 , 0.1] s by solving the differential matrix equation
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(29) with the Newmark algorithm where ∆t = 10−4 s, y0 = 0 and ẏ0 = 0. For comparison purposes,
an equivalent FE model of an “infinite” structure with a larger number of substructures (200) is
considered and simulated over the time range [0 , 0.1] s which is supposed to be small enough to
prevent wave reflections (free boundaries).

4.1.1. Harmonic force

Consider a harmonic point force of magnitude F0(t) = 104 cos(2π × 100t) acting at x = 0, and
assume that the structure is at rest at t = 0. The time response is analyzed over a time range of
[0 , 0.1] s which is supposed to be broad enough to include several oscillations (10 in this case) and
cover the transient phase. Especially, the time variation of the transverse displacement at x = 20
m (right boundary, top node) can be computed as shown in Fig. 9. It is shown that the proposed
solution perfectly matches the reference one over the whole time range. It is also numerically stable,
i.e., a smooth curve that well predicts the oscillating nature of the signal.

Figure 9: Periodic structure (square substructures with holes) subject to a harmonic force: time response at x = L/2
(top node, vertical displacement). (blue crosses) Proposed approach; (red line) reference FE method.

Additional simulations are made which concern the deformed shape of the structure at t = 0.1 s,
where a scaling factor of 5× 103 is used to magnify the displacement levels for a better understanding
(see Fig. 10). Again, results show that the proposed solution is in perfect agreement with the reference
one, which gives credit to the present work.

To further assess the accuracy of the proposed approach, the following relative error based on the
displacement vector of the periodic structure (central part with 20 substructures) is investigated:

err =
max
n
‖q(tn)− qFE(tn)‖2
max
n
‖qFE(tn)‖2

, (51)

where q = [qTI qTL qTR ]T and qFE = [(qFE
I )T (qFE

L )T (qFE
R )T ]T are the displacement vectors of the periodic

structure computed with the proposed approach and the FE method, respectively. Also, ‖•‖2 denotes
the 2−norm. More precisely, the proposed relative error err is defined as the ratio between the
maximum error ‖q(tn)−qFE(tn)‖2 (among all the discrete times tn considered) and the maximum value
of ‖qFE(tn)‖2 (for the same discrete times). In the present case, this relative error yields err = 1.07%
which, therefore, validates the proposed approach.

4.1.2. Ricker wavelet force pulse

Consider now a Ricker wavelet, which might represent some shock applied to the structure at
x = 0:

F0(t) = 104 ×
[
1− 2π2f20 (t− t0)2

]
e−π

2f20 (t−t0)2 for t ≥ 0, (52)
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Figure 10: Periodic structure (square substructures with holes) subject to a harmonic force: deformed shape at t = 0.1
s.

where f0 = 100 Hz and t0 = 5× 10−3 s. Again, the time history of the structure at x = 20 m can be
computed as shown in Fig. (11). In this case again, the proposed solution appears to be numerically
stable and in perfect agreement with the reference FE solution. A good match between those solutions
is also observed regarding the deformed shapes of the structure, e.g., at t = 0.01 s as shown in Fig. 12.
Also, the relative error made for computing the displacement vector of the periodic structure with the
proposed approach can be assessed via Eq. (51), which gives err = 1.05%. This completely validates
the proposed approach.

Figure 11: Periodic structure (square substructures with holes) subject to a Ricker wavelet pulse: time response at
x = L/2 (top node, vertical displacement). (blue crosses) Proposed approach; (red line) reference FE method.

4.2. Square substructures with circular rubber layers

To further highlight the relevance of the proposed approach, a second test case is considered which
concerns a periodic structure made up of square substructures with circular rubber layers, as shown
in Fig. 13. The material properties of the inner parts (cores) and outer parts of the substructures —
i.e., inside and outside the rubber layers — are similar to those depicted in Sec. 4.1. As for the rubber
layers, the properties are: inner and outer radii of 0.3 m and 0.7 m, Young’s modulus of 1.5 × 108

Pa, Poisson’s ratio of 0.48 and density of 950 kg/m3. The FE mesh of a substructure is shown in
Fig. 13 and involves 2D linear plane stress triangular elements with n = 42 DOFs on the left and
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Figure 12: Periodic structure (square substructures with holes) subject to a Ricker wavelet pulse: deformed shape at
t = 0.01 s.

right boundaries. Each substructure therefore includes a soft layer surrounding a stiff core, and in this
sense, it is likely to behave in a more complicated way than previously.

Figure 13: FE mesh of a substructure with a circular rubber layer (in blue).

Again, the time response of an infinite periodic structure consisting of an infinite number of
substructures lying on periodic elastic supports (stiffness Ks = 105 N/m) is analyzed, in a quite
analogous way than previously (see Fig. 8). Here, the structure is subject to a vertical point force
F0(t) (x = 0, top node) which represents a Ricker wavelet force pulse whose expression is similar to
Eq. (52). Concerning the proposed approach, a periodic structure involving N = 20 substructures
and absorbing BCs is considered (as before, see Fig. 8). In this case, the rational approximations of
the impedance matrices ZL and ZR (Eq. (11)) are expressed by means of P = 19 poles/residues. Also,
for comparison purposes, an equivalent FE model with 200 substructures is considered.

The time response of the structure (time range of [0 , 0.1] s) issued from the proposed approach is
displayed in Fig. 14 along with the FE solution. In this case again, the proposed approach succeeds
in predicting the dynamic behavior of the periodic structure over the whole time period. Fig. 14
shows the time variation of the transverse displacement at x = 20 m (right boundary, top node). The
curve exhibits a main oscillation (say, between 0.02 s and 0.03 s) followed by several other oscillations
of lower magnitudes which reflect the internal dynamic behavior of the substructures (motion of the
cores embedded in the rubber layers). A closer look reveals that the deformed shape of the periodic
structure, obtained via the proposed approach (e.g., at t = 0.01 s) also perfectly matches the reference
solution, as shown in Fig. 15 where, for a better focus, only the deformations of the 10 central
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substructures are shown. Especially, the “core motion” phenomenon inside the substructures is well
highlighted. In this case, the relative error made for computing the displacement vector of the periodic
structure with the proposed approach (Eq. (51)) is err = 0.83%.

Figure 14: Periodic structure (square substructures with circular rubber layers) subject to a Ricker wavelet pulse: time
response at x = L/2 (top node, vertical displacement). (blue crosses) Proposed approach; (red line) reference FE method.

Figure 15: Periodic structure (square substructures with circular rubber layers) subject to a Ricker wavelet pulse:
deformed shape at t = 0.01 s.

5. Conclusion

A FE procedure has been proposed to model infinite periodic structures subject to localized time-
dependent excitations. This involves considering a structure with a finite number of substructures
encompassing the excitations, and absorbing BCs to model semi-infinite structures outside the exci-
tation region. The WFE method has been used to express the absorbing BCs by means of impedance
matrices, in the frequency domain. Those impedance matrices have been rewritten in terms of poly-
nomials of the frequency iω up to order 2 which can be simply converted to the time domain. The
procedure works by decomposing the impedance matrices in terms of rational functions, and by adding
vectors of supplementary variables. As a result, a periodic structure can be modeled using a classical
second-order time differential equation which can be integrated with the Newmark algorithm. Numer-
ical experiments have been proposed which have clearly demonstrated the accuracy of the approach.
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Several test cases have been considered which concern an infinite Euler-Bernoulli beam on an elas-
tic foundation subject to a point harmonic force, and two periodic structures with 2D substructures
subject to different kinds of point forces (harmonic force and Ricker wavelet). Follow-on works could
include the analysis of infinite periodic structures with localized nonlinear effects, e.g., subject to fast
loadings of high magnitudes (shocks, blast).
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