
HAL Id: hal-03349942
https://hal.science/hal-03349942

Submitted on 21 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Impact of Geometry on Monochrome Regions in
the Flip Schelling Process

Thomas Bläsius, Tobias Friedrich, Martin S Krejca, Louise Molitor

To cite this version:
Thomas Bläsius, Tobias Friedrich, Martin S Krejca, Louise Molitor. The Impact of Geom-
etry on Monochrome Regions in the Flip Schelling Process. The 32nd International Sympo-
sium on Algorithms and Computation (ISAAC 2021), Dec 2021, Fukuoka, Japan. pp.29:1-29:17,
�10.4230/LIPIcs.ISAAC.2021.45�. �hal-03349942�

https://hal.science/hal-03349942
https://hal.archives-ouvertes.fr


The Impact of Geometry on Monochrome Regions1

in the Flip Schelling Process2

Thomas Bläsius ! Ï3

Karlsruhe Institute of Technology, Karslruhe, Germany4

Tobias Friedrich ! Ï5

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany6

Martin S. Krejca !Ï7

Sorbonne University, CNRS, LIP6, Paris, France8

Louise Molitor !Ï9

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany10

Abstract11

Schelling’s classical segregation model gives a coherent explanation for the wide-spread phenomenon12

of residential segregation. We introduce an agent-based saturated open-city variant, the Flip Schelling13

Process (FSP), in which agents, placed on a graph, have one out of two types and, based on the14

predominant type in their neighborhood, decide whether to change their types; similar to a new15

agent arriving as soon as another agent leaves the vertex.16

We investigate the probability that an edge {u, v} is monochrome, i.e., that both vertices u and v17

have the same type in the FSP, and we provide a general framework for analyzing the influence of18

the underlying graph topology on residential segregation. In particular, for two adjacent vertices,19

we show that a highly decisive common neighborhood, i.e., a common neighborhood where the20

absolute value of the difference between the number of vertices with different types is high, supports21

segregation and, moreover, that large common neighborhoods are more decisive.22

As an application, we study the expected behavior of the FSP on two common random graph23

models with and without geometry: (1) For random geometric graphs, we show that the existence of24

an edge {u, v} makes a highly decisive common neighborhood for u and v more likely. Based on25

this, we prove the existence of a constant c > 0 such that the expected fraction of monochrome26

edges after the FSP is at least 1/2 + c. (2) For Erdős–Rényi graphs we show that large common27

neighborhoods are unlikely and that the expected fraction of monochrome edges after the FSP is28

at most 1/2 + o (1). Our results indicate that the cluster structure of the underlying graph has a29

significant impact on the obtained segregation strength.30
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1 Introduction38

Residential segregation is a well-known sociological phenomenon [49] where different groups39

of people tend to separate into largely homogeneous neighborhoods. Studies, e.g., [18], show40

that individual preferences are the driving force behind present residential patterns and bear41

much to the explanatory weight. Local choices therefore lead to a global phenomenon [47].42

A simple model for analyzing residential segregation was introduced by Schelling [46, 47] in43
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45:2 The Flip Schelling Process on Random Graphs

the 1970s. In his model, two types of agents, placed on a grid, act according to the following44

threshold behavior, with τ ∈ (0, 1) as the intolerance threshold: agents are content with45

their current position on the grid if at least a τ -fraction of neighbors is of their own type.46

Otherwise they are discontent and want to move, either via swapping with another random47

discontent agent or via jumping to a vacant position. Schelling demonstrated via simulations48

that, starting from a uniform random distribution, the described process drifts towards strong49

segregation, even if agents are tolerant and agree to live in mixed neighborhoods, i.e., if τ ≤ 1
2 .50

Many empirical studies have been conducted to investigate the influence of various parameters51

on the obtained segregation, see [8, 9, 25, 41, 45]. On the theoretical side, Schelling’s model52

started recently gaining traction within the algorithmic game theory and artificial intelligence53

communities [1, 11, 16, 17, 21, 22, 33], with focus on core game theoretic questions, where54

agents strategically select locations. Henry et al. [31] described a simple model of graph55

clustering motivated by Schelling where they showed that segregated graphs always emerge.56

Variants of the random Schelling segregation process were analyzed by a line of work that57

showed that residential segregation occurs with high probability [5, 7, 10, 13, 32, 51].58

We initiate the study of an agent-based model, called the Flip Schelling Process (FSP),59

which can be understood as the Schelling model in a saturated open city. In contrast to closed60

cities [7, 13, 32, 51], which require fixed populations, open cities [4, 5, 10, 27] allow resident61

to move away. In saturated city models, also known as voter models [20, 35, 36], vertices are62

not allowed to be unoccupied, hence, a new agent enters as soon as one agent vacates a vertex.63

In general, in voter models, two types of agents are placed on a graph. Agents examine their64

neighbors and, if a certain threshold is of another type, they change their types. Also in65

this model, segregation is visible. There is a line of work, mainly in physics, that studies66

the voting dynamics on several types of graphs [3, 14, 37, 43, 50]. Related to voter models,67

Granovetter [30] proposed another threshold model treating binary decisions and spurred a68

number of research, which studied and motivated variants of the model, see [2, 34, 38, 44].69

In the FSP, agents have binary types. An agent is content if the fraction of agents in70

its neighborhood with the same type is larger than 1
2 . Otherwise, if the fraction is smaller71

than 1
2 , an agent is discontent and is willing to flip its type to become content. If the fraction72

of same type agents in its neighborhood is exactly 1
2 , an agent flips its type with probability 1

2 .73

Starting from an initial configuration where the type of each agent is chosen uniformly at74

random, we investigate a simultaneous-move, one-shot process and bound the number of75

monochrome edges, which is a popular measurement for segregation strength [19, 26].76

Close to our model is the work by Omidvar and Franceschetti [39, 40], who initiated an77

analysis of the size of monochrome regions in the so called Schelling Spin Systems. Agents of78

two different types are placed on a grid [39] and a geometric graph [40], respectively. Then79

independent and identical Poisson clocks are assigned to all agents and, every time a clock80

rings, the state of the corresponding agent is flipped if and only if the agent is discontent w.r.t.81

a certain intolerance threshold τ regarding the neighborhood size. The model corresponds to82

the Ising model with zero temperature with Glauber dynamics [15, 48].83

The commonly used underlying topology for modeling the residential areas are (toroidal)84

grid graphs [11, 32, 39], regular graphs [11, 17, 21], paths [11, 33], cycles [4, 6, 7, 13, 51]85

and trees [1, 11, 22, 33]. Considering the influence of the given topology that models the86

residential area regarding, e.g., the existence of stable states and convergence behavior87

leads to phenomena like non-existence of stable states [21, 22], non-convergence to stable88

states [11, 17, 21], and high-mixing times in corresponding Markov chains [10, 28].89

To avoid such undesirable characteristics, we suggest to investigate random geometric90

graphs [42], like in [40]. Random geometric graphs demonstrate, in contrast to other random91
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Figure 1 The fraction of monochrome edges after the Flip Schelling Process (FSP) in Erdős–Rényi
graphs and random geometric graphs for different graph sizes (number of vertices n) and different
expected average degrees. Each data point shows the average over 1000 generated graphs with one
simulation of the FSP per graph. The error bars show the interquartile range, i.e., 50 % of the
measurements lie between the top and bottom end of the error bar.

graphs without geometry, such as Erdős–Rényi graphs [23, 29], community structures, i.e.,92

densely connected clusters of vertices. An effect observed by simulating the FSP is that the93

fraction of monochrome edges is significantly higher in random geometric graphs compared94

to Erdős–Rényi graphs, where the fraction stays almost stable around 1
2 , cf. Fig 1.95

We set out for rigorously proving this phenomenon. In particular, we prove for random96

geometric graphs that there exists a constant c such that, given an edge {u, v}, the probability97

that {u, v} is monochrome is lower-bounded by 1
2 + c, cf. Theorem 6. In contrast, we show98

for Erdős–Rényi graphs that segregation is not likely to occur and that the probability that99

{u, v} is monochrome is upper-bounded by 1
2 + o (1), cf. Theorem 17.100

We introduce a general framework to deepen the understanding of the influence of the101

underlying topology on residential segregation. To this end, we first show that a highly decisive102

common neighborhood supports segregation, cf. Section 3.1. In particular, we provide a lower103

bound on the probability that an edge {u, v} is monochrome based on the probability that104

the difference between the majority and the minority regarding both types in the common105

neighborhood, i.e., the number of agents which are adjacent to u and v, is larger than their106

exclusive neighborhoods, i.e., the number of agents which are adjacent to either u or v. Next,107

we show that large sets of agents are more decisive, cf. Section 3.2. This implies that a large108

common neighborhood, compared to the exclusive neighborhood, is likely to be more decisive,109

i.e., makes it more likely that the absolute value of the difference between the number of110

different types in the common neighborhood is larger than in the exclusive ones. These111

considerations hold for arbitrary graphs. Hence, we reduce the question concerning a lower112

bound for the fraction of monochrome edges in the FSP to the probability that, given {u, v},113

the common neighborhood is larger than the exclusive neighborhoods of u and v, respectively.114

For random geometric graphs, we prove that a large geometric region, i.e., the intersecting115

region that is formed by intersecting disks, leads to a large vertex set, cf. Section 3.3, and116

that random geometric graphs have enough edges that have sufficiently large intersecting117

regions, cf. Section 3.4, such that segregation is likely to occur. In contrast, for Erdős–Rényi118

graphs, we show that the common neighborhood between two vertices u and v is with high119

probability empty and therefore segregation is not likely to occur, cf. Section 4.120

Overall, we shed light on the influence of the structure of the underlying graph and121
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45:4 The Flip Schelling Process on Random Graphs

discovered the significant impact of the community structure as an important factor on the122

obtained segregation strength. We reveal for random geometric graphs that already after123

one round a provable tendency is apparent and a strong segregation occurs.124

2 Model and Preliminaries125

Let G = (V, E) be an unweighted and undirected graph, with vertex set V and edge set E. For126

any vertex v ∈ V , we denote the neighborhood of v in G by Nv = {u ∈ V : {u, v} ∈ E} and127

the degree of v in G by δv = |Nv|. We consider random geometric graphs and Erdős–Rényi128

graphs with a total of n ∈ N+ vertices and an expected average degree δ > 0.129

For a given r ∈ R+, a random geometric graph G ∼ G(n, r) is obtained by distributing n130

vertices uniformly at random in some geometric ground space and connecting vertices u and v131

if and only if dist(u, v) ≤ r. We use a two-dimensional toroidal Euclidean space with total132

area 1 as ground space. More formally, each vertex v is assigned to a point (v1, v2) ∈ [0, 1]2133

and the distance between u = (u1, u2) and v is dist(u, v) =
√

|u1 − v1|2◦ + |u2 − v2|2◦ for134

|ui − vi|◦ = min{|ui − vi|, 1 − |ui − vi|}. We note that using a torus instead of, e.g., a unit135

square, has the advantage that we do not have to consider edge cases, for vertices that are136

close to the boundary. In fact, a disk of radius r around any point has the same area πr2.137

Since we consider a ground space with total area 1, r ≤ 1√
π

. As every vertex v is connected138

to all vertices in the disk of radius r around it, its expected average degree is δ = (n − 1)πr2.139

For a given p ∈ [0, 1], let G(n, p) denote an Erdős–Rényi graph. Each edge {u, v} is140

included with probability p, independently from every other edge. It holds that δ = (n − 1)p.141

Consider two different vertices u and v. Let Nu∩v := |Nu ∩ Nv| be the number of vertices142

in the common neighborhood, let Nu\v := |Nu \ Nv| be the number of vertices in the exclusive143

neighborhood of u, and let Nv\u := |Nv \ Nu| be the number of vertices in the exclusive144

neighborhood of v. Furthermore, with Nu∪v := |V \ (Nu ∪ Nv)|, we denote the number of145

vertices that are neither adjacent to u nor to v.146

Let G be a graph where each vertex represents an agent of type t+ or t−. The type of147

each agent is chosen independently and uniformly at random. An edge {u, v} is monochrome148

if and only if u and v are of the same type. The Flip Schelling Process (FSP) is defined as149

follows: an agent v whose type is aligned with the type of more than δv/2 of its neighbors150

keeps its type. If more than δv/2 neighbors have a different type, then agent v changes its151

type. In case of a tie, i.e., if exactly δv/2 neighbors have a different type, then v changes its152

type with probability 1
2 . FSP is a simultaneous-move, one-shot process, i.e., all agents make153

their decision at the same time and, moreover, only once.154

For x, y ∈ N, we define [x..y] = [x, y] ∩ N and for x ∈ N+, we define [x] = [1..x].155

2.1 Useful Technial Lemmas156

In this section, we state several lemmas that we will use in order to prove our results in the157

next sections.158

▶ Lemma 1. Let X ∼ Bin(n, p) and Y ∼ Bin(n, q) with p ≥ q be independent. Then159

Pr [X ≥ Y ] ≥ 1
2 .160

Proof. Let Y1, . . . , Yn be the individual Bernoulli trials for Y , i.e., Y =
∑

i∈[n] Yi. Define new161

random variables Y ′
1 , . . . , Y ′

n such that Yi = 1 implies Y ′
i = 1 and if Yi = 0, then Y ′

i = 1 with162

probability (p − q)/(1 − q) and Y ′
i = 0 otherwise. Note that for each individual Y ′

i , we have163

Y ′
i = 1 with probability p, i.e., Y ′ =

∑
i∈[n] Y ′

i ∼ Bin(n, p). Moreover, as Y ′ ≥ Y for every164

outcome, we have Pr [X ≥ Y ] ≥ Pr [X ≥ Y ′]. It remains to show that Pr [X ≥ Y ′] ≥ 1
2 .165
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As X and Y ′ are equally distributed, we have Pr [X ≥ Y ′] = Pr [X ≤ Y ′]. Moreover, as166

one of the two inequalities holds in any event, we get Pr [X ≥ Y ′] + Pr [X ≤ Y ′] ≥ 1, and167

thus equivalently 2Pr [X ≥ Y ′] ≥ 1, which proves the claim. ◀168

▶ Lemma 2. Let n ∈ N+, p ∈ [0, 1), and let X ∼ Bin(n, p). Then, for all i ∈ [0..n], it holds169

that Pr [X = i] ≤ Pr [X = ⌊p(n + 1)⌋].170

Proof. We interpret the distribution of X as a finite series and consider the sign of the171

differences of two neighboring terms. A maximum of the distribution of X is located at172

the position at which the difference switches from positive to negative. To this end, let173

b : [0, n − 1] → [−1, 1] be defined such that, for all i ∈ [0, n − 1] ∩ N, it holds that174

b(d) =
(

n

d + 1

)
pd+1(1 − p)n−d−1 −

(
n

d

)
pd(1 − p)n−d.175

We are interested in the sign of b. In more detail, for any d ∈ [0, n − 2] ∩ N, if sgn
(
b(d)

)
≥ 0176

and sgn
(
b(d + 1)

)
≤ 0, then d + 1 is a local maximum. If the sign is always negative, then177

there is a global maximum in the distribution of X at position 0.178

In order to determine the sign of b, for all i ∈ [0..n − 1], we rewrite179

b(i) = n!
i!(n − i − 1)!p

i(1 − p)n−i−1 p

i + 1 − n!
i!(n − i − 1)!p

d(1 − p)n−i−1 1 − p

n − i
180

= n!
i!(n − i − 1)!p

i(1 − p)n−i−1
(

p

i + 1 − 1 − p

n − i

)
.181

182

Since the term n!pi(1 − p)n−i−1 is always non-negative, the sign of b(i) is determined by the183

sign of p/(i + 1) − (1 − p)/(n − i).184

Solving for i, we get that185

p

i + 1 − 1 − p

n − i
≥ 0 ⇔ i ≤ p(n + 1) − 1.186

187

Note that p(n + 1) − 1 may not be integer. Further note that the distribution of X is188

unimodal, as the sign of b changes at most once. Thus, each local maximum is also a global189

maximum. As discussed above, the largest value d ∈ [0, n − 2] ∩ N such that sgn
(
b(d)

)
≥ 0190

and sgn
(
b(d + 1)

)
≤ 0 then results in a global maximum at position d + 1. Since d needs to191

be integer, the largest value that satisfies this constraint is ⌊p(n + 1) − 1⌋. If the sign of b192

is always negative (p ≤ 1/(n + 1)), then the distribution of X has a global maximum at 0,193

which is also satisfied by ⌊p(n + 1) − 1⌋ + 1, which concludes the proof. ◀194

▶ Theorem 3 (Stirling’s Formula [24, page 54]). For all n ∈ N+, it holds that195

√
2πnn+1/2 e−n · e(12n+1)−1

< n! <
√

2πnn+1/2 e−n · e(12n)−1
.196

197

▶ Corollary 4. For all n ≥ 2 with n ∈ N, it holds that198

n! >
√

2πnn+1/2 e−n and (1)199

n! < e nn+1/2 e−n . (2)200
201

Proof. For both inequalities, we aim at using Theorem 3.202

Equation (1): Note that e(12n+1)−1
> 1, since 1

12n+1 > 0. Hence,203

√
2πnn+1/2 e−n <

√
2πnn+1/2 e−n · e(12n+1)−1

.204
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45:6 The Flip Schelling Process on Random Graphs

Equation (2): We prove this case by showing that205

√
2π e(12n)−1

< e . (3)206
207

Note, that e(12n)−1 is strictly decreasing. Hence, we only have to check whether Equation (3)208

holds for n = 2.209

√
2π e(12n)−1

≤
√

2π e 1
24 < 2.7 < e . ◀210

▶ Lemma 5. Let A, B, and C be random variables such that Pr [A > C ∧ B > C] > 0 and211

Pr [A > C ∧ B ≤ C] > 0. Then Pr [A > B ∧ A > C] ≥ Pr [A > B] · Pr [A > C].212

Proof. Using the definition of conditional probability, we obtain213

Pr [A > B ∧ A > C] = Pr [A > B | A > C ] · Pr [A > C] .214
215

Hence, we are left with bounding Pr [A > B | A > C ] ≥ Pr [A > B]. Partitioning the sample216

space into the two events B > C and B ≤ C and using the law of total probability, we obtain217

Pr [A > B | A > C] = Pr [B > C | A > C ] · Pr [A > B | A > C ∧ B > C]218

+ Pr [B ≤ C | A > C ] · Pr [A > B | A > C ∧ B ≤ C] .219
220

Note that the condition A > C ∧ B ≤ C already implies A > B and thus the last probability221

equals to 1. Moreover, using the definition of conditional probability, we obtain222

Pr [A > B | A > C] = Pr [B > C | A > C ] · Pr [A > B ∧ A > C ∧ B > C]
Pr [A > C ∧ B > C]223

+ Pr [B ≤ C | A > C ] .224
225

Using that Pr [B > C | A > C ] ≥ Pr [A > C ∧ B > C], that A > B ∧ B > C already226

implies A > C, that Pr [B ≤ C | A > C ] ≥ Pr [A > B ∧ B ≤ C], and finally the law of total227

probability, we obtain228

Pr [A > B | A > C] ≥ Pr [A > B ∧ A > C ∧ B > C] + Pr [B ≤ C | A > C ]229

= Pr [A > B ∧ B > C] + Pr [B ≤ C | A > C ]230

≥ Pr [A > B ∧ B > C] + Pr [A > B ∧ B ≤ C]231

= Pr [A > B] . ◀232
233

3 Monochrome Edges in Geometric Random Graphs234

In this section, we prove the following main theorem.235

▶ Theorem 6. Let G ∼ G(n, r) be a random geometric graph with expected average degree236

δ = o (
√

n). The expected fraction of monochrome edges after the FSP is at least237

1
2 + 9

800 ·

1
2 − 1√

2π⌊δ/2⌋

2

·
(

1 − e−δ/2
(

1 + δ

2

))
· (1 − o (1)).238

Note that the bound in Theorem 6 is bounded away from 1
2 for all δ ≥ 2. Moreover, the two239

factors depending on δ go to 1
2 and 1, respectively, for a growing δ.240

Given an edge {u, v}, we prove the above lower bound on the probability that {u, v} is241

monochrome in the following four steps.242
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1. For a vertex set, we introduce the concept of decisiveness that measures how much the243

majority is ahead of the minority in the FSP. With this, we give a lower bound on244

the probability that {u, v} is monochrome based on the probability that the common245

neighborhood of u and v is more decisive than their exclusive neighborhoods.246

2. We show that large neighborhoods are likely to be more decisive than small neighborhoods.247

To this end, we give bounds on the likelihood that two similar random walks behave248

differently. This step reduces the question of whether the common neighborhood is more249

decisive than the exclusive neighborhoods to whether the former is larger than the latter.250

3. Turning to geometric random graphs, we show that the common neighborhood is suf-251

ficiently likely to be larger than the exclusive neighborhoods if the geometric region252

corresponding to the former is sufficiently large. We do this by first showing that the ac-253

tual distribution of the neighborhood sizes is well approximated by independent binomial254

random variables. Then, we give the desired bounds for these random variables.255

4. We show that the existence of the edge {u, v} in the geometric random graph makes it256

sufficiently likely that the geometric region hosting the common neighborhood of u and v257

is sufficiently large.258

3.1 Monochrome Edges via Decisive Neighborhoods259

Let {u, v} be an edge of a given graph. To formally define the above mentioned decisiveness,260

let N+
u∩v and N−

u∩v be the number of vertices in the common neighborhood of u and v that261

are occupied by agents of type t+ and t−, respectively. Then Du∩v := |N+
u∩v − N−

u∩v| is the262

decisiveness of the common neighborhood of u and v. Analogously, we define Du\v and Dv\u263

for the exclusive neighborhoods of u and v, respectively.264

The following theorem bounds the probability for {u, v} to be monochrome based on the265

probability that the common neighborhood is more decisive than each of the exclusive ones.266

▶ Theorem 7. In the FSP, let {u, v} ∈ E be an edge and let D be the event {Du∩v >267

Du\v ∧ Du∩v > Dv\u}. Then {u, v} is monochrome with probability at least 1/2 + Pr [D] /2.268

Proof. If D occurs, then the types of u and v after the FSP coincide with the predominant269

type before the FSP in the shared neighborhood. Thus, {u, v} is monochrome.270

Otherwise, assuming D, w.l.o.g., let Du∩v ≤ Du\v and assume further the type of v has271

already been determined. If Du∩v = Du\v, then u chooses a type uniformly at random,272

which coincides with the type of v with probability 1
2 . Otherwise, Du∩v < Du\v and thus u273

takes the type that is predominant in u’s exclusive neighborhood, which is t+ and t− with274

probability 1
2 , each. Moreover, this is independent from the type of v as v’s neighborhood is275

disjoint to u’s exclusive neighborhood.276

Thus, for the event M that {u, v} is monochrome, we get Pr [M | D] = 1 and Pr
[
M | D

]
=277

1
2 . Hence, we get Pr [M ] > Pr [D] + 1

2 (1 − Pr [D]) = 1
2 + Pr [D] /2. ◀278

3.2 Large Neighborhoods are More Decisive279

The goal of this section is to reduce the question of how decisive a neighborhood is to the280

question of how large it is. To be more precise, assume we have a set of vertices of size a and281

give each vertex the type t+ and t−, respectively, each with probability 1
2 . Let Ai for i ∈ [a]282

be the random variable that takes the value +1 and −1 if the i-th vertex in this set has type283

t+ and t−, respectively. Then, for A =
∑

i∈[a] Ai, the decisiveness of the vertex set is |A|. In284

the following, we study the decisiveness |A| depending on the size a of the set. Note that285

this can be viewed as a random walk on the integer line: Starting at 0, in each step, it moves286
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45:8 The Flip Schelling Process on Random Graphs

one unit either to the left or to the right with equal probabilities. We are interested in the287

distance from 0 after a steps.288

Assume for the vertices u and v that we know that b vertices lie in the common neigh-289

borhood and a vertices lie in the exclusive neighborhood of u. Moreover, let A and B be290

the positions of the above random walk after a and b steps, respectively. Then the event291

Du∩v > Du\v is equivalent to |B| > |A|. Motivated by this, we study the probability of292

|B| > |A|, assuming b ≥ a. The core difficulty here comes from the fact that we require |B|293

to be strictly larger than |A|. Also note that a + b corresponds to the degree of u in the294

graph. Thus, we have to study the random walks also for small numbers of a and b. We note295

that all results in this section are independent from the specific application to the FSP, and296

thus might be of independent interest.297

Before we give a lower bound on the probability that |B| > |A|, we need the following298

technical lemma. It states that doing more steps in the random walk only makes it more299

likely to deviate further from the starting position.300

▶ Lemma 8. For i ∈ [a] and j ∈ [b] with 0 ≤ a ≤ b, let Ai and Bj be independent random301

variables that are −1 and 1 each with probability 1
2 . Let A =

∑
i∈[a] Ai and B =

∑
j∈[b] Bj.302

Then Pr [|A| < |B|] ≥ Pr [|A| > |B|].303

Proof. Let ∆k be the event that |B| − |A| = k. First note that304

Pr [|A| < |B|] =
∑
k∈[b]

Pr [∆k] and Pr [|A| > |B|] =
∑

k∈[a]

Pr [∆−k] .305

To prove the statement of the lemma, it thus suffices to prove the following claim.306

▷ Claim 9. For k ≥ 0, Pr [∆k] ≥ Pr [∆−k].307

We prove this claim via induction on b − a. For the base case a = b, A and B are equally308

distributed and thus Claim 9 clearly holds.309

For the induction step, let B+ be the random variable that takes the values B + 1 and310

B − 1 with probability 1
2 each. Note that B+ represents the same type of random walk as A311

and B but with b + 1 steps. Moreover B+ is coupled with B to make the same decisions in312

the first b steps. Let ∆+
k be the event that |B+| − |A| = k. It remains to show that Claim 9313

holds for these ∆+
k . For this, first note that the claim trivially holds for k = 0. For k ≥ 1,314

we can use the definition of ∆+
k and the induction hypothesis to obtain315

Pr
[
∆+

k

]
= Pr [∆k−1]

2 + Pr [∆k+1]
2316

≥ Pr [∆−k+1]
2 + Pr [∆−k−1]

2 = Pr
[
∆+

−k

]
. ◀317

318

Using Lemma 8, we now prove the following general bound for the probability that |A| < |B|,319

depending on certain probabilities for binomially distributed variables.320

▶ Lemma 10. For i ∈ [a] and j ∈ [b] with 0 ≤ a ≤ b, let Ai and Bj be independent random321

variables that are −1 and 1 each with probability 1
2 . Let A =

∑
i∈[a] Ai and B =

∑
j∈[b] Bj.322

Moreover, let X ∼ Bin(a, 1
2 ), Y ∼ Bin(b, 1

2 ), and Z ∼ Bin(a + b, 1
2 ). Then323

Pr [|A| < |B|] ≥ 1
2 − Pr

[
Z = a + b

2

]
+

Pr
[
X = a

2
]

· Pr
[
Y = b

2
]

2 .324
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Proof. Using that Pr [|A| < |B|] ≥ Pr [|A| > |B|] (see Lemma 8), we obtain325

Pr [|A| < |B|] + Pr [|A| > |B|] + Pr [|A| = |B|] = 1326

⇒ 2Pr [|A| < |B|] + Pr [|A| = |B|] ≥ 1327

⇔ Pr [|A| < |B|] ≥ 1
2 − Pr [|A| = |B|]

2 . (4)328
329

Thus, it remains to give an upper bound for Pr [|A| = |B|].330

Using the inclusion–exclusion principle and the fact that B is symmetric around 0, i.e.,331

Pr [B = x] = Pr [B = −x] for any x, we obtain332

Pr [|A| = |B|] = Pr [A = B ∨ A = −B]333

= Pr [A = B] + Pr [A = −B] − Pr [A = B = 0]334

= 2Pr [A = −B] − Pr [A = B = 0] . (5)335
336

We estimate Pr [A = −B] and Pr [A = B = 0] using bounds for binomially distributed vari-337

ables. To this end, define new random variables Xi = Ai+1
2 for i ∈ [a] and let X =

∑
i∈[a] Xi.338

Note that the Xi are independent and take values 0 and 1, each with probability 1
2 . Thus,339

X ∼ Bin(a, 1
2 ). Moreover, A = 2X − a. Analogously, we define Y with Y ∼ Bin(b, 1

2 ) and340

B = 2Y − b. Note that X and Y are independent and thus Z = X + Y ∼ Bin(a + b, 1
2 ).341

With this, we get342

Pr [A = −B] = Pr [2X − a = −2Y + b] = Pr
[
Z = a + b

2

]
, and343

Pr [A = B = 0] = Pr [A = 0] · Pr [B = 0] = Pr
[
X = a

2

]
· Pr

[
Y = b

2

]
.344

345

This, together with Equations (4) and (5) yield the claim. ◀346

The bound in Lemma 10 becomes worse for smaller values of a and b. Considering this worst347

case, we obtain the following specific bound.348

▶ Theorem 11. For i ∈ [a] and j ∈ [b] with 0 ≤ a ≤ b, let Ai and Bj be independent random349

variables that are −1 and 1 each with probability 1
2 . Let A =

∑
i∈[a] Ai and B =

∑
j∈[b] Bj.350

If a = b = 0 or a = b = 1, then Pr [|A| < |B|] = 0. Otherwise Pr [|A| < |B|] ≥ 3
16 .351

Proof. Clearly, if a = b = 0, then A = B = 0 and thus Pr [|A| < |B|] = 0. Similarly, if352

a = b = 1, then |A| = |B| = 1 and thus Pr [|A| < |B|] = 0. For the remainder, assume that353

neither a = b = 0 nor a = b = 1, and let X, Y , and Z be defined as in Lemma 10, i.e.,354

X ∼ Bin(a, 1
2 ), Y ∼ Bin(b, 1

2 ), and Z ∼ Bin(a + b, 1
2 ).355

If a + b is odd, then Pr
[
Z = a+b

2
]

= 0. Thus, by Lemma 10, we have Pr [|A| < |B|] ≥ 1
2 .356

If a + b is even and a + b ≥ 6, then357

Pr
[
Z = a + b

2

]
=
(

a + b
a+b

2

)(
1
2

)a+b

≤
(

6
3

)(
1
2

)6
= 5

16 .358

Hence, by Lemma 10, we have Pr [|A| < |B|] ≥ 1
2 − 5

16 = 3
16 .359

If a + b < 6 (and a + b is even), there are four cases: a = 0, b = 2; a = 0, b = 4;360

a = 1, b = 3; a = 2, b = 2. If a = 0 and b = 2, then A = 0 with probability 1 and |B| = 2361

with probability 1
2 . Thus, Pr [|A| < |B|] = 1

2 . If a = 0 and b = 4, then |A| < |B| unless362

B = 0. As Pr [B = 0] =
(4

2
)

· ( 1
2 )4 = 3

8 , we get Pr [|A| < |B|] = 1 − 3
8 = 5

8 . If a = 1 and b = 3,363
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then |A| = 1 with probability 1 and |B| = 3 with probability 1
4 (either B1 = B2 = B3 = 1364

or B1 = B2 = B3 = −1). Thus, Pr [|A| < |B|] = 1
4 . If a = b = 2, then |A| = 0 with365

probability 1
2 and |B| = 2 with probability 1

2 . Thus Pr [|A| < |B|] = 1
4 .366

We note that the bound of Pr [|A| < |B|] = 3
16 is tight for a = b = 3. ◀367

3.3 Large Common Regions Yield Large Common Neighborhoods368

To be able to apply Theorem 11 to an edge {u, v}, we need to make sure that the size of their369

common neighborhood (corresponding to b in the theorem) is at least the size of the exclusive370

neighborhoods (corresponding to a in the theorem). In the following, we give bounds for the371

probability that this happens. Note that this is the first time we actually take the graph372

into account. Thus, all above considerations hold for arbitrary graphs.373

Recall that we consider random geometric graphs G(n, r) and u and v are each connected374

to all vertices that lie within a disk of radius r around them. As u and v are adjacent, their375

disks intersect, which separates the ground space into four regions; cf. Fig 2a. Let Ru∩v be376

the intersection of the two disks. Let Ru\v be the set of points that lie in the disk of u but377

not in the disk of v, and analogously, let Rv\u be the disk of v minus the disk of u. Finally,378

let Ru∪v be the set of points outside both disks. Then, each of the n − 2 remaining vertices379

ends up in exactly one of these regions with a probability equal to the corresponding measure.380

Let µ(·) be the area of the respective region and p = µ(Ru∩v) and q = µ(Ru\v) = µ(Rv\u)381

be the probabilities for a vertex to lie in the common and exclusive regions, respectively.382

The probability for Ru∪v is then 1 − p − 2q.383

We are now interested in the sizes Nu∩v, Nu\v, and Nv\u of the common and the exclusive384

neighborhoods, respectively. As each of the n − 2 remaining vertices ends up in Nu∩v with385

probability p, we have Nu∩v ∼ Bin(n−2, p). For Nu\v and Nv\u, we already know that v is a386

neighbor of u and vice versa. Thus, (Nu\v −1) ∼ Bin(n−2, q) and (Nv\u −1) ∼ Bin(n−2, q).387

Moreover, the three random variables are not independent, as each vertex lies in only exactly388

one of the four neighborhoods, i.e., Nu∩v, (Nu\v − 1), (Nv\u − 1), and the number of vertices389

in neither neighborhood together follow a multinomial distribution Multi(n − 2, p) with390

p = (p, q, q, 1 − p − 2q).391

The following lemma shows that these dependencies are small if p and q are sufficiently392

small. This lets us assume that Nu∩v, (Nu\v − 1), (Nv\u − 1) are independent random393

variables following binomial distributions if the expected average degree is not too large.394

▶ Lemma 12. Let X = (X1, X2, X3, X4) ∼ Multi (n, p) with p = (p, q, q, 1 − p − 2q). Then395

there exist independent random variables Y1 ∼ Bin (n, p), Y2 ∼ Bin (n, q), and Y3 ∼ Bin (n, q)396

such that Pr [(X1, X2, X3) = (Y1, Y2, Y3)] ≥ 1 − 3n · max(p, q)2.397

Proof. Let Y1 ∼ Bin (n, p), and Y2, Y3 ∼ Bin (n, q) be independent random variables. We398

define the event B to hold, if each of the n individual trials increments at most one of399

the random variables Y1, Y2, or Y3. More formally, for i ∈ [3] and j ∈ [n], let Yi,j be the400

individual Bernoulli trials of Yi, i.e., Yi =
∑

j∈[n] Yi,j . For j ∈ [n], we define the event Bj to401

be Y1,j + Y2,j + Y3,j ≤ 1, and the event B =
⋂

j∈[n] Bj .402

Based on this, we now define the random variables X1, X2, X3, and X4 as follows.403

If B holds, we set Xi = Yi for i ∈ [3] and X4 = n − X1 − X2 − X3. Otherwise, if B,404

we draw X = (X1, X2, X3, X4) ∼ Multi (n, p) independently from Y1, Y2, and Y3 with405

p = (p, q, q, 1 − p − 2q). Note that X clearly follows Multi (n, p) if B. Moreover, conditioned406

on B, each individual trial increments exactly one of the variables X1, X2, X3, or X4 with407

probabilities p, q, q, and 1 − p − 2q, respectively, i.e., X ∼ Multi (n, p).408
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Thus, we end up with X ∼ Multi (n, p). Additionally, we have three independent random409

variables Y1 ∼ Bin (n, p), and Y2, Y3 ∼ Bin (n, q) with (X1, X2, X3) = (Y1, Y2, Y3) if B holds.410

Thus, to prove the lemma, it remains to show that Pr [B] ≥ 1 − 3n max(p, q)2. For j ∈ [n],411

the probability that the jth trial goes wrong is412

Pr
[
Bj

]
= 1 −

(
(1 − p)(1 − q)2)−

(
p(1 − q)2)− 2 (q(1 − p)(1 − q))413

= 2pq − 2pq2 + q2 ≤ 2pq + q2 ≤ 3 · max(p, q)2.414
415

Using the union bound it follows that Pr
[
B
]

≤
∑

j∈[n] Pr
[
Bj

]
≤ 3n · max(p, q)2. ◀416

As mentioned before, we are interested in the event Nu∩v ≥ Nu\v (and likewise Nu∩v ≥ Nv\u),417

in order to apply Theorem 11. Moreover, due to Lemma 12, we know that Nu∩v and (Nu\v −1)418

almost behave like independent random variables that follow Bin(n − 2, p) and Bin(n − 2, q),419

respectively. The following lemma helps to bound the probability for Nu∩v ≥ Nu\v. Note420

that it gives a bound for the probability of achieving strict inequality (instead of just ≥),421

which accounts for the fact that (Nu\v −1) and not Nu\v itself follows a binomial distribution.422

▶ Lemma 13. Let n ∈ N with n ≥ 2, and let p ≥ q > 0. Further, let X ∼ Bin(n, p)423

and Y ∼ Bin(n, q) be independent, let d = ⌊p(n + 1)⌋, and assume d = o (
√

n), then424

Pr [X > Y ] ≥
( 1

2 − 1/
√

2πd
)
(1 − o (1)).425

Proof. By Lemma 1, we get Pr [X ≥ Y ] ≥ 1
2 , and we bound426

Pr [X > Y ] = Pr [X ≥ Y ] − Pr [X = Y ] ≥ 1
2 − Pr [X = Y ] ,427

428

leaving us to bound Pr [X = Y ] from above. By independence of X and Y , we get429

Pr [X = Y ] =
∑
i∈[n]

Pr [X = i] · Pr [Y = i] . (6)430

431

Note that, by Lemma 2, for all i ∈ [0..n], it holds that Pr [X = i] ≤ Pr [X = d]. Assume that432

we have a bound B such that Pr [X = d] ≤ B. Substituting this into Equation (6) yields433

Pr [X = Y ] ≤ B
∑
i∈[n]

Pr [Y = i] = B,434

resulting in Pr [X > Y ] ≥ 1
2 − B. Thus, we now derive such a bound for B and apply the435

inequality that for all x ∈ R, it holds that 1 + x ≤ ex, as well as Equation (1). We get436

(
n

d

)
pd(1 − p)n−d ≤ nd

d!

(
d

n

)d(
1 − d

n

)n(
1 − d

n

)−d

437

≤ dd

d! e−d

(
1 − d

n

)−d

438

≤ dd

√
2πdd+1/2e−d

e−d

(
1 − d

n

)−d

439

= 1√
2πd

1
(1 − d/n)d

. (7)440

441

By Bernoulli’s inequality, we bound (1 − d/n)d ≥ 1 − d2/n = 1 − o (1) by the assumption442

d = o (
√

n). Substituting this back into Equation (7) concludes the proof. ◀443
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Finally, in order to apply Theorem 11, we have to make sure not to end up in the special444

case where a = b ≤ 1, i.e., we have to make sure that the common neighborhood includes at445

least two vertices. The probability for this to happen is given by the following lemma.446

▶ Lemma 14. Let X ∼ Bin(n, p) and let c = np ∈ o (n). Then it holds that Pr [X > 1] ≥447

(1 − e−c (1 + c)) (1 − o (1)).448

Proof. As X > 1 holds if and only if X ̸= 0 and X ̸= 1, we get449

Pr [X > 1] = 1 − Pr [X = 0] − Pr [X = 1] = 1 − (1 − p)n − n · p · (1 − p)n−1.450
451

Using that for all x ∈ R it holds that 1 − x ≤ e−x, we get452

Pr [X > 1] ≥ 1 − e−pn − n · p · e−p(n−1)
453

= 1 − e−c − c · ec/n · e−c
454

= 1 − e−c
(

1 + c · ec/n
)

.455
456

As ec/n goes to 1 for n → ∞, we get the claimed bound. ◀457

3.4 Many Edges Have Large Common Regions458

In Section 3.3, we derived a lower bound on the probability that Nu∩v ≥ Nu\v provided that459

the probability for a vertex to end up in the shared region Ru∩v is sufficiently large compared460

to Ru\v. In the following, we estimate the measures of these regions depending on the distance461

between u and v. Then, we give a lower bound on the probability that µ(Ru∩v) ≥ µ(Ru\v).462

▶ Lemma 15. Let G ∼ G(n, r) be a random geometric graph with expected average degree δ,463

let {u, v} ∈ E be an edge, and let τ := dist(u,v)
r . Then,464

µ(Ru∩v) = δ

(n − 1)π

(
2 arccos

(τ

2

)
− sin

(
2 arccos

(τ

2

)))
and (8)465

µ(Ru\v) = µ(Rv\u) = δ

n − 1 − µ(Ru∩v). (9)466
467

Proof. We start with proving Equation (8). Let i and j be the two intersection points of the468

disks of u and v, let α be the central angle enclosed by i and j, and let x be the corresponding469

circular sector, cf. Fig 2b. Moreover, let the triangle y be a subarea of x determined by α470

and the radical axis ℓ, cf. Fig 2c. Let h denote the height of the triangle y, cf. Fig 2d.471

For our calculations, we restrict the length of ℓ by the intersection points i and j. Since472

we consider the intersection between disks and thus ℓ divides the area µ(Ru∩v) into two473

subareas of equal sizes, it holds that µ(Ru∩v) = 2 (µ(x) − µ(y)). Considering the two areas474

µ(x) and µ(y), it holds that475

µ(x) = α

2 r2 and µ(y) = h · ℓ

2 = cos
(α

2

)
r · sin

(α

2

)
r = sin(α)

2 r2. (10)476
477

For the central angle α we know cos (α/2) = h/r = τ/2 and therefore α = 2 arccos
(

τ
2
)
.478

Together with Equation (10), we obtain479

µ(Ru∩v) = 2 (µ(x) − µ(y)) = 2
(

2 arccos
(

τ
2
)

2 r2 −
sin
(
2 arccos

(
τ
2
))

2 r2

)
. (11)480

481



T. Bläsius, T. Friedrich, M. S. Krejca, and L. Molitor 45:13

Ru∩v

Ru\v Rv\u
u v

(a) The geometric re-
gions corresponding to
the common and exclus-
ive neighborhoods, re-
spectively, with yellow
illustrating Ru∩v and
blue illustrating Ru\v

and Rv\u.

xα

j

i

(b) Let α be the cent-
ral angle determined by
the intersection points i
and j, and let x be
the corresponding circu-
lar sector (illustrated in
yellow).

y

`

(c) Let y be a triangle
in the intersection (il-
lustrated in green) de-
termined by the radical
axis ℓ and the central
angle α, cf. Fig 2b.

h
`

r

(d) The height h di-
vides the area µ(y)
(illustrated in green)
of the triangle y, cf.
Fig 2c, into two sub-
areas of equal size, since
adjacent and opposite
legs have the same
length r.

Figure 2 The neighborhood of two adjacent vertices u and v in a random geometric graph.

The area of a general circle is equal to πr2. Since we consider a ground space with total482

area 1, the area of one disk in the random geometric graph equals δ
n−1 , i.e., r2 = δ

(n−1)π .483

Together with Equation (11), we obtain Equation (8).484

Equation (9): We get the claimed equality by noting that µ(Ru∩v) + µ(Ru\v) = πr2. ◀485

▶ Lemma 16. Let G ∼ G(n, r) be a random geometric graph, and let {u, v} ∈ E be an edge.486

Then Pr
[
µ(Ru∩v) ≥ µ(Ru\v)

]
≥
( 4

5
)2.487

Proof. Let τ = dist(u,v)
r . By Lemma 15 with µ(Ru∩v) ≥ µ(Rv\u), we get488 (

2 arccos
(τ

2

)
− sin

(
2 arccos

(τ

2

)))
≥ π

2 ,489
490

which is true for τ ≥ 4
5 . The area of a disk of radius 4

5 r is
(
π( 4

5 r)2) /
(
πr2) =

( 4
5
)2 times491

the area of a disk of radius r. Hence, the fraction of edges with distance at most 4
5 r is at492

least
( 4

5
)2, concluding the proof. ◀493

3.5 Proof of Theorem 6494

By Theorem 7, the probability that a random edge {u, v} is monochrome is at least 1
2 +495

Pr [D] /2, where D is the event that the common neighborhood of u and v is more decisive496

than each exclusive neighborhood. It remains to bound Pr [D].497

Existence of an edge yields a large shared region. Let R be the event that µ(Ru∩v) ≥498

µ(Ru\v). Note that this also implies µ(Ru∩v) ≥ µ(Rv\u) as µ(Ru\v) = µ(Rv\u). Due to the499

law of total probability, we have500

Pr [D] ≥ Pr [R] · Pr [D | R] .501

Due to Lemma 16, we have Pr [R] ≥
( 4

5
)2. By conditioning on R in the following, we can502

assume that µ(Ru∩v) ≥ δ
2n ≥ µ(Ru\v) = µ(Rv\u), where δ is the expected average degree.503
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Neighborhood sizes are roughly binomially distributed. The next step is to go from the504

size of the regions to the number of vertices in these regions. Each of the remaining n′ = n−2505

vertices is sampled independently to lie in one of the regions Ru∩v, Ru\v, Rv\u, or Ru∪v.506

Denote the resulting numbers of vertices with X1, X2, X3, and X4, respectively. Then507

(X1, X2, X3, X4) follows a multinomial distribution with parameter p = (p, q, q, 1 − p − 2q)508

for p = µ(Ru∩v) and q = µ(Ru\v) = µ(Rv\u). Note that Nu∩v = X1, Nu\v = X2 + 1, and509

Nv\u = X3 + 1 holds for the sizes of the common and exclusive neighborhoods, where the +1510

comes from the fact that v is always a neighbor of u and vice versa.511

We apply Lemma 12 to obtain independent binomially distributed random variables Y1,512

Y2, and Y3 that are likely to coincide with X1 = Nu∩v, X2 = Nu\v − 1, and X3 = Nv\u − 1,513

respectively. Let B denote the event that (Nu∩v, Nu\v − 1, Nv\u − 1) = (Y1, Y2, Y3). Again,514

using the law of total probabilities and due to the fact that R and B are independent, we get515

Pr [D | R] ≥ Pr [B | R] · Pr [D | R ∩ B] = Pr [B] · Pr [D | R ∩ B] .516

Note that p, q ≤ δ
n for the expected average degree δ. Thus, Lemma 12 implies that517

Pr [B] ≥
(

1 − 3δ
2
/n
)

. Conditioning on B makes it correct to assume that Nu∩v ∼ Bin(n′, p),518

(Nu\v − 1) ∼ Bin(n′, q), (Nv\u − 1) ∼ Bin(n′, q) are independently distributed. Additionally519

conditioning on R gives us p ≥ δ
2n ≥ q.520

A large shared region yields a large shared neighborhood. In the next step, we consider521

an event that makes sure that the number Nu∩v of vertices in the shared neighborhood is522

sufficiently large. Let N1, N2, and N3 be the events that Nu∩v ≥ Nu\v, Nu∩v ≥ Nv\u, and523

Nu∩v > 1, respectively. Let N be the intersection of N1, N2, and N3. We obtain524

Pr [D | R ∩ B] ≥ Pr [N | R ∩ B] · Pr [D | R ∩ B ∩ N ]525

≥ Pr [N1 | R ∩ B] · Pr [N2 | R ∩ B] · Pr [N3 | R ∩ B] · Pr [D | R ∩ B ∩ N ] ,526
527

where the last step follows from Lemma 5 as the inequalities in N1, N2, and N3 all go in528

the same direction. Note that Nu∩v ≥ Nu\v is equivalent to Nu∩v > Nu\v − 1. Due to the529

condition on B, Nu∩v and Nu\v − 1 are independent random variables following Bin(n′, p)530

and Bin(n′, q), respectively, with p ≥ q due to the condition on R. Thus, we can apply531

Lemma 13, to obtain532

Pr [N1 | R ∩ B] = Pr [N2 | R ∩ B] ≥ 1
2 − 1√

2π⌊δ/2⌋(1 − o (1))
,533

and Lemma 14 gives the bound534

Pr [N3 | R ∩ B] ≥ 1 − e−δ/2
(

1 + δ

2 · (1 + o (1))
)

.535

Note that both of these probabilities are bounded away from 0 for δ ≥ 2. Conditioning on N536

lets us assume that the shared neighborhood of u and v contains at least two vertices and537

that it is at least as big as each of the exclusive neighborhoods.538

A large shared neighborhood yields high decisiveness. The last step is to actually bound539

the remaining probability Pr [D | R ∩ B ∩ N ]. Note that, once we know the number of vertices540

in the shared and exclusive neighborhoods, the decisiveness no longer depends on R or B, i.e.,541

we can bound Pr [D | N ] instead. For this, let D1 and D2 be the events that Du∩v > Du\v542
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and Du∩v > Dv\u, respectively. Note that D is their intersection. Moreover, due to Lemma 5,543

we have Pr [D | N ] ≥ Pr [D1 | N ] · Pr [D2 | N ]. To bound Pr [D1 | N ] = Pr [D2 | N ], we use544

Theorem 11. Note that the b and a in Theorem 11 correspond to Nu∩v and Nu\v + 1 (the545

+1 coming from the fact that Nu\v does not count the vertex v). Moreover conditioning on546

N implies that a ≤ b and b > 1. Thus, Theorem 11 implies Pr [D1 | N ] ≥ 3
16 .547

Conclusion. The above arguments give us that the fraction of monochrome edges is548

1
2 + Pr [D]

2 ≥ 1
2 + 1

2 · Pr [R]︸ ︷︷ ︸
≥( 4

5 )2

· Pr [B]︸ ︷︷ ︸
1−o(1)

·
(

Pr [N1 | R ∩ B]︸ ︷︷ ︸
≥ 1

2 − 1√
2π⌊δ/2⌋

)2 · Pr [N3 | R ∩ B]︸ ︷︷ ︸
≥1−e−δ/2

(
1+ δ

2

) ·
(

Pr [D1 | N ]︸ ︷︷ ︸
≥ 3

16

)2
,549

where we omitted the o (1) terms for Pr [N1 | R ∩ B] and Pr [N3 | R ∩ B], as they are already550

covered by the 1 + o (1) coming from Pr [B]. This yields the bound stated in Theorem 6:551

1
2 + 9

800 ·

1
2 − 1√

2π⌊δ/2⌋

2

·
(

1 − e−δ/2
(

1 + δ

2

))
· (1 − o (1)).552

4 Monochrome Edges in Erdős–Rényi Graphs553

In the following, we are interested in the probability that an edge {u, v} is monochrome554

after the FSP on Erdős–Rényi graphs. In contrast to geometric random graphs, we prove555

an upper bound. To this end, we show that it is likely that the common neighborhood is556

empty and therefore u and v choose their types to be the predominant type in their exclusive557

neighborhood, which is t+ and t− with probability 1
2 , each.558

▶ Theorem 17. Let G ∼ G(n, p) be an Erdős–Rényi graph with expected average degree559

δ = o (
√

n). The expected fraction of monochrome edges after the FSP is at most 1
2 + o (1).560

Proof. Given an edge {u, v}, let M be the event that {u, v} is monochrome. We first split M561

into disjoint sets with respect to the size of the common neighborhood and apply the law of562

total probability and get563

Pr [M ] = Pr [M | Nu∩v = 0] · Pr [Nu∩v = 0] + Pr [M | Nu∩v > 0 ] · Pr [Nu∩v > 0]564

≤ Pr [M | Nu∩v = 0] · 1 + 1 · Pr [Nu∩v > 0] .565
566

We bound each of the summands separately. For estimating Pr [M | Nu∩v = 0], we note567

that the types of u and v are determined by the predominant type in disjoint vertex sets. By568

definition of the FSP this implies that the probability of a monochrome edge is equal to 1
2 .569

We are left with bounding Pr [Nu∩v > 0]. Note that Nu∩v ∼ Bin
(
n, p2). Thus, by570

Bernoulli’s inequality we get Pr [Nu∩v > 0] = 1 − Pr [Nu∩v = 0] = 1 −
(
1 − p2)n ≤ np2.571

Noting that np2 = o (1) holds due to our assumption on δ, concludes the proof. ◀572
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