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Velocity Stabilization of a Wave Equation with a

Nonlinear Dynamic Boundary Condition
Nicolas Vanspranghe, Francesco Ferrante, Christophe Prieur

Abstract—This paper deals with a one-dimensional wave
equation with a nonlinear dynamic boundary condition and a
Neumann-type boundary control acting on the other extremity.
We consider a class of nonlinear stabilizing feedbacks that only
depend on the velocity at the controlled extremity. The uncon-
trolled boundary is subject to a nonlinear first-order term, which
may represent nonlinear boundary anti-damping. Initial data is
taken in the optimal energy space associated with the problem.
Exponential decay of the mechanical energy is investigated in
different cases. Stability and attractivity of suitable invariant
sets are established.

I. INTRODUCTION

In this paper, we investigate the problem of stabilizing

a one-dimensional wave equation supplied with a dynamic

boundary condition by means of boundary control at the

opposite end of the domain. By definition, dynamic (or kinetic)

boundary conditions involve second-order time derivative and

arise in physical problems where the boundary (or a part of

it) carries its own momentum. In a one-dimensional medium,

such boundary condition is for instance obtained when consid-

ering a tip mass at one endpoint of an elastic rod as in [2] for

wave propagation or [6] for Euler-Bernoulli beam dynamics.

In higher space dimension, vibrating membranes with a given

mass density can be modeled as dynamic boundary conditions

as well – see, e.g., [10], [9], [8], [22].

We now specify the control problem under study. Let L be a

positive real number and Ω , (0, L); we consider the system

∂ttu− ∂xxu = 0 on Ω× R
+, (1a)

∂ttu(0, t)− ∂xu(0, t) = F (∂tu(0, t)) for all t, (1b)

∂xu(L, t) = −g(∂tu(L, t)) for all t, (1c)

where g and F are (real) scalar functions satisfying the

following properties:

• g is continuous, nondecreasing, and g(0) = 0;

• F is globally Lipschitz continuous, and F (0) = 0.

Equation (1a) is the standard wave equation on a segment. The

function F in the dynamic boundary condition (1b) represents

a nonlinear behavior at the boundary x = 0. This term

can be used to model a destabilizing boundary anti-damping

phenomenon. Equation (1c) defines a nonlinear dissipative
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Neumann velocity feedback. Such boundary feedback is mod-

eled as an unbounded input with respect to the natural energy

space of the problem, which is introduced later on.

When F represents a linear boundary damping term and

(1c) is replaced with a homogenous Dirichlet condition, the

stability analysis of the associated semigroup of linear con-

tractions has been investigated in [14] and [11]. Aside from

the nonlinear aspect of our work, the difference with these

papers lies in the fact that the feedback control considered

here is anti-collocated with respect to the dynamic boundary

condition.

In the control literature, the coupled dynamics described

by (1a)-(1b), or variants, have very often been considered in

the context of minimizing torsional vibrations along drilling

rods due to nonlinear friction at the rock-tip interface, where

the so-called stick-slip phenomenon may occur and destabilize

the plant – see also the review paper [17] and [1]. System (1)

can be seen as an infinite-dimensional model of such plant:

the rod is seen as a purely elastic medium whose angular

deformation obeys the wave equation (1a), and the drilling

tip is subject to nonlinear torsional friction, represented by F
at the rock interface, which yields (1b). However, in contrast

with the present paper, most of the work dealing with drilling

dynamics considers linearized equations. For instance, in

[20], stabilization and regulation using a proportional integral

boundary controller is investigated; the system is linear but

the elasticity of the propagation medium is allowed to be

nonhomogenous. In [13], an observer-based boundary control

design is proposed. In [16], a backstepping-based method is

considered. Other related works include [19] and [3], where

linear first-order boundary anti-damping is considered. On

the other hand, nonlinear boundary feedback for distributed

parameter systems are considered in [12] and [15] – see

also [7] for stability analysis of general quasilinear hyperbolic

systems with (static) dissipative boundary conditions.

This paper analyzes the stability of system (1) when both

the coupled boundary dynamics given by (1b) and the velocity

feedback1 defined by (1c) are nonlinear. The contributions of

this work are twofold:

• The stability analysis in the presence of nonlinear anti-

damping, which is the key novelty of the paper, is carried

out under the assumption that the feedback nonlinearity

g satisfies a global sector-like condition;

• In the particular case that F is nonincreasing, we are

able to describe the asymptotic behavior of solutions even

1In the preliminary conference version of this work [21], only linear
velocity feedback is investigated for the stabilization of (1a)-(1b).
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when the sector condition only holds for large values

(e.g., when g represents a deadzone nonlinearity).

The rest of the paper is organized as follows. Section II

introduces the functional settings associated with system (1)

and states the well-posedness of the closed-loop dynamics.

Section III contains the stability results along with their proofs.

As mentioned above two different cases are considered: first,

when F is nonincreasing, which implies that the mechanical

energy is also nonincreasing along the trajectories of the

system; second, when F represents an anti-damping term that

may render the system unstable without feedback action. Some

concluding remarks are given in Section IV.

Notation: The norm of a given Banach space E is

denoted by ‖·‖E . If E is also a Hilbert space, its scalar product

is written (·, ·)E . Also, for T > 0, we denote by W 1,p(0, T ;E)
the subspace of Lp(0, T ;E) composed of (classes of) E-

valued functions f such that, for some h in Lp(0, T ;E) and

ξ in E, f(t) = ξ +
∫ t

0 h(s) ds for a.e. t in (0, T ). Such

class f is identified with its continuous representative and we

say that f ′ = h in the sense of E-valued distributions. If

E is a metric space endowed with a distance d, the distance

between a element x and a subset F of E is defined as follows:

dist(x, F ) , infy∈F d(x, y). Finally, if s is a real number, we

denote by s+ its positive part, i.e., s+ , max{s, 0}.

II. WELL-POSEDNESS AND PRELIMINARIES

Problems with dynamic boundary conditions require an

appropriate modification of the usual state spaces, since the

boundary value ∂tu(0, t) is expected to be a continuous

function with respect to the time variable. We introduce the

pivot space

H , L2(Ω)× R, (2)

which is endowed with the product Hilbertian structure: for

all u1 = (u1, θ1) and u2 = (u2, θ2) in H ,

(u1,u2)H ,

∫

Ω

u1(x)u2(x) dx + θ1θ2. (3)

Define now the following subset of H :

V ,
{

(u, u(0)) : u ∈ H1(Ω)
}

≃ H1(Ω). (4)

Then V is exactly the graph of the evaluation mapping u ∈
H1(Ω) 7→ u(0), which is continuous. Hence, V is a closed

subspace of H1(Ω)×R by the closed graph theorem, and V is

a Hilbert space if equipped with the inherited scalar product.

It can also be proved that V is a dense subspace of H . We

consider initial data in the energy space

H , V ×H, (5)

on which (1) is recast into a first-order Cauchy problem having

the form

Ẋ(t) +Ag(X(t)) = F(X(t)), (6a)

X(0) = X
0. (6b)

Remark 1. For the sake of clarity, elements of the product

space H are denoted using parentheses, whereas elements of

H are denoted using brackets, as in v = (v, θ) ∈ H and

X = [u,v] ∈ H.

In (6), Ag is an unbounded nonlinear operator, with domain

D(Ag), defined by

D(Ag) , {[u,v] ∈ W × V : ∂xu(L) = −g(v(L))} , (7a)

Ag([u,v]) , −[v, (∂xxu, ∂xu(0))], (7b)

where W , {u ∈ V : u ∈ H2(Ω)}; and F is the nonlinear

perturbation operator on H associated with F . Now, we define

a bilinear symmetric form a on V × V as follows:

a(u1,u2) =

∫

Ω

∂xu1(x)∂xu2(x) dx. (8)

Also, define an energy functional E on H by

E(u,v) ,
1

2
{a(u,u) + ‖v‖2H}. (9)

Formal computations, which motivate our choice of functional

spaces, give the energy identity

d

dt
E(u(t),u′(t)) = F (∂tu(0, t))∂tu(0, t)

−g(∂tu(L, t))∂tu(L, t);
(10)

as well as the variational identity

d

dt
{(u′(t),w)H}+ a(u(t),w) = F (∂tu(0, t))w(0)

−g(∂tu(L, t))w(L)
(11)

holding for all test-functions w in V . We shall use the classical

nonlinear semigroup terminology (see, e.g., [18, Chapter IV]):

• Strong solutions to (1) are absolutely continuous H-

valued functions verifying (6a) for a.e. t ∈ R
+, with

initial data in the domain D(Ag) of the generator;

• Weak solutions are limits of strong solutions with respect

to the topology of C([0, T ],H) for a given T > 0, with

initial data in the energy space H.

The well-posedness properties of the closed-loop system are

summarized in the following theorem. We refer the reader to

[21] for the proof.

Theorem 1 (Hadamard well-posedness). Let [u0,v0] ∈ H.

Then, there exists a unique weak solution u ∈ C(R+, V ) ∩
C1(R+, H) to (1). The following statements also hold for weak

solutions:

1) (Hidden regularity.) The traces ∂tu(L, ·), ∂xu(0, ·) and

∂xu(L, ·) are defined in L2
loc(R

+); in particular, u(0, ·) ∈
H2

loc(R
+) and for a.e. t ≥ 0,

∂ttu(0, t)− ∂xu(0, t) = F (∂tu(0, t)), (12a)

∂xu(L, t) = −g(∂tu(L, t)); (12b)

2) (Energy identity.) Weak solutions satisfy (10) in the scalar

distribution sense;

3) (Variational identity.) Weak solutions satisfy (11) for all

w ∈ V in the scalar distribution sense;

4) (A priori estimate.) For all τ ≥ 0, there exists C(τ) ≥ 0
(solution independent) such that

sup
t∈[0,τ ]

E(u(t),u′(t)) ≤ C(τ)E(u(0),u′(0)). (13)
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Weak solutions define a strongly continuous semigroup {St} of

(nonlinear) continuous operators acting on H. Also, if [u0,v0]
satisfies the compatibility condition

{

u0 ∈ H2(Ω),v0 ∈ V,

∂xu
0(L) = −g(v0(L)),

(14)

then u is in fact a strong solution and enjoys the following

additional regularity:

u ∈ L∞
loc(R

+, H2(Ω)), u
′ ∈ L∞

loc(R
+, V ). (15)

Remark 2. It is in fact proved that unicity holds for the

class of functions u ∈ C(R+, V ) ∩ C1(R+, H) verifying the

distributional identity (11).

III. STABILITY ANALYSIS OF THE CLOSED-LOOP SYSTEM

For any given weak solution u to (1), we denote by Eu the

continuous function on R
+ defined by

Eu(t) , E(u(t),u′(t)). (16)

Rewriting (9) yields

Eu(t) =
1

2

∫

Ω

|∂xu|
2 + |∂tu|

2 dx+
1

2
|∂tu(0, t)|

2. (17)

For any τ ≥ 0, the integral form of (10) reads as follows:

Eu(t)

∣

∣

∣

∣

τ

0

=

∫ τ

0

F (∂tu(0, t))∂tu(0, t) dt

−

∫ τ

0

g(∂tu(L, t))∂tu(L, t) dt.

(18)

We consider two different situations:

1) The monotone case where we assume that F is nonin-

creasing, so that the energy E is non-increasing along the

trajectories of the system;

2) The anti-damping case, in which no prior knowledge on

the sign of F is assumed, meaning that the perturbation

may provide energy to the system.

The analysis in the monotone case is built upon a multiplier

method. This yields suitable integral estimates, from which the

desired decay properties are deduced by taking advantage of

the nonincreasingness of the energy E and using an iterated

sequence argument. On the other hand, the anti-damping case

is dealt with using an appropriate Lyapunov functional de-

signed to exhibit the coupling between boundary perturbation

at x = 0 and (nonlinear) dissipation at x = L. In addition, the

anti-damping case is considered under both local and global

growth assumption on the nonlinear term F .

Remark 3. All calculations performed below are justified

without further comment using the additional regularity of

strong solutions and the usual density arguments. In particular,

for any τ ≥ 0, we can assume that u ∈ H2(Ω× (0, τ)); also,

the additional boundary terms converge in L2(0, τ).

A. The monotone case

The first stability result of this paper is given next.

Theorem 2 (Stability in the monotone case). Suppose that F
is nonincreasing and there are some positive constants α1 ≤
α2 and a nonnegative S such that g satisfies

α1|s| ≤ |g(s)| ≤ α2|s| for all s with |s| ≥ S, (19)

Then, there exists ES ≥ 0, M > 0 and µ > 0 such that, for

any solution u to (1), for all t ≥ 0,

{Eu(t)− ES}
+ ≤ M exp(−µt){Eu(0)− ES}

+, (20)

where the superscript + denotes the positive part. Further-

more, if (19) holds with S = 0, then (20) holds with ES = 0,

i.e., the energy E converges to zero exponentially.

We now state a consequence of Theorem 2 in terms of

attractive sets.

Corollary 1. Under the hypotheses of Theorem 2, the (posi-

tively invariant) set B defined by

B , {[u,v] ∈ H : E(u,v) ≤ ES} (21)

enjoys the following uniform attractivity property:

dist([u(t),u′(t)],B)2 ≤ M ′ exp(−µt){Eu(0)− ES}
+,
(22)

where M ′ is a positive constant and µ is the decay rate

appearing in Theorem 2.

The rest of the subsection is devoted to the proofs of

Theorem 2 and Corollary 1.

Proof of Theorem 2. The proof is split into three steps.

Step 1: Preliminary estimates. Let ρ ∈ H1(Ω). Pick τ ≥ 0
and u a weak solution to (1). We multiply the wave equation

∂ttu− ∂xxu = 0 on Qτ , Ω× (0, T ) by 2ρ(x)∂xu, and then

we integrate over Qτ :
∫∫

Qτ

2ρ(x)∂xu∂ttu dxdt−

∫∫

Qτ

2ρ(x)∂xu∂xxu dxdt = 0

(23)

Integrating by parts with respect to t in the first term and x
in the second term of (23) yields

∫

Ω

2ρ(x)∂tu∂xu dx

∣

∣

∣

∣

τ

0

−

∫∫

Qτ

2ρ(x)∂tu∂txu

+

∫∫

Qτ

2 {ρ′(x)∂xu+ ρ(x)∂xxu} ∂xu dxdt

−2

∫ τ

0

[

ρ(x)|∂xu|
2
]L

0
= 0

(24)

After another integration by parts with respect to the x, we

obtain the following standard multiplier identity:

∫

Ω

2ρ(x)∂tu ∂xu dx

∣

∣

∣

∣

τ

0

+

∫∫

Qτ

ρ′(x)
{

|∂tu|
2 + |∂xu|

2
}

dxdt

−

∫ τ

0

[

ρ(x)
{

|∂tu|
2 + |∂xu|

2
}]L

0
dt = 0.

(25)
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From now on, we take any ρ affine, positive, and increasing.

Then, we can rewrite (25) as

∫ τ

0

[

ρ(0)|∂tu(0, t)|
2 +

∫

Ω

ρ′
{

|∂tu|
2 + |∂xu|

2
}

dx

]

dt

=

∫

Ω

2ρ(x)∂tu ∂xu dx

∣

∣

∣

∣

τ

0

− ρ(0)

∫ τ

0

|∂xu(0, t)|
2 dt

+ρ(L)

∫ τ

0

|∂tu(L, t)|
2 + |∂xu(L, t)|

2 dt

(26)

Looking at (17), from (26) one has that

C1

∫ τ

0

Eu(t) dt ≤ C2 {E
u(0) + Eu(τ)}

+C3

∫ τ

0

|∂tu(L, t)|
2 + |∂xu(L, t)|

2 dt,

(27)

where the Cauchy-Schwarz inequality is used to bound the

cross term in (26), and C1, C2, and C3 are positive constants

given by

C1 = min{ρ(0), ρ′}, C2 = 2ρ(L), and C3 = ρ(L). (28)

Note that the estimate (27) holds uniformly for all solutions u

and all times τ ≥ 0, with the constants depending only on the

particular choice of ρ. Starting from (27), we need to obtain

an estimate where the only energy term is Eu(τ). Since Eu is

nonincreasing,

∫ τ

0

Eu(t) dt ≥ τEu(τ). (29)

From the energy identity (18), there also comes

Eu(0) ≤ Eu(τ) +

∫ τ

0

g(∂tu(L, t))∂tu(L, t) dt. (30)

Plugging (29) and (30) into (27) yields

τC1E
u(τ) ≤ 2C2E

u(τ) + C2

∫ τ

0

g(∂tu(L, t))∂tu(L, t) dt

+C3

∫ τ

0

|∂tu(L, t)|
2 + |∂xu(L, t)|

2 dt.

(31)

Choosing any τ such that τC1 ≥ 2C2 + 1 and plugging the

boundary condition into (31), we finally have

Eu(τ) ≤ C2

∫ τ

0

g(∂tu(L, t))∂tu(L, t) dt

+C3

∫ τ

0

|∂tu(L, t)|
2 + |g(∂tu(L, t))|

2 dt.

(32)

Step 2: Using the boundary dissipation. First, consider a

particular solution u. Similarly as in [5], pick a set Iτ such

that
{

|∂tu(L, t)| ≤ S for a.e. t ∈ Iτ ,

|∂tu(L, t)| > S for a.e. t ∈ (0, τ) \ Iτ .
(33)

This set depends on the specific solution u. We can write
∫ τ

0

|∂tu(L, t)|
2 dt =

∫

Iτ

|∂tu(L, t)|
2

+

∫

(0,τ)\Iτ

[∂tu(L, t)|
2 dt

≤
1

α1

∫ τ

0

g(∂tu(L, t))∂tu(L, t) dt+ τS2.

(34)

Similarly, we have
∫ τ

0

|g(∂tu(L, t)|
2 dt ≤ α2

∫ τ

0

g(∂tu(L, t))∂tu(L, t) dt

+τ sup
|s|≤S

|g(s)|2.
(35)

In the end, coming back to (32), we obtain

Eu(τ) ≤ C1

∫ τ

0

g(∂tu(L, t))∂tu(L, t) dt+ C2(τ), (36)

where C1 > 0 depends only on the previous constants in (32)

and the scalar function g, and C2(τ) ≥ 0 is given by

C2(τ) , τC3 max

{

S2, sup
|s|≤S

|g(s)|2

}

. (37)

Note that in (36) the dependence on the particular solution

u has been suppressed. In addition, if S = 0, we can take

C2(τ) = 0.

Step 3: Conclusion. Using the energy identity (18), we get

Eu(τ) ≤
1

1 + 1/C1
Eu(0) +

C2(τ)

1 + 1/C1
(38)

holding for any solution u. We can iterate: for all k ≥ 1,

Eu((k + 1)τ) ≤
1

1 + 1/C1
Eu(kτ) +

C2(τ)

1 + 1/C1
. (39)

Let us write

r ,
1

1 + 1/C1
, p ,

C2(τ)

1 + 1/C1
, and ES ,

p

1− r
. (40)

Define a sequence {Eu

k }k≥0 as follows:

Eu

k ,

{

Eu(kτ) if Eu(kτ) ≥ ES ,

ES else,
(41)

so that Eu

k − ES ≥ 0 for all k ≥ 0. Then, from (39) one gets

0 ≤ Eu

k − ES ≤ rk(Eu

0 − ES) (42)

with |r| < 1. Writing α , ln(1/r) > 0, (42) reads

Eu

k − ES ≤ exp(−αk)(Eu

0 − ES) for all k ≥ 0. (43)

Now observe that

Eu

k − ES = {Eu(τk)− ES}
+ for all k ≥ 0. (44)

On the other hand, since Eu is nonincreasing, for all kτ ≤
t ≤ (k + 1)τ ,

Eu(τk) − ES ≤ Eu(t)− ES ≤ Eu((k + 1)τ)− ES (45)
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Thus, using (43), we have

{Eu(t)− ES}
+ ≤ exp(−α(k + 1)){Eu(0)− ES}

+

≤ exp
[

−
α

τ
τ(k + 1)

]

{Eu(0)− ES}
+

≤ exp(α) exp
[

−
α

τ
t
]

{Eu(0)− ES}
+

(46)

Writing µ , α/τ and M , exp(α), we finally obtain the

desired uniform estimate:

{Eu(t)− ES}
+ ≤ M exp(−µt){Eu(0)− ES}

+, (47)

holding for all t ≥ 0 and any solution u.

Proof of Corollary 1. Under the hypotheses of Theorem 2, the

energy functional E is nonincreasing along the trajectories of

the system. Hence, the set B must be positively invariant.

Equation (22) is a direct consequence of Lemma 1 in Appendix

applied to the set B = BES
along with estimate (20).

B. The anti-damping case

In this subsection, we deal with the anti-damping case,

which is more interesting in terms of applications. The energy

functional E is no longer nonincreasing along the trajectories

of the system, which prevents the use of some of the arguments

seen previously. However, on the basis of the same calculation,

we can derive a proper Lyapunov functional and obtain expo-

nential stability, at the cost of more restrictive assumptions on

the nonlinear perturbation F and the feedback function g.

Theorem 3 (Stability in the anti-damping case). Let q ∈
(0, 1/2). Assume that the feedback function g satisfies

α1|s| ≤ |g(s)| ≤ α2|s| for all s ∈ R, (48)

for some positive α1 ≤ α2 verifying

α1

1 + α2
2

> q. (49)

The following stability properties hold:

1) (Global version.) If F is globally q-Lipschitz, then the

closed-loop system is exponentially stable with respect to

the energy E , i.e., there exist positive constants M and µ
(solution independent) such that

Eu(t) ≤ M exp(−µt)Eu(0) for all t ≥ 0; (50)

2) (Local version.) If F is q-Lipschitz in some neighborhood

N of 0, there exists R > 0 such that (50) holds for all

solutions u satisfying Eu(0) ≤ R.

In particular, if g = id (proportional controller with unitary

gain), then (49) holds for any Lipschitz constant q < 1/2. Us-

ing the terminology introduced in [4], we state the counterpart

of Corollary 1.

Corollary 2. Under the hypotheses of Theorem 3, assuming

that F is globally q-Lipschitz, the set

A , {[u,v] ∈ H : E(u,v) = 0}, (51)

which is exactly the set of stationnary solutions, is pointwise

asymptotically stable, i.e.,

• Each point X in A is Lyapunov stable;

• Every solution [u,u′] converges in H to some limit in A.

Furthermore, the following uniform attractivity property holds:

dist([u(t),u′(t)],A)2 ≤ M ′ exp(−µt)Eu(0), (52)

when µ is the decay rate given in Theorem 3 and M ′ is a

positive constant. If F is q-Lipschitz in some neighborhood

of 0, the same conclusions remain true for all solutions u

satisfying Eu(0) ≤ R.

Remark 4. Proof of Theorem 3 provides an alternative method

to obtain the special case of Theorem 2 where the constant S
can be taken as 0.

Proof of Theorem 3. Let ρ ∈ H1(Ω). We define the functional

Γρ on the phase space H as follows:

Γρ(u,v) , E(u,v) +

∫

Ω

ρ(x)∂xu(x)v(x) dx. (53)

Note that Γρ is continuous on H. Besides, if for some ǫ > 0,

|ρ(x)| ≤ 1− ǫ for all a.e. x ∈ Ω, then there exist two positive

constants M1 and M2 such that for all [u,v] ∈ H,

M1E(u,v) ≤ Γρ(u,v) ≤ M2E(u,v). (54)

If u is a given solution to (1), then we also denote by Γu

ρ the

(continuous) function defined on R
+ by

Γu

ρ (t) , Γρ(u(t),u
′(t)). (55)

Then, we have

Γu

ρ (t) =
1

2

∫

Ω

|∂xu|+ |∂tu|
2 + 2ρ(x)∂tu∂xu dx

+
1

2
|∂tu(0, t)|

2.

(56)

Let us write the variation of Γρ along the trajectories. For

any solution u to (1) and τ ≥ 0,

Γu

ρ (t)

∣

∣

∣

∣

τ

0

= −
1

2

∫∫

Qτ

ρ′(x)
{

|∂tu|
2 + |∂xu|

2
}

dxdt

+

∫ τ

0

{F (∂tu(0, t))∂tu(0, t)− g(∂tu(L, t))∂tu(L, t)}dt

+
1

2

∫ τ

0

[

ρ(x)
{

|∂tu|
2 + |∂xu|

2
}]L

0
dt.

(57)

Equation (57) is directly obtained summing the energy identity

(18) and one half of the multiplier identity (25).

Just as in the proof of Theorem 2, we take an affine, positive

and increasing weight ρ. Then, (57) implies

Γu

ρ (t)

∣

∣

∣

∣

τ

0

≤ −
1

2

∫∫

Qτ

ρ′
{

|∂tu|
2 + |∂xu|

2
}

dxdt

+

∫ τ

0

{

F (∂tu(0, t))−
ρ(0)

2
∂tu(0, t)

}

∂tu(0, t) dt

+
ρ(L)

2

∫ τ

0

{

|∂tu(L, t)|
2 + |∂xu(L, t)|

2
}

dt

−

∫ τ

0

g(∂tu(L, t)∂tu(L, t) dt.

(58)
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Global case. Let us start with the global case: since F
satisfies F (0) = 0 and F is q-Lipschitz continuous, we have

F (s)s ≤ q|s|2 for all s ∈ R. (59)

Let ǫ > 0 be a sufficiently small parameter to be chosen later.

Then, if ρ(0) ≥ 2q + ǫ, using (59), we see that
∫ τ

0

{

F (∂tu(0, t))−
ρ(0)

2
∂tu(0, t)

}

∂tu(0, t) dt

≤ −ǫ

∫ τ

0

|∂tu(0, t)|
2 dt.

(60)

In (58), replacing ∂xu(L, t) with the boundary condition, we

obtain

ρ(L)

2

∫ τ

0

{

|∂tu(L, t)|
2 + |∂xu(L, t)|

2
}

dt

=
ρ(L)

2

∫ τ

0

{

|∂tu(L, t)|
2 + |g(∂tu(L, t)|

2
}

dt

≤
ρ(L)

2
(1 + α2

2)

∫ τ

0

|∂tu(L, t)|
2 dt,

(61)

where we also used (48). Furthermore, by nondecreasingness

of g, we have

−

∫ τ

0

g(∂tu(L, t))∂tu(L, t) dt

= −

∫

|g(∂tu(L, t)||∂tu(L, t)| dt ≤ −α

∫ τ

0

|∂tu(L, t)|
2 dt.

(62)

Then, combining (61) and (62) yields

ρ(L)

2

∫ τ

0

{

|∂tu(L, t)|
2 + |∂xu(L, t)|

2
}

dt

−

∫ τ

0

g(∂tu(L, t))∂tu(L, t) dt

≤

{

ρ(L)

2
(1 + α2

2)− α1

}
∫ τ

0

|∂tu(L, t)|
2 dt.

(63)

Choosing ǫ sufficiently small so that

(q + ǫ)(1 + α2
2) ≤ α1 − ǫ, and q + ǫ ≤

1

2
(1− ǫ), (64)

which is possible by (49) along with the condition q < 1/2,

we observe that, if we take

ρ(L) = 2q + 2ǫ, (65)

then, on the one hand,

ρ(L)

2

∫ τ

0

{

|∂tu(L, t)|
2 + |∂xu(L, t)|

2
}

dt

−

∫ τ

0

g(∂tu(L, t))∂tu(L, t) dt

≤ −ǫ

∫ τ

0

|∂tu(L, t)|
2 dt;

(66)

and, on the other hand,

ρ(L) ≤ 1− ǫ. (67)

Now, if we choose

ρ(0) = 2q + ǫ, (68)

then, (60) holds and the affine function ρ uniquely defined

by the choice of ρ(0) and ρ(L) is indeed increasing, with

ρ′ = ǫ/L. Besides, 0 ≤ ρ(x) ≤ 1 − ǫ for all x ∈ Ω, which

guarantees that (54) holds.

With this particular choice of weight ρ, combining (58),

(60) and (66), we obtain

Γu

ρ (t)

∣

∣

∣

∣

τ

0

≤ −µ

∫ τ

0

Γu

ρ (t) dt, (69)

holding for any solution u and all τ ≥ 0, where

µ , min
{

ǫ,
ǫ

2L

}

> 0. (70)

Since Γu

ρ is a continuous function, an application of

Grönwall’s lemma yields the desired estimate (50).

Local case. Let τ > 0. Recall from (13) the a priori

estimate

sup
t∈[0,τ ]

|∂tu(0, t)|
2 ≤ C(τ)Eu(0), (71)

where C(τ) > 0 does not depend on the solution. On the

other hand, we may also consider the functional Γu

ρ , where ρ
is chosen as in the global case. From (54), we have

sup
t∈[0,τ ]

|∂tu(0, t)|
2 ≤ M−1

1 C(τ)Γu

ρ (0). (72)

We infer from (72) that we can choose R(τ) > 0 such that,

if Γu

ρ (0) ≤ R(τ), then

∂tu(0, t) ∈ N for all t ∈ [0, τ ]. (73)

Thus, as in the global case, we obtain

Γu

ρ (t) ≤ Γu(0) exp(−µt) for all t ∈ [0, τ ]. (74)

Iterating, since for each k ≥ 1, by (71),

sup
t∈[kτ,(k+1)τ ]

|∂tu(0, t)|
2 ≤ M−1

1 C(τ) exp(−kµτ)Γu

ρ (0)

≤ R(τ),
(75)

then

Γu(t) ≤ exp(−µt)Γu(kτ) for all t ∈ [kτ, (k + 1)τ ]. (76)

The result is now proved, with, say,

R , M−1
2 R(τ). (77)

Remark 5. In the proof of Theorem 3, deducing the local result

from the global case is straightforward because of the uniform,

pointwise estimate (71). This is a consequence of the velocity

at x = 0 being a part of the state space due to the second-

order boundary dynamic. However, the velocity term ∂tu(L, t)
at the other endpoint can only be estimated in L2(0, τ).

Proof of Corollary 2. We start with (52), which is again a

consequence of (50) and Lemma 1 applied to the set A = B0.

Now, let us prove the pointwise asymptotic stability of A.

First, we show that each point is Lyaponov stable. Let Y =
[w, 0] ∈ A and ǫ > 0. We must find δ > 0 such that any

trajectory originating from a point X0 ∈ H satisfying ‖X0 −
Y‖2H ≤ δ must then remain in the ball B(Y, ǫ). Let X0 ∈ H;
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we write X(t) = [u(t),u′(t)] = StX
0. First, we have the

following H-valued integral: u(t) = u
0 +

∫ t

0 u
′(s) ds for all

t ≥ 0. Thus,

‖u(t)− u
0‖H ≤

∫ ∞

0

‖u′(s)‖H ds for all t ≥ 0. (78)

The right-hand side of (78) is finite because of the estimate

‖u′(t)‖H ≤ (2M)1/2 exp

(

−
µt

2

)

E(u0,v0)1/2, (79)

which comes from (50). In fact, combining (78) and (79), we

obtain

‖u(t)− u
0‖H ≤ CE(u0,v0)1/2

∫ +∞

0

exp
(

−
µ

2
s
)

ds

≤ C′E(u0,v0).

(80)

On the other hand, we can write

‖X(t)−Y‖2H = ‖u′(t)‖2H + a(u(t)−w,u(t)−w)

+ ‖u(t)−w‖2H
(81)

Since Y ∈ A, ∂xw = 0, and we have

‖X(t)−Y‖2H = ‖u′(t)‖2H + a(u(t),u(t)) + ‖u(t)−w‖2H
≤ 2Eu(t) + 2‖w− u

0‖2H + 2‖u0 − u(t)‖2H .
(82)

Plugging (50) and (80) into (82), we obtain

‖X(t)−Y‖2H ≤ 2{M + (C′)2}E(X0) + 2‖u0 −w‖2H (83)

Since the energy functional E is continuous on H and E(Y) =
0, there exists η > 0 depending only on Y such that if ‖X0−
Y‖2H ≤ η, then E(X0) ≤ ǫ. Choosing δ > 0 such that ǫ ≤
min(η, ǫ), we see that ‖Y −X

0‖2H ≤ δ implies

‖X(t)−Y‖2H ≤ 2{M + (C′)2 + 1}ǫ for all t ≥ 0, (84)

which is the desired result.

Let us now prove that each trajectory [u,u′] converges (with

respect to the strong topology of H) to some limit in A. We

already know that u
′(t) → 0 in H and a(u(t),u(t)) → 0

as t → +∞. Pick an increasing sequence of nonnegative real

numbers tn such that tn → +∞. Then, the following estimate,

which is obtained just as (78), holds:

‖u(tm)− u(tn)‖H ≤

∫ +∞

tn

‖u′(s)‖H ds for all m ≥ n.

(85)

We infer from (85) that {u(tn)} is a Cauchy sequence in H
and thus converges to some u∞. A similar argument allows us

to see that u∞ does not depend on the choice of the sequence

{tn}. Then, by unicity of the limit, u∞ belongs in fact to V
and satisfies a(u∞,u∞) = 0. Thus, [u(t),u′(t)] converges in

H to [u∞, 0] ∈ A as t goes to +∞.

IV. CONCLUSION

In this paper, asymptotic stability of a one-dimensional

wave equation with nonlinear boundary conditions at both

endpoints of the domain has been studied. The considerered

boundary conditions consist of a coupled ordinary differential

equation with a nonlinear first-order term at one endpoint,

and a Neumann-type nonlinear boundary dissipation at the

other endpoint. When the nonlinear term F does not induce an

increase of the mechanical energy and the nonlinearity g can

be asymptotically lower-bounded and upper-bounded by some

linear functions, it has been proved via a multiplier analysis

that solutions exponentially converge to a sublevel set of the

energy functional. When no sign condition is prescribed on the

nonlinear function F , a Lyapunov-based analysis has shown

that solutions converge exponentially to the set of stationary

points, provided that its Lipschitz constant is small and the

nonlinearity g satisfies a more restrictive sector-like condition.

An interesting future outlook concerns the sharpness of the

limit Lipschitz parameter q obtained in Theorem 3. Also, we

note that the class of admissible functions g for the well-

posedness theorem includes saturation maps; performing a

stability analysis in the case of saturating feedback is a natural

research line as well.
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APPENDIX

The following lemma allows us to estimate the distance to

sublevel sets of the energy functional E . It is based on the

Poincaré-Wirtinger inequality.

Lemma 1. Let E ≥ 0 and

BE , {[u,v] ∈ H : E(u,v) ≤ E} . (86)

Then, there exists K > 0 such that, for all [u,v] ∈ H,

dist([u,v],BE)
2 ≤ K{E(u,v)− E}+. (87)

Proof. Consider the continuous linear form Φ defined on H
by

Φ[u,v] ,
1

L

∫

Ω

u(x) dx, (88)

i.e., Φ gives the mean value of the position component; and

recall the Poincaré-Wirtinger inequality:

‖u− uΩ‖
2
L2(Ω) ≤ C1‖∂xu‖

2
L2(Ω) for all u ∈ H1(Ω), (89)

where uΩ denotes the mean value of u. Suppose that X =
[u,v] ∈ kerΦ, i.e., uΩ = 0; then,

‖u‖2V = ‖u‖2L2(Ω) + |u(0)|2 + ‖∂xu‖
2
L2(Ω)

≤ (1 + C2)‖u‖
2
L2(Ω) + (1 + C2)‖∂xu‖

2
L2(Ω)

≤ (1 + C1 + C2 + C1C2)‖∂xu‖
2
L2(Ω),

(90)

where the positive constant C2 comes from the Lipschitz

continuity of the evaluation mapping u 7→ u(0) with respect

to the norm of H1(Ω). Since ‖X‖2H = ‖u‖2V + ‖v‖2H and

E(u,v) = 1
2{‖v‖

2
H + a(v,v)}; we infer from (90) that there

exist two positive constants M1 and M2 such that

M1‖X‖2H ≤ E(X) ≤ M2‖X‖2H for all X ∈ kerΦ. (91)

Also, since, (kerΦ)⊥ = {[u,v] ∈ H : v = 0, ∂xu = 0}, we

remark that

E(X+Y) = E(X) for all X ∈ H and Y ∈ (kerΦ)⊥. (92)

Since kerΦ is a closed subspace of H, we can consider the

orthogonal projection Π onto kerΦ. By definition of BE ,

using (92), we must have BE = BE + (kerΦ)⊥, and as a

consequence,

dist(X,BE) = dist(ΠX,BE) for all X ∈ H. (93)

Let X = [u,v] ∈ H. We have the decomposition X = ΠX+
[id−Π]X. First,

dist(ΠX,BE)
2 = inf

Y∈BE

‖ΠX−Y‖2H

≤ inf
Y∈kerΦ∩BE

‖ΠX−Y‖2H
(94)

Let Y ∈ kerΦ ∩BE . Then, using (91)

dist(ΠX,BE)
2 ≤ ‖ΠX−Y‖2H

≤ M−1
1 E(ΠX −Y).

(95)

If X (or equivalently, ΠX) belongs to B, then the distance

considered above is 0, so we can assume that E(X) > E.

Then,

Y , {E/E(X)}1/2ΠX ∈ kerΦ ∩BE , (96a)

E(ΠX−Y) = E(X) − E. (96b)

Combining (93), (95) and (96b), we obtain the desired result:

dist(X,BE)
2 ≤ M−1

1 {E(X)− E}+. (97)
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