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Abstract: In this paper, we consider the wave equation with Dirichlet boundary control subject
to a nonlinearity, the kind of which includes (but is not restricted to) pointwise saturation
mappings. The case where only a subset of the boundary is actuated is allowed. Initial data is
taken in the optimal energy space associated with Dirichlet boundary control – which means
that we deal with (very) weak solutions. Using nonlinear semigroup techniques, we prove that
the associated closed-loop system is asymptotically stable. Some numerical simulations are given
to illustrate the stability result.
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1. INTRODUCTION

The general context of this paper is the study of infinite-
dimensional systems in the presence of nonlinearities in
the feedback loop, and in particular, saturation mappings,
which represent those most commonly met in applica-
tions. Even for finite-dimensional linear systems, satu-
rating actuators can be a source of instability and give
rise to unbounded trajectories – see (Tarbouriech et al.,
2011, Example 1.1) for instance. In the case of infinite-
dimensional systems, an early abstract treatment is given
in Slemrod (1989), where the feedback is bounded with
respect to the state space and the saturation concerns its
norm. Here, we consider wave dynamics with actuation in
the Dirichlet boundary conditions. The precise formulation
of the control problem is given next.

Let Ω ⊂ Rd (d ≥ 2) be a bounded domain with smooth
boundary Γ, as depicted in Figure 1 for instance. We are
given a relatively open non-empty subset Γ0 of Γ and we
consider the following control system:

∂ttu−∆u = 0 in Ω× (0,+∞), (1a)

u(σ, t) = −g(U(σ, t)) on Γ0 × (0,+∞), (1b)

u(σ, t) = 0 on Γ1 × (0,+∞), (1c)

where U(σ, t) is the control input, Γ1 , Γ \ Γ0, and g is a
real scalar function satisfying the following assumptions:

• g is continuous and nondecreasing;
• g(s) = 0 if and only if s = 0;
• g is globally Lipschitz continuous.

Our prototype case is when g is a pointwise saturation
mapping, which satisfies the assumptions stated above.

In the literature, the problem of boundary stabilization of
the wave equation with saturating input (and more gen-
erally, nonlinear boundary dissipation) has been mainly
considered in the Neumann boundary conditions. In Prieur

Fig. 1. An admissible configuration in R2. Here, the two
parts Γ0 and Γ1 of the boundary Γ are disconnected.

et al. (2016), asymptotic stability of a one-dimensional
wave equation with a boundary velocity feedback subject
to a cone-bounded nonlinearity (which includes saturation
mappings) is studied. Non-uniform decay rates for two and
three-dimensional waves are given in Xu and Xu (2019), for
solutions with smooth initial data. When the nonlinearity
has linear growth at infinity (which of course excludes the
saturating case), uniform decay rate can be achieved, as
in Lasiecka and Tataru (1993).

However, the Dirichlet case is less investigated when it
comes to nonlinear feedback. It appears that the natural
energy space for the wave equation with L2(Γ)-Dirichlet
control is

H , L2(Ω)×H−1(Ω), (2)

where H−1(Ω) is the topological dual of H1
0 (Ω). We give

some additional notation that is required to describe the
control action under consideration here. First, the differ-
ential operator −∆ associated with homogeneous Dirichlet
boundary condition defines a strictly positive self-adjoint
unbounded operator on L2(Ω), which we denote by A,
with bounded inverse A−1. Recall that H−1(Ω) is a Hilbert
space if endowed with the scalar product

(v1, v2)H−1(Ω) , (A−1/2v1, A
−1/2v2)L2(Ω), (3)

where A−1/2 is the square root of A−1 – see (Curtain and
Zwart, 2012, Example 2.2.5). The norm induced by this



scalar product is equivalent to that of the dual space. Let
us now define the following (continuous) energy functional
on H:

E(u, v) ,
1

2

{
‖u‖2L2(Ω) + ‖v‖2H−1(Ω)

}
. (4)

If a solution [u, u′] to (1) is smooth enough, one can derive
the following energy identity:

d

dt
E(u(t), u′(t)) =

∫
Γ0

g(U(σ, t))∂ν [A−1u′(t)] dσ, (5)

where ∂ν denotes the outward normal derivative. Note that
the right-hand side integral is on the actuated region Γ0

of the boundary Γ. Equation (5) motivates the following
choice of feedback:

U(t) = −∂ν [A−1u′(t)], (6)

which then makes the energy nonincreasing. If u′(t) is in
L2(Ω), then it follows from standard elliptic regularity
theory that A−1u′(t) belongs to H2(Ω) – see for instance
(Brezis, 2010, Theorem 9.25); thus, ∂ν [A−1u′(t)] is well-
defined in (say) L2(Γ). It is proved in Lasiecka and
Triggiani (1992) that, in the linear case (i.e. g = id), the
closed-loop system defined by (1) and (6) is exponentially
stable with respect to the norm of H when Γ = Γ0 (the
result still holds under additional assumptions when Γ 6=
Γ0). To the best of our knowledge, there has been no work
extending stability analysis of the aforementionned system
to the nonlinear case. In this paper, we shall prove that the
initial-and-boundary value problem given by (1) and (6)
is well-posed in the Hadamard sense on the energy space
H and that the zero equilibrium is globally asymptotically
stable.

The remainder of the paper is organized as follows. In
Section 2, the main results of the paper are stated, namely
the well-posedness and asymptotic stability of the associ-
ated evolution semigroup; then, the functional formulation
of the closed-loop system defined by (1)-(6) is precised.
In Section 3, some useful properties of the generator of
the semigroup are shown, allowing us to prove the main
theorems. Finally, finite element simulations are given in
Section 4 for illustrative purpose.

Notation. The norm of a given Banach space E is denoted
by ‖ · ‖E and the duality bracket 〈φ, x〉E is used to
write φ(x) for any vector x ∈ E and continuous linear
form φ ∈ E′. We denote by W 1,p(0, T ;E) the set of E-
valued functions f defined on [0, T ] such that, for some

h ∈ Lp(0, T ;H), f(t) = f(0)+
∫ t

0
h(s) ds; then, we say that

f ′ = h in the sense of E-valued distributions. If E is also
a Hilbert space, then its scalar product is written (·, ·)E .
We use dx to denote the Lebesgue measure on Rd and
dσ to denote the induced surface measure on Γ, as in the
formula −

∫
Ω

∆uv dx =
∫

Ω
∇u·∇v dx−

∫
Γ
∂νuv dσ. Finally,

we denote by C∞c (Ω) the space of compactly supported and
infinitely differentiable (real-valued) functions on Ω.

2. PRELIMINARIES AND MAIN RESULTS

2.1 Statement of the main results

We associate with the closed-loop system a nonlinear
unbounded operator A on H with domain D(A), so that
(1)-(6) is recast into a first-order Cauchy problem on H:

Ẋ(t) +A(X(t)) = 0, (7a)

X(0) = X0. (7b)

Proper definition of the operatorA is given in the next sub-
section. We recall that strong solutions to (7) are defined
as absolutely continuousH-valued fonctions satisfying (7a)
for a.e. t in the sense of strong differentiation in H, with
initial data in D(A). Weak solutions are defined as uniform
limits of strong solutions. The well-posedness of the closed-
loop dynamics is stated in the following theorem.

Theorem 1. The nonlinear operator A associated with
the closed-loop system (1)-(6) is densely defined, maximal
monotone and thus generates a strongly continuous semi-
group {St} of (nonlinear) contractions on the energy space
H. Moreover, strong solutions [u, u′] satisfy the energy
identity

d

dt
E(u(t), u′(t)) =

∫
Γ0

g(−∂ν [A−1u′])∂ν [A−1u′] dσ, (8)

in the scalar distribution sense on (0,+∞).

Once the maximal monotone property in Theorem 1 is
proved, that the evolution problem is well-posed in the
Hadamard sense follows from Kato’s theorem and stan-
dard nonlinear semigroup theory – see (Showalter, 2013,
Chapter IV) for instance. Now, we claim that the closed-
loop system is globally asymptotically stable around the
zero equilibrium.

Theorem 2. The evolution semigroup {St} associated
with the closed-loop system (1)-(6) satisfies

lim
t→+∞

‖St[u0, v0]‖H = 0 for all [u0, v0] ∈ H. (9)

Together with the contraction property of {St}, (9) means
that the zero equilibrium is globally asymptotically stable.

Proofs of Theorems 1 and 2 are given in Section 3. Let
us give a sketch of the proof of Theorem 2, which relies
on a LaSalle invariance argument and the Holmgren’s
uniqueness theorem in its global version. It suffices to
prove that the ω-limit set of a given “smooth” initial
condition [u0, v0] ∈ D(A) is reduced to zero. With that
in mind, we show that the ω-limit is comprised of tra-
jectories [w,w′] obeying (1) with the dissipative term
−g(−∂ν [A−1w′])∂ν [A−1w′] vanishing for a.e. (σ, t) in Γ0×
(0,+∞). This is seen using the energy identity (8). As a
consequence, A−1w′ is a (smoother) solution to the wave
equation with homogeneous Dirichlet boundary condition
and vanishing Cauchy data on Γ0 × (0,+∞). At this
point, the global version of Holmgren theorem allows us to
conclude. Of course, we need some compactness properties
of the trajectories, which are obtained by investigating the
properties of the generator A, and in particular, those
of the nonlinear resolvent operator (A + λid)−1. This is
discussed in Section 3 as well.

2.2 Functional settings and definition of the generator

We continue by completing the brief definitions given in
the introduction. We first define A as the isomorphism
between H1

0 (Ω) and H−1(Ω) associated with the Lapla-
cian operator and Dirichlet boundary conditions: for all
(u,w) ∈ H1

0 (Ω)×H1
0 (Ω),

〈Au,w〉H−1(Ω),H1
0 (Ω) ,

∫
Ω

∇u · ∇w dx. (10)



Identifying L2(Ω) with its topological dual so that L2(Ω)
is viewed as a subset of H−1(Ω), we can consider A as a
strictly positive self-adjoint unbounded operator on L2(Ω)
with domain

D(A) ,
{
u ∈ H1

0 (Ω) : Au ∈ L2(Ω)
}
. (11)

Since Ω is smooth, as mentionned earlier, elliptic regularity
results give the explicit characterization

D(A) = H2(Ω) ∩H1
0 (Ω), (12)

with the graph norm of D(A) being equivalent to the norm
of H2(Ω). This also proves that A−1 is a compact operator
on L2(Ω). As a consequence, using spectral decomposition,
we can define the powers As of A for any real s, as well as
Hilbertian structures for the associated domains D(As) –
see (Temam, 2012, Section 2.1). In particular, we recover

D(A1/2) = H1
0 (Ω), and D(A−1/2) = H−1(Ω). (13)

In the sequel, we shall also use that A can be extended,
with the same symbol, as an isomorphism between L2(Ω)
and D(A−1) ' D(A)′.

Furthermore, recall that the trace operator γ : H1(Ω) →
H1/2(Γ) admits a right inverse D satisfying

Df = u, where

{
∆u = 0 in the sense of distributions,

u|Γ = f on Γ.
(14)

We know from the theory of non-homogeneous elliptic
boundary value problems that D can be extended as a
continuous operator mapping L2(Γ) onto the interpolated
Sobolev space H1/2(Ω), which is continuously embedded
into L2(Ω). For the time being, it is enough that we see D
as a continuous linear operator between L2(Γ) and L2(Ω).

We denote by D∗ the adjoint operator of D, which is
uniquely defined as a continuous mapping between L2(Ω)
and L2(Γ) by

(D∗u, h)L2(Γ) = (u,Dh)L2(Ω) (15)

for all u in L2(Ω) and h in L2(Γ). We have the identity

−D∗Au = ∂νu for all u ∈ D(A), (16)

which is shown using Green formula and the characteri-
zation of D(A) given by (12). Also, to take into account
that only Γ0 is subject to the control action, we define a
projection operator P on L2(Γ) as follows:

[Ph](σ) , 1Γ0
(σ)h(σ) for all h ∈ L2(Γ). (17)

Using (16), we can write an operator-theoretic formulation
of the control input:

U(t) = D∗u′(t) (18)

As for the nonlinearity, we allow ourselves a little abuse
of notation and denote by g the (nonlinear) Lipschitz
mapping on L2(Γ) defined by

g(h)(σ) = g(h(σ)) for all h ∈ L2(Γ). (19)

We can finally introduce the unbounded nonlinear opera-
tor A associated with the closed-loop system. It is defined
as follows:

D(A) ,

{
[u, v] ∈ H :

∣∣∣∣∣v ∈ L2(Ω)

A[u+DPg(D∗v)] ∈ H−1(Ω)

}
(20)

and, for all [u, v] ∈ D(A),

A[u, v] , [−v,Au+ADPg(D∗v)]. (21)

If u and v belong to L2(Ω), then A[u + DPg(D∗v)] is in
D(A−1), which contains H−1(Ω); therefore, the definition
above makes sense. The isomorphism properties of A yield

[u, v] ∈ D(A) ⇐⇒

{
v ∈ L2(Ω),

u+DPg(D∗v) ∈ H1
0 (Ω).

(22)

Note that, in general, it does not mean that u ∈ H1(Ω).

3. PROPERTIES OF THE GENERATOR AND
PROOFS

In this section, we discuss some properties of the nonlinear
operator A and we give the proofs of the main results.

3.1 Proof of well-posedness

The following lemma is adapted from (Showalter, 2013,
Lemma 2.1 and Theorem 2.1). Its proof relies on the
Brouwer fixed-point theorem in finite dimension followed
by an application of the Galerkin method.

Lemma 1. Let E be a separable reflexive Banach space
and f ∈ E′. Assume Θ : E → E′ verifies the following
assumptions:

(1) Θ is monotone i.e. 〈Θ(x1)−Θ(x2), x1−x2〉E ≥ 0 for
all x1, x2 ∈ E;

(2) Θ is bounded i.e. S ⊂ E bounded implies Θ(S)
bounded in E′;

(3) For all x1, x2 ∈ E, the scalar function t 7→ 〈Θ(x1 +
tx2), x2〉E is continuous.

If for some ρ > 0, ‖x‖E > ρ implies 〈Θ(x), x〉E > 〈f, x〉E,
then there exists x ∈ E such that Θ(x) = f .

It is used in the proof of Theorem 1, which we give now.

Proof of Theorem 1. The proof is split into four steps.

Step 1: Monotonicity of the operator. Let [u1, v1] and

[u2, v2] in D(A). We write u , u1 − u2 and v , v1 − v2.
Then,

(A[u1, v1]−A[u2, v2], [u1, v1]− [u2, v2])H = −(v, u)L2(Ω)

+(A1/2[u+DPg(D∗v1)−DPg(D∗v2)], A−1/2v)L2(Ω).
(23)

Since A−1/2v ∈ D(A1/2) and A1/2 is self-adjoint, we obtain

(A[u1, v1]−A[u2, v2], [u1, v1]− [u2, v2])H
= (DPg(D∗v1)−DPg(D∗v2), v)L2(Ω)

= (Pg(D∗v1)− Pg(D∗v2), D∗v1 −D∗v2)L2(Γ)

= (g(D∗v1)− g(D∗v2), D∗v1 −D∗v2)L2(Γ0) ≥ 0,

(24)

where we use the nondecreasingness of the nonlinearity g.
Monotonicity of the nonlinear operator A is now proved.

Step 2: Surjectivity. Let λ > 0. Let us prove that
Range(A+ λid) = H. We consider the equation

A[u, v] + λ[u, v] = [f1, f2] in H (25)

and we must find a solution [u, v] ∈ D(A) for any given
[f1, f2] in H. Let assume for a moment that such [u, v]
exists. Then, v satisfies

A[λ−1v +DPg(D∗v)] + λv = f2 − λ−1Af1 in D(A−1).
(26)

Applying A−1 to (26) yields

λ−1v +DPg(D∗v) + λA−1v = A−1f2 − λ−1f1 in L2(Ω).
(27)



The left-hand side (resp. right-hand side) of (27) defines a
linear form Θ(v) ∈ L2(Ω)′ (resp. Ψ ∈ L2(Ω)′). Rewriting
(27) as a variational problem, we seek v ∈ L2(Ω) such that

Θ(v) = Ψ in L2(Ω)′. (28)

Now, let us examine the mapping Θ : v ∈ L2(Ω) 7→ Θ(v) ∈
L2(Ω)′ in order to apply Lemma 1. First, Θ is monotone.
Let v1 and v2 in L2(Ω); then,

〈Θ(v1)−Θ(v2), v1 − v2〉L2(Ω)

= (g(D∗v1)− g(D∗v2), D∗[v1 − v2])L2(Γ0)

+ λ−1‖v1 − v2‖2L2(Ω) + λ‖v1 − v2‖2H−1(Ω) ≥ 0.

(29)

Also, Θ is bounded, since g is a Lipschitz continuous
mapping on L2(Γ), A−1 is a continuous linear operator
on L2(Ω), D∗ is continuous from L2(Ω) into L2(Γ), and
likewise, DP is continuous from L2(Γ) into L2(Ω). Con-
tinuity of the function t 7→ 〈Θ(v1 + tv2), v2〉L2(Ω) follows

from the same arguments. Finally, let v ∈ L2(Ω); again,
we have

〈Θ(v), v〉L2(Ω) − 〈Ψ, v〉L2(Ω)

≥ λ−1‖v‖2L2(Ω) − ‖Ψ‖L2(Ω)′‖v‖L2(Ω) → +∞ (30)

as ‖v‖L2(Ω) goes to +∞. As a consequence, the lemma

provides the existence of v ∈ L2(Ω) satisfying (28). Letting

u , λ−1[f1 + v], we infer from (26) that [u, v] belongs to
D(A) and that (25) is satisfied.

Step 3: Denseness of the domain. We now prove that
D(A) = H. Let [u, v] ∈ H and ε > 0. First, A−1v ∈ H1

0 (Ω),
so we can pick φ ∈ C∞c (Ω) such that ‖A−1v−φ‖2

H1
0 (Ω)
≤ ε.

Then, by continuity of A from H1
0 (Ω) into H−1(Ω),

‖v −Aφ‖2H−1(Ω) ≤ Cε. (31)

where C > 0 does not depend on ε or the data. Moreover,
pick ψ ∈ C∞c (Ω) such that ‖u − ψ‖2L2(Ω) ≤ ε. Since

φ ∈ C∞c (Ω), using (16) we see that

D∗Aφ = −∂νφ = 0, (32)

and g(0) = 0; also, Aφ ∈ L2(Ω), thus [ψ,Aφ] ∈ D(A) and

‖[u, v]− [ψ,Aφ]‖2H ≤ (1 + C)ε. (33)

Step 4: Conclusion. It is now proved that A is a
maximal monotone operator H. The well-posedness of the
evolution semigroup {St} follows from standard nonlinear
semigroup theory – see (Showalter, 2013, Proposition 3.1
and Theorem 4.1A) for instance. It remains to prove the

energy identity (8). Let [u0, v0] ∈ D(A) and [u(t), u′(t)] ,
St[u0, v0]. We have

E(u(t), u′(t)) =
1

2
‖[u(t), u′(t)]‖2H (34)

Hence, t 7→ E(u(t), u′(t)) is absolutely continuous, and for
a.e. t ≥ 0, we have

d

dt
E(u(t), u′(t)) = −([u(t), u′(t)],A[u(t), u′(t)])H

=

∫
Γ0

g(−∂ν [A−1u′(t)])∂ν [A−1u′(t)] dσ

(35)
where we use the calculations made in Step 1 and (16). 2

3.2 Proof of the stability result

As mentionned earlier, we need additional properties of
the solutions in order to carry out the invariance argument

and prove Theorem 2. The next proposition shows that the
nonlinear resolvent of the generator A is well-behaved.

Proposition 1. For any λ > 0, the (nonlinear) resolvent
operator (A+ λid)−1 is well-defined on H and compact.

Recalling that A(0) = 0 and applying (Dafermos and
Slemrod, 1973, Theorem 3), we obtain an important and
useful consequence of Proposition 1: for any [u0, v0] in H,

{St[u0, v0]}t≥0 is a relatively compact subset of H. (36)

The proof of the proposition is given next.

Proof of Proposition 1. Let λ > 0. That A + λid is
onto comes from Step 2 in the proof of Theorem 1. As
for uniqueness, let [f1, f2] ∈ H and consider two solutions
[u1, v1] and [u2, v2] to (25). Then, as in Step 2 of the proof
of Theorem 1, we obtain

λ−1[v1−v2]+DP [g(D∗v1)−g(D∗v2)]+λA−1[v1−v2] = 0.
(37)

Taking the scalar product in L2(Ω) of (37) with v1 − v2

yields

λ−1‖v1 − v2‖2L2(Ω) + λ‖v1 − v2‖2H−1(Ω)

+ (g(D∗v1)− g(D∗v2), D∗v1 −D∗v2)L2(Γ0) = 0.
(38)

Since g is nondecreasing, we infer from (38) that v1 = v2;
thus, [u1, v1] = [u2, v2] and (A+ λid)−1 is well-defined.

Step 1. In what follows, we let [u, v] , (A+λid)−1[f1, f2].
We start with an estimate of the L2(Ω)-norm of v. Again,
v satisfies (27) and we obtain

λ−1‖v‖2L2(Ω) + (g(D∗v), D∗v)L2(Γ0) + λ‖v‖2H−1(Ω)

= (A−1f2 − λ−1f1, v)L2(Ω)

= (A−1/2f2, A
−1/2v)L2(Ω) − λ−1(f1, v)L2(Ω),

(39)

where we used that A−1/2 is self-adjoint. Since the terms
on the left-hand side of (39) are all nonnegative, we have

λ−1‖v‖2L2(Ω) + λ‖v‖2H−1(Ω)

≤ 1

2ε1
‖f2‖2H−1(Ω) +

ε1
2
‖v‖2H−1(Ω)

+
1

2ε2λ
‖f1‖2L2(Ω) +

ε2
2λ
‖v‖2L2(Ω),

(40)

where we used Cauchy-Schwarz and Young inequalities,
and ε1 and ε2 are arbitrary positive parameter. If we chose,
say, ε1 = 2λ and ε2 = 1, we finally obtain the estimate

‖v‖2L2(Ω) ≤ (1/2)‖f2‖2H−1(Ω) + ‖f1‖2L2(Ω). (41)

Step 2. Next, we need a estimate of u in a stronger
norm. We rely on the theory of elliptic regularity in the
non-homogeneous case, and in particular on (Lions and
Magenes, 1961, Théorème 10.1). Recall that u satisfies

A[u+DPg(D∗v)] + λv = f2 in H−1(Ω). (42)

Let φ be an arbitrary test-function in C∞c (Ω). Then, φ ∈
D(A). We apply A−1 to (42) and take the scalar product
in L2(Ω) with Aφ to obtain

−
∫

Ω

u∆φ dx+ λ

∫
Ω

vφdx = 〈f2, φ〉H−1(Ω),H1
0 (Ω) (43)

where we used the fact that

(DPg(D∗v), Aφ)L2(Ω) = (g(D∗v), D∗Aφ)L2(Γ0) = 0 (44)

since D∗Aφ = −∂νφ = 0 as φ ∈ C∞c (Ω). Recall that f2, as
an element of H−1(Ω), can be identified as a distribution.
Then, since (43) holds for any φ ∈ C∞c (Ω), we see that



−∆u+ λv = f2 in the sense of distributions. (45)

We already know that u ∈ L2(Ω), and we infer from
(45) that the distribution −∆u belongs to H−1(Ω). As
a consequence of elliptic regularity theory,

The trace u|Γ is well-defined in H−1/2(Γ). (46)

Denoting by γ the trace operator, we have

γ[u+Dg(D∗v)] = 0 (47)

because, by definition of D(A), u + Dg(D∗v) ∈ H1
0 (Ω).

Then, since γDh = h for any h ∈ L2(Γ), we finally obtain{
−∆u = −λv + f2 in H−1(Ω),

u|Γ = −1Γ0
g(−∂ν [A−1v]) in L2(Γ).

(48)

Using the elliptic regularity theorem, we deduce from (48)
that u enjoys the extra regularity u ∈ H1/2(Ω), and that
for some C1 > 0 that does not depend on the data,

‖u‖2H1/2(Ω) ≤ C1

{
‖Pg(D∗v)‖2L2(Γ) + ‖f2 − λv‖2H−1(Ω)

}
.

(49)
Recall that P and g are Lipschitz continuous on L2(Γ), and
g(0) = 0. Also, D∗ is linear continuous between L2(Ω) and
L2(Γ). As a result, there exists another constant C2 > 0
such that
‖u‖2H1/2(Ω) ≤ C1C2‖v‖2L2(Ω) + 2C1λ

2‖v‖2H−1(Ω)

+ 2C1‖f2‖2H−1(Ω).
(50)

Step 3: Conclusion. Combining (41) and (50), we have
shown that the image of a bounded set of H by (A +
λid)−1 is bounded in H1/2(Ω)×L2(Ω), which is compactly
embedded into L2(Ω)×H−1(Ω). Therefore, the nonlinear
operator (A+ λid)−1 is compact. 2

Now that all the tools are at our disposal, we can finally
prove the asymptotic stability theorem.

Proof of Theorem 2. In the monotone case, it is
sufficient to prove that (9) holds for all initial data in the

domain D(A). Indeed, let X ∈ H and X̃ ∈ D(A) such that

‖X − X̃‖H ≤ ε for some ε > 0. Then,

‖StX‖H ≤ ‖StX̃‖H+‖StX−StX̃‖H for all t ≥ 0. (51)

Since we have a semigroup of contractions,

‖StX − StX̃‖H ≤ ‖X − X̃‖H ≤ ε for all t ≥ 0. (52)

If (9) is satisfied for initial conditions in D(A), then, for
sufficiently large t, we have ‖StX‖H ≤ 2ε.

That being said, let us pick X ∈ D(A). We use a LaSalle-
type invariance argument. Recall that the ω-limit set of X
(with respect to the evolution semigroup {St}) is defined
by

ω(X) ,
⋂
τ≥0

⋃
t≥τ

StX, (53)

where the closure is taken in H. It can be characterized as
follows: W ∈ H belongs to ω(X) if and only if there exists
an increasing sequence {tn} ∈ RN such that tn → +∞ and

StnX →W as n→ +∞. (54)

Since the (semi)trajectory {StX}t≥0 is relatively compact,
ω(X) is a nonempty (positively) invariant compact set,
and dist(StX,ω(X))→ 0 as t→ +∞ – see (Haraux, 1991,
Théorème 1.1.8). Furthermore, recall from Kato’s theorem
that

t 7→ ‖A(StX)‖H is bounded. (55)

As a consequence, using the characterization of the ω-
limit given by (54) and applying (Crandall and Pazy, 1969,
Lemma 2.3), we obtain that ω(X) ⊂ D(A).

Now, it remains to prove that ω(X) is reduced to {0}.
Since t 7→ E(StX) is bounded and nonincreasing, it must
converge to some E∞ ≥ 0 as t goes to +∞. It follows from
(54) and the continuity of E that E(W ) = E∞ for any
W ∈ ω(X). Let W ∈ ω(X). Since St(ω(X)) ⊂ ω(X),
we must have E(StW ) = E∞ for all t ≥ 0. We write

[w(t), w′(t)] , StW . Using the energy identity (8), we
obtain∫ τ

0

∫
Γ0

g(−∂ν [A−1w′])∂ν [A−1w′] dσ dt = 0 (56)

holding for all τ ≥ 0. Using the assumptions on the
nonlinearity g, it comes from (56) that

∂ν [A−1w′](σ, t) = 0 for a.e. (σ, t) ∈ Γ0 × (0,+∞). (57)

Now, let us have a look at z , A−1w′. Since [u, u′] is a
(strong) solution to (1)-(6), we have in particular w′ ∈
C(R+, H−1(Ω)) ∩ W 1,∞(0,+∞;D(A−1)); and w satisfies
the following differential equation in the sense of D(A−1)-
valued distributions:

w′′(t) +Aw(t) = −ADg(D∗w′(t)) = 0, (58)

where we used (57). Then, the isomorphism properties of
A yield

z ∈ C(R+, H1
0 (Ω)) ∩W 1,∞(0,+∞;L2(Ω)); (59)

with z′ = [A−1w′]′ = A−1w′′ = −w, where we used
(58). Formal differentiations are justified by the following
vector-valued integrals: for all t ≥ 0, z(t) = A−1w′(t) =

A−1w′(0) + A−1
∫ t

0
w′′(s) ds = z(0) +

∫ t
0
A−1w′′(s) ds.

Similarly, it follows from z′ = −w that z satisfies the
standard variational formulation of the wave equation with
homogeneous Dirichlet boundary condition, namely

z′′(t) +Az(t) = 0, (60)

in the sense of H−1(Ω)-valued distributions. It can be
deduced from (57) and (60) that z satisfies the following
boundary-value problem:

∂ttz −∆z = 0 in Ω× (0,+∞), (61a)

z|Γ = 0 on Γ× (0,+∞), (61b)

∂νz = 0 on Γ0 × (0,+∞), (61c)

which is in fact verified in a classical, pointwise sense.
Indeed, since [w,w′] is a strong solution, z takes values in
D(A). Now, a classic unique continuation argument using
Holmgren’s theorem – as in the proof of (Lasiecka and
Triggiani, 1992, Lemma 4.3) – yields z(t) = A−1w′(t) = 0,
hence w′(t) = 0 for all t ≥ 0. Thus, w is in fact a
stationnary solution, which satisfies Aw = 0, i.e. w = 0. 2

4. NUMERICAL SIMULATIONS

In this section, we illustrate Theorem 2 with some simula-
tions of the closed-loop system (1)-(6) in space dimension
two, using the FreeFEM finite element software – see Hecht
(2012). At each time step, two finite-dimensional varia-
tional problems are solved: first, to compute the boundary
feedback, and then, to solve the wave equation with the
updated boundary condition. The wave is solved using an
implicit scheme, while the feedback is updated according
to an explicit scheme. Here, Ω is a two-dimensional ring-
shaped domain, with Γ0 being the circle of radius 1/2



and Γ1 being the circle of radius 1. It is discretized into
N = 60 triangles. For technical reasons, we consider a
smooth nonlinearity given by g = arctan. The time step
is dt = 0.01. Figure 2 shows the position variable u at
the initial time t = 0, while Figures 3 represent the
solution after some time under the feedback action. Figure
4 illustrates the decay of the energy E along the solution.
The simulation code for this example can be found at
https://github.com/nvanspra/dirichlet-wave.

Fig. 2. Smooth initial data given by u0(x, y) =
xy sin(2π(x2 + y2)1/2) and v0(x, y) = 0.

Fig. 3. Representation of u at the time t = 0.35. Note that
only the inner boundary is actuated.

Fig. 4. Evolution of the energy along the trajectory.

5. CONCLUDING REMARKS

In this paper, asymptotic stability of a high-dimensional
wave equation with a nonlinear Dirichlet boundary feed-
back has been proved. Since the analysis has been carried
out in the framework of nonlinear semigroups, a natural
extension would concern multivalued (but still dissipative)
nonlinearities in the feedback loop, as in Chitour et al.
(2020) where a one-dimensional wave equation is consid-
ered in the Neumann boundary conditions. Non-smooth
nonlinearities of interest in control include quantitizers,
as in Ferrante et al. (2020), where the effect of sensor
quantization on the stability of finite-dimensional linear
systems is studied.
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