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ANALYSIS OF A SPACE-TIME DISCRETIZATION FOR DYNAMIC
ELASTICITY PROBLEMS BASED ON MASS-FREE

SURFACE ELEMENTS 

C. HAGER† AND B. I. WOHLMUTH†

Abstract. In this paper, a new space-time discretization is proposed which is based on a modified
mass matrix. The mass associated with a surface layer of elements is redistributed such that the
inertia at the boundary is removed. This approach is motivated by the observation that standard
space-time discretization schemes applied to dynamic contact problems yield spurious oscillations. A
widely used approach for the numerical simulation of these problems is based on Lagrange multipliers
which represent the contact stresses. But the algebraic contact conditions in combination with the
inertia volume terms often yield nonphysical results for the contact stresses, and the stability of the
algorithm can be lost. Our modified matrix is calculated via nonstandard quadrature formulas that
require no extra computational effort. In addition, the conservation properties of the underlying
algorithm are carried over to the modified method, and the standard optimal a priori estimates are
still satisfied. Numerical examples confirm the optimality of the approach and its stabilization effect
applied to contact problems.

Key words. dynamical contact problem, mass lumping, quadrature formula, moment conser-
vation, Lagrange multiplier, a priori error estimate

AMS subject classifications. 65D32, 65M60, 70E55, 74B05, 74M15, 74S05

1. Introduction and motivation. The numerical simulation of contact prob-
lems in elasticity plays an important role in many applications in mechanics. The
interest in this type of problem has led to extensive research activities from both the
numerical and the theoretical points of view (see [7, 15, 17, 20, 22] and the references
therein for an overview of the topic). A common approach for solving frictional contact
problems is the use of Lagrange multipliers [21] to ensure the weak fulfillment of the
contact and friction conditions. Mathematically, the Lagrange multipliers represent
the dual variable at the contact boundary, whereas physically, they can be identified
with the surface traction. Unfortunately, continuum mechanic models for the contact
conditions do not capture all features of the dynamic contact properly. As a conse-
quence, numerical simulation results often show spurious oscillations in the Lagrange
multiplier (see, e.g., [3, 10]). An example is shown in Figure 1.1, where the calculated
values for the normal component of the Lagrange multiplier are displayed, computed
with a standard finite element discretization scheme in space and a midpoint scheme
in time.

Recently, different approaches have discussed how to overcome this numerical
artifact [9, 11, 12, 13, 14, 16]. In [12, 13, 14], a space-time discretization based on a
modified mass matrix for the inertia term has been proposed. The mass associated
with the elements adjacent to the contact boundary is shifted to the inner elements
such that a mass-free layer is obtained. By this, the original PDE decouples into an

†Institute of Applied Analysis and Numerical Simulation (IANS), Universität Stuttgart, Pfaffen-
waldring 57, 70569 Stuttgart, Germany (hager@ians.uni-stuttgart.de, wohlmuth@ians.uni-stuttgart.
de).
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Fig. 1.1. Normal Lagrange multiplier for a two-body contact problem given in section 7.2 with
standard mass matrix Mh.

algebraic equation in time for the contact nodes and a PDE in time for the other
nodes, which leads to a higher regularity in time for the contact stresses, as shown in
[11]. Thereby no spurious oscillations in the numerical computation of the Lagrange
multipliers occur. But in the above references, the new mass matrix is defined as the
solution of a constrained minimization problem, which makes its computation quite
expensive. This drawback is overcome in [9], where an appropriate mass matrix is
constructed by local modifications of the original one. In particular, the changes can
be assembled in terms of special quadrature formulas, and no extra computational
cost comes into play by the modification.

The aim of the current paper is twofold. First, the implementation of the new
discretization scheme is studied. Here we propose and discuss two different proto-
types of suitable nonstandard quadrature rules. The first formula, already presented
in [9], is based on a macroelement decomposition, whereas the second variant can
easily be applied to completely unstructured shape-regular triangulations in two and
three dimensions. Second, we analyze the error of the new discretization scheme and
provide optimal a priori estimates under suitable regularity assumptions by applying
techniques from the theory of variational crimes. We emphasize that, in contrast to
standard mass lumping techniques, the new method results in a singular mass matrix.
Hence, norm equivalences based on the regularity of the mass matrix no longer apply.

The work is organized as follows: In section 2, we state the setting of linear
elasticity considered here and introduce our notation. In section 3, we describe two
representative examples of quadrature rules that can be used to define the modified
mass matrix. We focus on the key requirements that these formulas satisfy. A different
mathematical interpretation of these modified quadrature rules as a combination of
stable interpolation operators and standard quadrature is presented in section 4. In
the next two sections, we prove a priori estimates for the semidiscrete system in
section 5 and for the fully discrete system in section 6, after stating the regularity
assumptions. Section 7 contains numerical examples confirming the error reduction
properties proved in the previous sections. Moreover, we demonstrate the stabilization
effect of the method by the numerical solution of a dynamic two-body contact problem.

2. Problem setting. Let Ω ⊂ R
d, d ∈ {2, 3}, be an open, bounded domain with

piecewise smooth boundary ∂Ω. We consider the following dynamic linear elasticity
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problem: Find the displacement vector u = u(t,x) ⊂ R
d satisfying

̺ ü− div σ(u) = l in (0, T ] × Ω,

u = 0 in (0, T ] × ΓD,

σ(u)n = gN in (0, T ] × ΓN ,

u(0, ·) = u0 in Ω,

u̇(0, ·) = v0 in Ω.

(2.1)

The boundary ∂Ω is partitioned into two disjoint subsets, ∂Ω = Γ̄D ∪ Γ̄N , with
meas (ΓD) > 0. As we can always reduce nonhomogeneous Dirichlet boundary con-
ditions to the homogeneous case, the value of u on the Dirichlet boundary ΓD is set
to zero, whereas the boundary traction on ΓN is given by gN . The outward normal
on the boundary ∂Ω is denoted by n, and l stands for the volume forces acting on Ω.
The stress tensor σ(u) is given by the constitutive equations of linear elasticity

ε(u) :=
1

2

(
∇u + (∇u)T

)
, σ(u) := λtr(ε(u))Id + 2με(u),

where we assume constant material parameters ̺, μ, λ for ease of notation.
From now on, we denote vector-valued spaces by a bold letter, e.g., L2(Ω) :=

[L2(Ω)]d. To obtain the weak formulation of (2.1), we define X := H1(Ω) and take
V := {χ ∈ X : χ|ΓD

= 0} as the test space for the displacements. Thus, we
arrive at the following weak formulation: Find u ∈ L2((0, T ),V) such that u̇ ∈
L2((0, T ),L2(Ω)), ü ∈ L2((0, T ),V′), and

m(ü, χ) + a(u, χ) = f(χ), χ ∈ V, t ∈ (0, T ],

(u(0, ·), χ) = (u0, χ), χ ∈ V,

(u̇(0, ·), χ) = (v0, χ), χ ∈ V,

(2.2)

with the notation m(u, χ) :=
∫
Ω ̺u · χ dx, a(u, χ) :=

∫
Ω σ(u) : ε(χ) dx, f(χ) :=∫

Ω l · χ dx +
∫
ΓN

gN · χ ds, and (u, χ) =
∫
Ω u · χ dx. We remark that by these defi-

nitions, m(·, ·) and a(·, ·) are symmetric and continuous bilinear forms [5]. Further,
meas (ΓD) > 0 implies that a(·, ·) is V-elliptic. The definition of the time-dependent
spaces and norms used here can be found in [8].

Next we discretize (2.2) in space using a shape-regular triangulation Th of Ω into
quadrilaterals/hexahedrals or simplices. The discretization is such that the Dirichlet
boundary Γ̄D can be written as

⋃
K∈TD

K̄|∂Ω for a subset TD ⊂ Th.

For ω ⊂ R
d and k ∈ N0, we define Pk(ω) as the space of polynomials with the

basis functions xα with x ∈ ω, α ∈ N
d
0, and |α| ≤ k. Furthermore, Qk(ω) is the

polynomial space spanned by the functions xα with max1≤i≤d(αi) ≤ k. Let Xh be the
space of lowest order (k = 1) conforming finite element functions on the triangulation
Th, and set Vh := Xh ∩ V. The former space is spanned by the nodal finite element
basis functions {φp}p∈Nh

, where Nh is the set of all vertices of the triangulation Th.
With this, we obtain the following semidiscrete problem: Find uh ∈ L2((0, T ),Vh)

with u̇h, üh as before and

m(üh, χh) + a(uh, χh) = f(χh), χh ∈ Vh, t ∈ (0, T ],

(uh(0), χh) = (u0h, χh), χh ∈ Vh,

(u̇h(0), χh) = (v0h, χh), χh ∈ Vh.

(2.3)
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The boundary values u0h and v0h are suitable approximations of the continuous initial
data which we are going to specify later. Writing the first equation of (2.3) in matrix
notation gives

(2.4) Mhüh + Ahuh = fh.

We hereby use the notation uh for the function as well as its vector representation.
In the rest of this work, c and C denote generic constants independent of the

mesh size h := maxK∈Th
hK or time variables. Further, we use the abbreviations

‖ · ‖k,ω := ‖ · ‖Hk(ω) for the static and ‖ · ‖l,k,ω := ‖ · ‖Hl((0,T ),Hk(ω)) for the time-
dependent norms. In addition, we set ‖ · ‖∞,k,ω := ‖ · ‖L∞((0,T ),Hk(ω)).

3. Construction of MH. As motivated in the introduction, we are now going
to describe the construction of a new mass matrix MH as a local modification of the
standard mass matrix Mh such that the degrees of freedom of the potential contact
nodes do not contribute to the inertia term. In order to formulate the construction
of MH , we need some preliminary definitions.

We assume that contact can occur only on a connected subset ΓC of ΓN satisfying
Γ̄C ∩ Γ̄D = ∅. Thus, the modification of the mass matrix involves the nodes within
the set Ch defined by

(3.1) Ch :=
{
p ∈ Nh : p ∈ Γ̄C

}
, NH := Nh\Ch.

As illustrated in Figure 3.1, we denote the union of all elements along ΓC and its
complement by

Ω̄C1 :=
⋃

p∈Ch

(supp φp), ΩH := Ω\Ω̄C1.

The interface ∂ΩC1 ∩ ∂ΩH is called ΓH . Further, we introduce layer-like domains

Ω̄C2 :=
⋃

p⊂Ω̄C1,

p∈Nh

(suppφp), Ω̄C3 :=
⋃

p⊂Ω̄C2,

p∈Nh

(supp φp).

For discrete functions vh,wh ∈ Xh, we now define a modified bilinear form

(3.2) mi
H(vh,wh) := Qi(̺vh ·wh)

with a suitable quadrature rule Qi that is composed of local quadrature formulas Qi
K .

Two representative examples follow.
Example 3.1 (quadrature rule Q0). On each element K ∈ Th, K ⊂ ΩH , we

take any standard quadrature formula of sufficient accuracy. The only modification
is on elements K ⊂ ΩC1 which satisfy by definition K̄ ∩ ΓC 
= ∅. Depending on the

ΓC

ΓH } ΩC1

⎫
⎬

⎭ΩH

ΓC

⎫
⎬

⎭ ΩC3ΩC2

{
❡ ❡ ❡ ❡ ❡ ❡ ❡

❡ ❡ ❡ ❡ ❡ ❡ ❡

❡ ❡ ❡ ❡ ❡ ❡ ❡

❡ ❡ ❡ ❡ ❡ ❡ ❡

Ch

❡NH

Fig. 3.1. Examples for ΩC1, ΩC2, ΩC3, and ΩH .
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(Gauß nodes) ŵ2 = 5
6 |K̂|

Fig. 3.2. Nodes and weights of the quadrature rule Q0

K̂
in two dimensions for K ⊂ ΩC1.

q1
q2

q3

q1
q2 q3

q4 q5

q6

ŵi = 1
4 |K̂| ŵ = |K̂| ŵ1 = ŵ3 = 1

12 |K̂|, ŵ1 = ŵ3 = ŵ6 = − 2
45 |K̂|,

(Gauß nodes) ŵ2 = 5
6 |K̂| ŵ2 = ŵ4 = ŵ5 = 17

45 |K̂|

Fig. 3.3. Nodes and weights of the quadrature rule Q0

K̂
in three dimensions for K ⊂ ΩC1.

shape of the element and its position relative to ΓC , different situations can occur. In
Figures 3.2 and 3.3, several cases are depicted; for each situation, the corresponding
quadrature nodes and weights with respect to the reference element K̂ ([0, 1]d or the

unit simplex, respectively) are given. The intersection of ∂K̂ with the boundary ΓC

is on the bottom side of each element and marked in gray, whereas the quadrature
nodes are indicated by filled black bullets.

Example 3.2 (quadrature rule Q1). On each element K ∈ Th, K ⊂ Ω\ΩC2,
we again take any standard quadrature formula of sufficient accuracy. Modifications
occur on elements K ⊂ ΩC2. In order to describe the construction of the quadrature
formula, we need the notion of so-called macroelements (see [9] for a more detailed
explanation).

We assume that there exists a second triangulation T 1
h possibly with hanging

nodes such that each element of T 1
h can be written as the union of elements in Th.

Moreover, if K ∈ T 1
h with K ⊂ ΩH , then K ∈ Th. Each K ∈ T 1

h \Th contains at least
one element of Th being in ΩC1 (see the shaded parts in Figure 3.4) and exactly one
element K1 ∈ Th with K1 ⊂ ΩH . We note that such triangulation T 1

h exists for any
Th as no further conditions on the shape of the macroelements are imposed, but it is
not uniquely defined. If Th is obtained from T2h by uniform refinement, T 1

h can easily
be constructed.

In Figure 3.4, representative reference macroelements K̂ in two dimensions are
depicted, each with one example of a suitable quadrature formula. The rule for the
quadrilateral element (on the left side of Figure 3.4) exhibits a tensor product structure

with Gauß nodes in the direction tangential to the contact part of ∂K̂ and equidistant
nodes in the remaining direction; thus, the formula can easily be generalized to the
three-dimensional (3D) case.

Using mi
H(·, ·), i = 0, 1, for the definition of the mass matrix (now denoted by

M i
H), we obtain the modified version of (2.4):

(3.3) M i
H üh + Ahuh = fh.
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q6

w1 = 1
9 |K̂|, w2 = 11

9 |K̂|,

w3 = 8
9 |K̂|, w4 = − 5

9 |K̂|,

w5 = − 13
9 |K̂|, w6 = 7

9 |K̂|.

Fig. 3.4. Nodes and weights for the quadrature rule Q1

K̂
on macroelements K̂ in two dimensions.

The solutions of (2.4) and (3.3) are not the same, but from now on uh refers only to
the solution of (3.3), also neglecting the index i in order to keep the notation simple.

Several properties are worth noticing about the quadrature formulas presented in
Examples 3.1 and 3.2:

• They are based on some standard quadrature rule, where the modifications
are only locally performed near ΓC .

• No quadrature node is located inside the support of basis functions φp for
p ∈ Ch. The entries mi

H(·, ejφp) = mi
H(ejφp, ·) of the mass matrix M i

H with
the jth unit vector ej ∈ R

d vanish, which leads to zero rows and columns for
the degrees of freedom on the boundary ΓC . Hence, the resulting matrix M i

H

is singular.
• Some of the formulas contain negative weights which in principle could cause

stability problems. But as the local mass matrix for K̂ is positive semidefinite
for all quadrature rules shown above, the stability is not affected.

• Both quadrature formulas are exact for functions in P0(K̂). In addition,

it can easily be checked that Q1
K̂

is exact for functions in P2(K̂) for the

simplicial case and for Q3(K̂) in the quadrilateral case.
• As the definition of Q1 needs the construction of the macroelement triangu-

lation T 1
h , this rule is more suited for structured meshes which often consist

of quadrilateral/hexahedral elements. In contrast, Q0 can easily be applied
even to unstructured simplicial meshes.

Examples 3.1 and 3.2 can be considered as prototypes for two different ways of
constructing the modified mass matrix M i

H ; the former is associated with the trian-
gulation T 0

h := Th, and the latter is based on the macrotriangulation T 1
h . Written

concisely, we can define the formula Qi, i ∈ {0, 1}, locally with respect to the trian-
gulation T i

h as follows:

(3.4) Qi(vh ·wh) :=
∑

K∈T i
h

Qi
K(vh ·wh), vh,wh ∈ Xh.

Below, we summarize the main features of Examples 3.1 and 3.2 as requirements
which a suitable quadrature formula Qi has to satisfy:

Q1. No quadrature point of Qi is placed in Ω̄C1\Γ̄H .
Q2. For K ∈ T i

h , the local formula Qi
K is exact for all functions in P2i(K).

Clearly, a quadrature formula of type Q0 satisfying condition Q1 cannot be locally
exact for all functions in P1(K) with K ∈ T 0

h , K ⊂ ΩC1. But a formula of type Q1
K

can exhibit a higher degree of exactness than P0(K), as recorded in condition Q2.
In fact, as stated before, the examples given in Figure 3.4 on the reference

macroelement K̂ are exact for all functions in Q3(K̂) in the quadrilateral/hexahedral

case and for P2(K̂) in the simplicial case. Using the transformation FK : K̂ → K to
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obtain the nodes and weights on the actual macroelement K ∈ T 1
h , we have to take

into account the determinant det(F−1
K ) which is piecewise constant for simplicial ele-

ments but can be piecewise in Q1(K) for quadrilateral/hexahedral elements. Hence
both quadrature rules given in Figure 3.4 are locally exact for all functions in P2(K).

The following lemma is a direct consequence of condition Q2.
Lemma 3.3. If the quadrature formula Qi, i ∈ {0, 1}, is chosen according

to condition Q2, the new mass matrix M0
H in (3.3) conserves the total mass; i.e.,

1T M0
H 1 = 1T Mh 1 holds with the vector 1 = (1, . . . , 1)T ∈ R

dim(Vh). Moreover, the
mass matrix M1

H conserves the zeroth, first, and second order moments of the original
system (2.4) (i.e., the total mass, the center of gravity, and the moments of inertia).

Proof. For the proof, see [9].

4. Different interpretation of mi

H
(·, ·). In this section, we will look at the

modified bilinear form mi
H(·, ·) defined in (3.2) from a different mathematical point

of view. Let us assume that there exists an interpolation operator Ii
h, i ∈ {0, 1}, on

Xh satisfying the three conditions
P1. Ii

h is L2(ΩC2)-stable; i.e., ‖Ii
hχh‖0,ΩC2

≤ c‖χh‖0,ΩC2
, χh ∈ Xh,

P2. Ii
hχh|Ω̄H

= χh|Ω̄H
, χh ∈ Xh,

P3. Ii
hχh|K = χh|K , χh|K ∈ P i(K), K ∈ T i

h ,
and

(4.1) mi
H(χh, ηh) = m(Ii

hχh, Ii
hηh), χh, ηh ∈ Xh.

Remark 4.1. Condition P1 is a common assumption for a well-defined inter-
polation operator, whereas P2 is motivated by the observation that mi

H(χh, ηh) =
m(χh, ηh) for χh, ηh ∈ Xh with supp χh ⊂ Ω̄H or suppηh ⊂ Ω̄H . Requirement P3
reflects the fact that Qi is exact for all functions in P2i(K), K ∈ T i

h , i ∈ {0, 1}.
Remark 4.2. Conditions Q1, P1, P2 and the relation (4.1) imply the following

inequality (as shown in [9]):

(4.2) c‖χh‖
2
0,ΩH

≤ mi
H(χh, χh) ≤ C‖χh‖

2
0,ΩH

, χh ∈ Xh.

Hence we can state that | · |H,i :=
√

mi
H(·, ·) is equivalent to the L2(ΩH)-norm and

thus is a seminorm on Xh. Condition P1 and (4.1) imply that mi
H(·, ·) is continuous

on Xh.
By condition Q1, all quadrature points of Qi are placed in Ω̄H , and thus we get

by (3.2), (3.4), and P2

mi
H(χh, ηh) =

∑

K∈T i
h

Qi
K(̺ χh · ηh) =

∑

K∈T i
h

Qi
K(̺ Ii

hχh · Ii
hηh) = mi

H(Ii
hχh, Ii

hηh).

From (4.1), we find

(4.3)
∑

K∈T i
h

Qi
K(̺ Ii

hχh · Ii
hηh) =

∑

K∈T i
h

∫

K

̺ Ii
hχh · Ii

hηh dx.

This formula holds if the quadrature formula Qi
K is exact on each element K ∈

T i
h for the product of the functions Ii

hχh · Ii
hηh, χh, ηh ∈ Xh. Thus, for a given

quadrature formula Qi, we can define a corresponding interpolation operator Ii
h via

the relation (4.3).
In the following, we return to Examples 3.1 and 3.2 and construct appropriate

operators I0
h and I1

h.
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Fig. 4.2. Nodal values of the modified basis functions φ0
p on K̂ for K ⊂ ΩC1 for the 3D case.

4.1. Interpolation operator I0
h
. The action of the linear operator I0

h can be
characterized by the images of the basis functions φp, p ∈ Nh. Hence, we compute
the right-hand side of (4.3) for functions χh, ηh ∈ {ejφp, 1 ≤ j ≤ d, p ⊂ K ∈ T 0

h }.
Equation (4.3) and condition Q1 imply that I0

hejφp = 0 has to hold for any p ∈ Ch

defined in (3.1). For nodes p ∈ NH , we know from Q1 that for any modified basis
function φ0

p constructed according to the specification

φ0
p :=

{
φp on K ⊂ ΩH ,

φp +
∑

q∈Ch,q⊂K βpqφq on K ⊂ ΩC1,
(4.4)

with βpq ∈ R, we have

Q0
K(ejφp · ekφq) = δjkQ0

K (φpφq) = δjkQ0
K

(
φ0

pφ
0
q

)
.

Hence we are looking for scalar values βpq such that

Q0
K

(
φ0

pφ
0
q

)
=

{
0, p ∈ Ch or q ∈ Ch,
∫

K
φ0

pφ
0
q dx else,

(4.5)

and we define

(4.6) I0
hejφp := ejφ

0
p, 1 ≤ j ≤ d, p ∈ Nh.

The first condition of (4.5) is valid for any βpq ∈ R, whereas the second relation
depends on the quadrature formula Q0

K and is fulfilled only for certain choices of βpq.
Figures 4.1 and 4.2 display several representatives of the functions φ0

p, p ∈ NH , which
correspond to the quadrature rules in Figures 3.2 and 3.3. They span a modified finite
element space X0

h:

(4.7) X0
h :=

⎧
⎨

⎩
∑

p∈NH

αpφ
0
p : αp ∈ R

d

⎫
⎬

⎭ .

One can easily verify that the operator I0
h given by (4.6) satisfies conditions P1–P3

and by construction (4.1).
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Fig. 4.3. Nodal values of the modified basis functions φ1
p on K̂ for K ⊂ ΩC2 for the 2D case.

4.2. Interpolation operator I1
h
. We proceed analogously to the previous sub-

section and look for modified local basis functions φ1
p, p ∈ NH , defined according to

(4.4) such that

Q1
K(ejφp · ekφq) = δjkQ1

K

(
φ1

pφ
1
q

)
=

{
0, p ∈ Ch or q ∈ Ch,

δjk

∫
K

φ1
pφ

1
q dx else.

A possible construction of the functions φ1
p, p ∈ NH (which are shown in Figure 4.3

for the 2D case), can be done as follows: For each K ∈ T 1
h , let K1 ∈ Th be the unique

element satisfying K1 ⊂ K ∩ ΩH (see Figure 4.3). For each vertex p ⊂ K̄1, we define
φ1

p as the polynomial extension of φp|K1
onto K. This implies φ1

p|K′ = φp|K′ for
K ′ ∈ Th ∩ T 1

h .
Now, we can define the interpolation operator I1

h and the modified finite element
space X1

h as in (4.6) and (4.7), respectively, with the upper index 0 replaced by 1.
The conditions P1–P3 are easy to verify.

Remark 4.3. We note that the modified basis functions φi
p, i ∈ {0, 1}, for p ⊂ ΓH

are in general not globally continuous because of their elementwise definition, which
leads to Xi

h 
⊂ Xh. If one wants to avoid such a nonconforming situation or if the
mesh is strongly anisotropic, the nodal values of the modified basis functions can
be adapted to be continuous or to respect the anisotropy. However, this results in
suppφi

p 
= suppφp in general. Hence an elementwise definition of the interpolation
operator and the corresponding quadrature formula according to (4.3) would not be
possible.

5. A priori error estimate for the semidiscrete system. In order to gain
an a priori error estimate for the solution of (3.3), we proceed similarly to the proof
of the lumped mass matrix method in [19] which can be interpreted as a variational
crime introduced by a quadrature formula (for details see [1]).

In the following, we will need a projection operator onto the discrete space Xh

which allows for local estimates. An example is the Scott–Zhang operator Zh [18]
which preserves the homogeneous Dirichlet boundary conditions on ΓD and satisfies
the following for each element K ∈ Th:

j ∈ {0, 1}, s ∈ {1, 2} : ‖Zhv − v‖j,K ≤ Chs−j |v|s,ωK
, v ∈ Hs(Ω),(5.1)

|Zhv|1,K ≤ C|v|1,ωK
, v ∈ H1(Ω),(5.2)

‖Zhv‖0,K ≤ C‖v‖0,ωK
, v ∈ L2(Ω),(5.3)

where ω̄K :=
⋃
{T̄ : T ∈ Th, T̄ ∩ K̄ 
= ∅} is the patch of elements around K.

We start with a lemma about the approximation properties of the interpolation
operator Ii

h, i ∈ {0, 1}.
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Lemma 5.1. Let Ii
h satisfy conditions P1–P3 (given in section 4). Then the

following inequalities hold:

‖Ii
hχh − χh‖0,Ω ≤ Ch‖χh‖1,ΩC2

, χh ∈ Xh,(5.4)

‖Ii
hZhv − v‖0,ΩC1

≤ Ch‖v‖1,ΩC3
, v ∈ X.(5.5)

Proof. The estimate (5.4) follows directly from P2 and P3, whereas (5.5) results
from the triangle inequality, (5.1), (5.2), and (5.4).

Another tool we are going to use in the following is the Sobolev embedding theo-
rem [5] which states that, for an interval [a, b] ⊂ R, L∞([a, b]) is continuously embed-
ded in H1([a, b]). A corollary of this theorem is the following lemma given in [6].

Lemma 5.2. Let u ∈ L2((0, T ), X) and u̇ ∈ L2((0, T ), X ′) for some Banach space
X. Then we have u ∈ C0([0, T ], X) and

sup
t∈[0,T ]

‖u(t)‖X ≤ C
(
‖u‖L2((0,T ),X) + ‖u̇‖L2((0,T ),X′)

)
.

We define the quadrature error of the modified bilinear form using (4.1):

εi
H(χh, ηh) := mi

H(χh, ηh) − m(χh, ηh) = m(Ii
hχh, Ii

hηh) − m(χh, ηh)

for functions χh, ηh ∈ Xh. The next lemma gives a bound on this bilinear form.
Lemma 5.3. Let u ∈ X, χh ∈ Xh and assume that Ii

h meets conditions P1–P3.
Then the following estimate holds:

(5.6) |εi
H(Zhu, χh)| ≤ Ch (‖u‖1,ΩC3

‖χh‖0,ΩC2
+ ‖u‖0,ΩC2

‖χh‖1,ΩC2
) .

For u,v ∈ H2(Ω), we obtain

(5.7) |εi
H(Zhu, Zhv)| ≤ Ch2 (‖u‖2,Ω‖v‖1,Ω + ‖u‖1,Ω‖v‖2,Ω) .

Proof. Recalling condition P2 which implies that (ηh − Ii
hηh) vanishes on Ω̄H for

ηh ∈ Xh, we consider (5.6):

|εi
H(Zhu, χh)| = |m(Ii

hZhu, Ii
hχh) − m(Zhu, χh)|

= |m((Ii
h − Id)Zhu, Ii

hχh) + m(Zhu, (Ii
h − Id)χh)|

≤ C(‖(Ii
h − Id)Zhu‖0,ΩC1

‖Ii
hχh‖0,ΩC1

+‖Zhu‖0,ΩC1
‖(Ii

h − Id)χh‖0,ΩC1
)

≤ Ch (‖Zhu‖1,ΩC2
‖χh‖0,ΩC2

+ ‖u‖0,ΩC2
‖χh‖1,ΩC2

)

≤ Ch (‖u‖1,ΩC3
‖χh‖0,ΩC2

+ ‖u‖0,ΩC2
‖χh‖1,ΩC2

) ,

where we made use of P1, (5.2), (5.3), and (5.4).
Now we turn to (5.7). Due to the Sobolev embedding theorem and standard

arguments, we get for v ∈ X

‖v‖2
0,ΩCj

≤ Ch‖v‖2
1,Ω, j ∈ {1, 2, 3}.

Here we employed the fact that the width of ΩCj is bounded in terms of a constant
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multiple of h. Similarly, we obtain ‖v‖2
1,ΩC1

≤ Ch‖v‖2
2,Ω for v ∈ H2(Ω), which leads

to

|εi
H(Zhu, Zhv)| ≤ ‖(Ii

h − Id)Zhu‖0,ΩC1
‖Ii

hZhv‖0,ΩC1

+ ‖Zhu‖0,ΩC1
‖(Ii

h − Id)Zhv‖0,ΩC1

≤ Ch (‖Zhu‖1,ΩC2
‖Zhv‖0,ΩC2

+ ‖Zhu‖0,ΩC1
‖Zhv‖1,ΩC2

)

≤ Ch3/2 (‖u‖1,ΩC3
‖Zhv‖1,Ω + ‖Zhu‖1,Ω‖v‖1,ΩC3

)

≤ Ch2 (‖u‖2,Ω‖v‖1,Ω + ‖u‖1,Ω‖v‖2,Ω) .

We further state another auxiliary result about the time derivative of the discrete
operators Zh which holds by definition (see [18]).

Lemma 5.4. For u ∈ X we have Zhu̇ = ˙(Zhu).
Now we are able to derive a priori bounds on the difference uh−u. We start with

an H1(Ω)-estimate which can be shown for Ii
h satisfying conditions P1–P3 without

additional assumptions on Ω or the boundary conditions.
To this end, we introduce wh ∈ L2((0, T ),Vh) as a suitable elliptic projection of

u onto Vh:

(5.8) a(wh, χh) = (f , χh) − mi
H(Zhü, χh), χh ∈ Vh, 0 ≤ t ≤ T.

For Vh ⊂ V and a V-coercive bilinear form a(·, ·) this equation uniquely defines wh.
Now we bound the difference between u and wh.

Lemma 5.5. Choose Ii
h such that conditions P1–P3 hold. If the solution u of

(2.2) meets the requirements ∂ku
∂tk ∈ L2((0, T ),H2(Ω)), ∂k+2u

∂tk+2 ∈ L2((0, T ),X) for some
k ∈ {0, 1, 2}, then the kth time derivative of the solution wh of (5.8) satisfies

(5.9)

∥∥∥∥
∂kwh

∂tk
−

∂ku

∂tk

∥∥∥∥
0,1,Ω

≤ Ch

(∥∥∥∥
∂ku

∂tk

∥∥∥∥
0,2,Ω

+

∥∥∥∥
∂k+2u

∂tk+2

∥∥∥∥
0,1,Ω

)
.

Proof. We give the proof only for k = 0, as the other estimates follow with
Lemma 5.4 and differentiation with respect to time.

We start with (2.2) and (5.8) for a test function χh ∈ L2((0, T ),Vh):

a(wh − Zhu, χh) = a(u − Zhu, χh) + m(ü − Zhü, χh)

+ m(Zhü, χh) − mi
H(Zhü, χh).(5.10)

We choose χh = wh−Zhu; then we get with the V-coercivity of a(·, ·), the continuity
of m(·, ·), integration from 0 to T , and the division of both sides by ‖wh − Zhu‖0,1,Ω

‖wh − Zhu‖0,1,Ω ≤ C
(
‖ü− Zhü‖0,0,Ω + ‖u− Zhu‖0,1,Ω

)

+ sup
χ

h
∈L2((0,T ),Vh)

χ
h
	=0

C

‖χh‖0,1,Ω

∫ T

0

|εH(Zhü, χh)|dt.

With Lemma 5.3 and the Cauchy–Schwarz inequality, we obtain
∫ T

0

|εH(Zhü, χh)|dt ≤ Ch‖ü‖0,1,Ω‖χh‖0,1,Ω.
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In terms of the approximation properties (5.1) and the above estimates, we find

‖wh − u‖0,1,Ω ≤ ‖wh − Zhu‖0,1,Ω + ‖Zhu − u‖0,1,Ω ≤ Ch (‖u‖0,2,Ω + ‖ü‖0,1,Ω) .

With these lemmas, we are able to prove the following result for the H1(Ω)-norm
of the error.

Theorem 5.6. Assume that the solution u of (2.2) meets the smoothness re-

quirements u, u̇, ü ∈ L2((0, T ),H2(Ω)) and ∂3u
∂t3 , ∂4u

∂t4 ∈ L2((0, T ),X). Let Ii
h satisfy

P1–P3. Take the initial conditions uh(0) = Zhu0 and u̇h(0) = Zhv0. Then the
following estimate holds:

(5.11) ‖u̇h − u̇‖∞,0,ΩH
+‖uh−u‖∞,1,Ω ≤ Ch

(
2∑

s=0

∥∥∥∥
∂su

∂ts

∥∥∥∥
0,2,Ω

+

4∑

s=3

∥∥∥∥
∂su

∂ts

∥∥∥∥
0,1,Ω

)
.

Proof. Let uh,wh be defined by the weak form of (3.3) and (5.8), respectively.
Setting θh := uh − wh gives for any test function χh ∈ L2((0, T ),Vh)

(5.12) mi
H(θ̈h, χh) + a(θh, χh) = mi

H(Zhü, χh) − mi
H(ẅh, χh).

We choose χh = θ̇h in (5.12) and thus obtain

1

2

d

dt

(
|θ̇h|

2
H,i + a(θh, θh)

)
= mi

H(Zhü − ẅh, θ̇h).

Using the Cauchy–Schwarz and Young inequalities and adding the positive term
a(θh, θh) on the right-hand side, we arrive at

(5.13)
d

dt

(
|θ̇h|

2
H,i + a(θh, θh)

)
≤ C|Zhü − ẅh|

2
H,i +

(
|θ̇h|

2
H,i + a(θh, θh)

)
.

From (5.13) we conclude with Gronwall’s lemma, the seminorm equivalence (4.2), and
the coercivity of a(·, ·) with a constant C(T ) that may depend on T :

‖θ̇h‖
2
0,ΩH

+ ‖θh‖
2
1,Ω ≤ C

(
|θ̇h|

2
H,i + a(θh, θh)

)(5.14)

≤ C(T )
(
‖θ̇h(0)‖2

0,ΩH
+ ‖θh(0)‖2

1,Ω + ‖Zhü − ẅh‖
2
0,0,ΩH

)
.

This inequality holds for all t ∈ (0, T ] and hence also for the supremum. Now we have
to estimate the terms on the right-hand side. First, we can state

‖Zhü − ẅh‖0,0,ΩH
≤ ‖Zhü− ü‖0,0,ΩH

+ ‖ü− ẅh‖0,0,ΩH

≤ Ch

(
‖ü‖0,2,Ω +

∥∥∥∥
∂4u

∂t4

∥∥∥∥
0,1,Ω

)
,

where we made use of (5.1) and Lemma 5.5 for k = 2. Second, we get

‖θ̇h(0)‖0,ΩH
≤ ‖Zhv0 − v0‖0,ΩH

+ ‖v0 − ẇh(0)‖0,ΩH

≤ C (h‖v0‖1,Ω + ‖u̇− ẇh‖0,0,ΩH
+ ‖ü− ẅh‖0,0,ΩH

)

≤ Ch

(
2∑

s=1

∥∥∥∥
∂su

∂ts

∥∥∥∥
0,2,Ω

+

4∑

s=3

∥∥∥∥
∂su

∂ts

∥∥∥∥
0,1,Ω

)
,(5.15)
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where we applied Lemmas 5.2 and 5.5. Finally, we estimate similarly

‖θh(0)‖1,Ω ≤ ‖Zhu0 − u0‖1,Ω + ‖u0 − wh(0)‖1,Ω

≤ C (h‖u0‖2,Ω + ‖u− wh‖0,1,Ω + ‖u̇− ẇh‖0,1,Ω)

≤ Ch

(
1∑

s=0

∥∥∥∥
∂su

∂ts

∥∥∥∥
0,2,Ω

+

3∑

s=2

∥∥∥∥
∂su

∂ts

∥∥∥∥
0,1,Ω

)
.(5.16)

If we insert all these results into (5.14), we conclude that

(5.17) ‖θ̇h‖∞,0,ΩH
+ ‖θh‖∞,1,Ω ≤ C(T )h

(
2∑

s=0

∥∥∥∥
∂su

∂ts

∥∥∥∥
0,2,Ω

+

4∑

s=3

∥∥∥∥
∂su

∂ts

∥∥∥∥
0,1,Ω

)
.

Now we recall uh − u = θh + wh − u and get

‖u̇h − u̇‖0,ΩH
+ ‖uh − u‖1,Ω ≤ ‖θ̇h‖0,ΩH

+ ‖θh‖1,Ω + ‖u̇− ẇh‖0,ΩH
+ ‖u− wh‖1,Ω.

Due to Lemmas 5.2 and 5.5, we can estimate ‖u − wh‖∞,1,Ω and ‖u̇ − ẇh‖∞,0,ΩH

such that we arrive at (5.11).
Next, we turn to the estimate in the L2(Ω)-norm, where we need a further as-

sumption, namely, the H2(Ω)-regularity of the boundary value problem (2.2).

Lemma 5.7. Let problem (2.2) be H2(Ω)-regular and assume that ∂ku
∂tk , ∂k+2u

∂tk+2 ∈
L2((0, T ),H2(Ω)) for some k ∈ {0, 1}. Let the interpolation operator Ii

h satisfy con-
ditions P1–P3. Then the following estimate holds:

(5.18)

∥∥∥∥
∂kwh

∂tk
−

∂ku

∂tk

∥∥∥∥
0,0,Ω

≤ Ch2

(∥∥∥∥
∂ku

∂tk

∥∥∥∥
0,2,Ω

+

∥∥∥∥
∂k+2u

∂tk+2

∥∥∥∥
0,2,Ω

)
.

Proof. Again, it suffices to consider the case k = 0. We start with the observation
that for ψ ∈ L2((0, T ),L2(Ω)), we get

(5.19) ‖ψ‖0,0,Ω = sup
g∈L2((0,T ),L2(Ω))\{0}

∣∣ ∫ T

0 (ψ,g)dt
∣∣

‖g‖0,0,Ω
,

as L2((0, T ),L2(Ω)) is its own dual space. Now we choose ϕ ∈ L2((0, T ),V) as the
solution of the following auxiliary problem for any fixed g ∈ L2((0, T ),L2(Ω)):

(5.20) a(ϕ,v) = (g,v), v ∈ V, 0 ≤ t ≤ T.

By our assumptions on the regularity of the boundary value problem (5.20), we obtain
ϕ ∈ L2((0, T ),V ∩ H2(Ω)) (see [4]) and

(5.21) ‖ϕ‖0,2,Ω ≤ C‖g‖0,0,Ω.

If we choose v = wh − u in (5.20) and use (5.10), we get for χh ∈ L2((0, T ),Vh)

(wh − u,g) = a(wh − u, ϕ − χh) + m(ü − Zhü, χh) + εi
H(Zhü, χh).

Now we take χh = Zhϕ and integrate the above equality from 0 to T :
∣∣∣∣∣

∫ T

0

(wh − u,g)dt

∣∣∣∣∣ ≤

∫ T

0

|a(wh − u, ϕ − Zhϕ)|dt +

∫ T

0

|m(ü− Zhü, Zhϕ)|dt

+

∫ T

0

|εi
H(Zhü, Zhϕ)|dt.(5.22)
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For the first term on the right-hand side, we get with the continuity of a(·, ·), the
approximation property (5.1) of the operator Zh, and Lemma 5.5

∫ T

0

|a(wh − u, ϕ − Zhϕ)|dt ≤ Ch2 (‖u‖0,2,Ω + ‖ü‖0,1,Ω) ‖ϕ‖0,2,Ω.

The second and third terms are estimated by means of (5.1), (5.3), and Lemma 5.3:

∫ T

0

|m(ü − Zhü, Zhϕ)|dt +

∫ T

0

|εi
H(Zhü, Zhϕ)|dt ≤ Ch2‖ü‖0,2,Ω‖ϕ‖0,2,Ω.

Using (5.19), (5.21), and these estimates, we can now conclude that

‖wh − u‖0,0,Ω = sup
g∈L2((0,T ),L2(Ω))\{0}

∣∣ ∫ T

0
(wh − u,g)dt

∣∣
‖g‖0,0,Ω

≤ Ch2 (‖u‖0,2,Ω + ‖ü‖0,2,Ω) .

This lemma implies the following estimate.
Theorem 5.8. Let the problem (2.2) be H2(Ω)-regular and assume that ∂su

∂ts ∈

L2((0, T ),H2(Ω)) for all s ∈ {0, . . . , 3}, ∂4u
∂t4 ∈ L2((0, T ),X). Choose Ii

h according to
P1–P3 and take the initial conditions uh(0) = Zhu0 and u̇h(0) = Zhv0. Then the
following inequality holds:

(5.23) ‖uh − u‖∞,0,Ω ≤ Ch2

(
3∑

s=0

∥∥∥∥
∂su

∂ts

∥∥∥∥
0,2,Ω

+

∥∥∥∥
∂4u

∂t4

∥∥∥∥
0,1,Ω

)
.

Proof. Following the proof of [1, Theorem 4.1] and using the seminorm equivalence
(4.2) and Lemma 5.7, we find

(5.24) ‖uh − u‖∞,0,ΩH
≤ Ch2

3∑

s=0

∥∥∥∥
∂su

∂ts

∥∥∥∥
0,2,Ω

.

A Poincaré-type estimate yields for v ∈ X

(5.25) ‖v‖0,ΩC1
≤ C(‖v‖0,ΩH

+ h|v|1,Ω).

Equation (5.24) and Theorem 5.6 then conclude the proof.
Remark 5.9. The regularity assumptions that we pose on the exact solution

u in Theorem 5.8 are a little more strict than those from [1, Theorem 4.1]. For
Theorem 5.6, we need less regularity for the higher time derivatives of u than [1,
Theorem 4.2], but we can bound only the L2(ΩH)-norm of the error (u̇− u̇h) instead
of the norm on the full domain Ω. Still, Theorem 5.8 provides an error estimate of
O(h2) with respect to the L2(Ω)-norm.

6. Error estimate for the fully discrete system. In this section, we look
at the time-discretized version of (3.3): Let Jτ := T for some integer J and the
stepwidth τ . Set wn := w(tn) for n ∈ N0, w ∈ C(Ω̄ × [0, T ]), tn := nτ , and define

∂tw
n :=

1

τ
(wn+1 − wn), wn+1/2 :=

1

2
(wn+1 + wn).
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The fully discrete problem we now consider reads as follows: Find sequences (un
h)J

n=0,
(vn

h)J
n=0 in Vh, corresponding to the displacement and the velocity, such that

u0
h = Zhu0,

v0
h = Zhv0,

mi
H(∂tv

n
h , χh) + a(u

n+1/2
h , χh) = (fn+1/2, χh), χh ∈ Vh, 0 ≤ n ≤ J − 1,

∂tu
n
h = v

n+1/2
h .

(6.1)

The main results are the following two theorems with the constant C possibly
depending on T ; the proofs are given in Appendix A for the sake of completeness.

Theorem 6.1. Under the assumptions of Theorem 5.6, we have

max
0≤n≤J−1

(
‖∂t(u

n
h − un)‖0,ΩH

+ ‖u
n+1/2
h − un+1/2‖1,Ω

)
(6.2)

≤ C

(
h

(
2∑

s=0

∥∥∥∥
∂su

∂ts

∥∥∥∥
0,2,Ω

+
4∑

s=3

∥∥∥∥
∂su

∂ts

∥∥∥∥
0,1,Ω

)
+ τ2

4∑

s=3

∥∥∥∥
∂su

∂ts

∥∥∥∥
0,0,Ω

)
.

Theorem 6.2. Let the assumptions of Theorem 5.8 be satisfied as well as ∂4u
∂t4 ∈

L2((0, T ),H2(Ω)). Then the following estimate holds:

max
0≤n≤J

‖un
h − un‖0,ΩH

≤ C

(
h2

3∑

s=0

∥∥∥∥
∂su

∂ts

∥∥∥∥
0,2,Ω

+ h2τ2

∥∥∥∥
∂4u

∂t4

∥∥∥∥
0,2,Ω

+ τ2
4∑

s=3

∥∥∥∥
∂su

∂ts

∥∥∥∥
0,0,Ω

)
.

(6.3)

The L2(Ω)-error can be bounded as follows.
Corollary 6.3. Under the assumptions of Theorems 6.1 and 6.2, we obtain

max
0≤n≤J−1

‖u
n+1/2
h − un+1/2‖0,Ω

(6.4)

≤ C

(
h2

3∑

s=0

∥∥∥∥
∂su

∂ts

∥∥∥∥
0,2,Ω

+ h2

∥∥∥∥
∂4u

∂t4

∥∥∥∥
0,1,Ω

+ h2τ2

∥∥∥∥
∂4u

∂t4

∥∥∥∥
0,2,Ω

+ τ2
4∑

s=3

∥∥∥∥
∂su

∂ts

∥∥∥∥
0,0,Ω

)
.

Proof. The estimate follows from the Poincaré-type estimate (5.25), the triangle
inequality, and Theorems 6.1 and 6.2.

7. Numerical results. For the numerical tests, we use the finite element tool-
box UG [2]. All problems are discretized in time using the midpoint rule as investi-
gated in section 6 which can be regarded as a Hilber–Hughes–Taylor scheme with the
parameters 2α = 2β = γ = 1 (see [17]).

7.1. Linear beam in two dimensions. First, we validate our error estimates
proved in sections 5 and 6 via numerical computation. To this end, we consider the
cross-section of an elastic beam of length 10 and height 1.

As material parameters for the linear elasticity law, we use Young’s modulus
E = 200, Poisson’s ratio ν = 0.3, and mass density ̺ = 1.0. We choose the right-
hand side f and Neumann boundary conditions on ∂Ω such that the exact solution is
given by

u(x, t) =
(
0, 0.02 x1 · (10 − x1) · x

2
2 · sin(2πt)

)T
.
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This leads to homogeneous Neumann boundary conditions on the bottom boundary
given by x2 = 0, which we define as ΓC . In the spatial domain, we use a uniform
quadrilateral grid with mesh widths from h = 1

4 to h = 1
32 , and for the time dis-

cretization we compute 250 time steps with τ = 10−5.

4 8 16 32

10
−3

10
−2

10
−1

1/h

error at time t = 3e−4

 

 

L2 error
H1 error
c*h

c*h
2

4 8 16 32

10
−8

10
−6

1/h

error difference at time t = 3e−4

 

 

diff L2
diff H1

c*h
4

c*h
5

Fig. 7.1. Error reduction with respect to the mesh size h.

The left side of Figure 7.1 presents the exact error at time t30 with respect to
the mesh size h. As the computation with M1

H and M0
H leads to almost exactly the

same error, only one value is plotted. We obtain an error reduction of O(h2) in the
L2-norm and of O(h) in the H1-norm which corresponds to the theoretical results of
sections 5 and 6. On the right side of Figure 7.1, the absolute value of the difference
between the errors for the modified and the standard computation is plotted. Here
we observe numerically that the modified error converges to the standard error with
a convergence order of 4 in the H1-norm and 5 in the L2-norm. Again, there is no
visible difference between the results for M0

H and M1
H .

In Figure 7.2, the vertical displacement and velocity of the node (5.0, 1.0) are
depicted. We see that the behavior of the beam is accurately resolved.

0 0.5 1 1.5 2 2.5

x 10
−3

0

2

4

6

8
x 10

−3

time

displacement in x
2
−direction

 

 

standard mass matrix
modified mass matrix

0 0.5 1 1.5 2 2.5

x 10
−3

3.1411

3.1412

3.1413

3.1414

3.1415

time

velocity in x
2
−direction

 

 

standard mass matrix
modified mass matrix

Fig. 7.2. Vertical displacement and velocity of the node (5.0, 1.0) for h = 1

8
and Mh, M0

H
.

7.2. Frictionless contact in two dimensions. Further, we investigate the
stabilization property of the new discretization scheme applied to contact problems.
For this, we simulate the contact of two elastic discs, each with the same radius R = 8
and the data E = 100, ν = 0.3, ̺ = 2.0 · 10−8. The initial distance is 0.1, and both
circles move toward each other at a speed of 800. We consider only the setting without
friction as the frictional work is very small for this example. The grid is refined near
the potential contact boundary ΓC as shown in Figure 7.3; the size of the time step
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ΓC

Fig. 7.3. Initial grids and effective stresses for the two-circle contact problem without friction.

is τ = 10−6. The numerical treatment of the contact conditions is explained in more
detail in [9].

We assemble the mass matrix with two distinct grids: The standard matrix Mh

and the mass matrix M0
H are computed for a triangular as well as a quadrilateral

mesh; the matrix M1
H is constructed for the quadrilateral grid only. We use the

quadrature formulas described in Examples 3.1 and 3.2 on the appropriate reference
elements and transform them into the actual elements. The computed energies for
M0

H (const) and Mh (stand) are displayed in Figure 7.4, showing the discrete kinetic
energy at time tn given by En

kin := 1
2 (vn

h)T Mvn
h , M ∈ {Mh, M0

H}, the potential energy
En
pot := 1

2 (un
h)T Ahu

n
h, and the total energy En

tot := En
kin + En

pot. The picture at the

right of Figure 7.3 visualizes the effective stress σeff :=
∑d

i,j=1

∣∣σij − δij
1
d tr(σ)

∣∣2.
We obtain the same total energy for each computation except for M0

H on the
quadrilateral grid. This is due to the linear determinant of the transformation that is
not necessarily integrated exactly (see the discussion before Lemma 3.3). Hence we
rather use the quadrature formula Q1 if we are dealing with a quadrilateral mesh and
curvilinear boundaries. The energy results for M1

H are exactly the same as for the
computation with Mh, and thus only the standard value is depicted in Figure 7.4.

0 0.2 0.4 0.6 0.8 1

x 10
−3

0

0.5

1

1.5

2

2.5

3

time

energy for triangular grid

total const
elastic const
kinetic const
total stand
elastic stand
kinetic stand

0 0.2 0.4 0.6 0.8 1

x 10
−3

0

0.5

1

1.5

2

2.5

3

time

energy for quadrilateral grid

total const
elastic const
kinetic const
total stand
elastic stand
kinetic stand

Fig. 7.4. Energy results for the two-circle contact problem without friction.

Figure 7.5 shows the improvement in the contact stresses due to the modified
mass matrix computed for the simplicial as well as the quadrilateral grid. We see that
the standard method exhibits unphysical oscillations, whereas the modification of the
mass matrix leads to smoother results. We observe that the beginning and the end
of the contact period are the same for all our calculations.

We conclude that solving dynamic contact problems with the modification of the
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0

2

4

6

8

10

time

normal LM for quadrilateral grid

 

 

standard
mod constant
mod linear

Fig. 7.5. LM for simplicial and quadrilateral grid at the bottom slave node.

mass matrix gives stable and smooth results without increasing the computational
work.

Appendix A. Proofs of section 6. We set θh := Zhu− wh and further write

ξn
h := un

h − wn
h , 0 ≤ n ≤ J,(A.1)

pn
h := vn

h − ẇn
h , 0 ≤ n ≤ J.(A.2)

Lemma A.1. If we define sequences (ρn
h)J−1

n=0, (πn
h)J−1

n=0, and (ǫn
h)J−1

n=0 in Vh by

ρn
h := Zhü

n+1/2 − ∂t (Zhu̇
n) ,(A.3)

πn
h := ∂t(Zhu

n) − Zhu̇
n+1/2,(A.4)

ǫ0
h := ∂tθ

0
h − π0

h +
τ

2
ρ0

h,(A.5)

ǫn
h := ∂tθ

n
h − πn

h +
τ

2

(
n∑

k=0

ρk
h +

n−1∑

k=0

ρk
h

)
, 1 ≤ n ≤ J − 1,(A.6)

the following estimate holds with a constant C(T ) depending on T :

max
0≤n≤J

‖ξn
h‖

2
0,ΩH

≤ C(T )

(
τ

J−1∑

n=0

‖ǫn
h‖

2
0,ΩH

+ ‖ξ0
h‖

2
0,ΩH

)
.(A.7)

Proof. Using (4.2) instead of the norm equivalence with respect to ‖ · ‖0,Ω, the
proof is done as in [1, Lemma 5.1].

In order to prove the discrete equivalent of Theorem 5.6, we introduce another
sequence (νn

h)J−2
n=0 by

νn
h := ∂t(∂tθ

n
h) − ∂tπ

n
h + ρ

n+1/2
h .(A.8)

Lemma A.2. The following estimate holds:

max
0≤n≤(J−1)

(
‖∂tξ

n
h‖

2
0,ΩH

+ ‖ξ
n+1/2
h ‖2

1,Ω

)

≤ C(T )

(
τ

J−2∑

n=0

‖νn
h‖

2
0,ΩH

+ ‖∂tξ
0
h‖

2
0,ΩH

+ ‖ξ
1/2
h ‖2

1,Ω

)
.(A.9)
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Proof. Using the definitions, we obtain (for details see [1, Proof of Lemma 5.1])

mi
H (∂t(∂tξ

n
h), χh) +

1

2
a

(
ξ

n+1/2
h + ξ

n+3/2
h , χh

)
= mi

H (νn
h, χh) .(A.10)

We choose the test function χh = ∂tξ
n+1/2
h ∈ Vh in (A.10) and arrive at

|∂tξ
n+1
h |2H,i − |∂tξ

n
h |

2
H,i + a

(
ξ

n+3/2
h , ξ

n+3/2
h

)
− a

(
ξ

n+1/2
h , ξ

n+1/2
h

)

≤ 2τ mi
H

(
νn

h, ∂tξ
n+1/2
h

)
.

Summing from 0 to (l − 1) for 1 ≤ l ≤ (J − 1) and the use of Schwarz’s inequality
give for any α > 0

|∂tξ
l
h|

2
H,i − |∂tξ

0
h|

2
H,i + a

(
ξ

l+1/2
h , ξ

l+1/2
h

)
− a

(
ξ
1/2
h , ξ

1/2
h

)

≤ 2τ

(
α

l−1∑

n=0

|νn
h|

2
H,i +

1

α

l−1∑

n=0

∣∣∣∂tξ
n+1/2
h

∣∣∣
2

H,i

)
.(A.11)

We set A := max0≤n≤(J−1) |∂tξ
n
h|H,i, which leads to

l−1∑

n=0

∣∣∣∂tξ
n+1/2
h

∣∣∣
2

H,i
≤ A2J.(A.12)

Choosing α = 4T in (A.11) and using (A.12), we get

|∂tξ
l
h|

2
H,i + a

(
ξ

l+1/2
h , ξ

l+1/2
h

)
≤ 8τT

J−2∑

n=0

|νn
h|

2
H,i +

1

2
A2 + |∂tξ

0
h|

2
H,i + a

(
ξ

1/2
h , ξ

1/2
h

)
.

This holds for each l with 1 ≤ l ≤ (J − 1); hence we can take the maximum of the
left-hand side. Subtracting 1

2A2 on both sides as well as using the coercivity, the
continuity of a(·, ·), and the seminorm equivalence (4.2), we finally arrive at (A.9).
This completes the proof.

The estimation of
∑J−1

n=0 ‖ν
n
h‖

2
0,ΩH

is carried out in the next lemma.

Lemma A.3. Let the solution u of (2.2) satisfy ü ∈ L2((0, T ),H2(Ω)), ∂4u
∂t4 ∈

L2((0, T ),X), and let Ii
h fulfill conditions P1–P3. Then the following inequality holds:

τ

J−2∑

n=0

‖νn
h‖

2
0,ΩH

≤ C

(
h2

(
‖ü‖2

0,2,Ω +

∥∥∥∥
∂4u

∂t4

∥∥∥∥
2

0,1,Ω

)
+ τ4

∥∥∥∥
∂4u

∂t4

∥∥∥∥
2

0,0,Ω

)
.(A.13)

Proof. By the definition of νn
h (A.8), we get

‖νn
h‖

2
0,ΩH

≤ ‖∂t(∂tθ
n
h)‖2

0,ΩH
+ ‖ρ

n+1/2
h − ∂tπ

n
h‖

2
0,ΩH

.(A.14)

Using Taylor expansion, we obtain for the first term on the right-hand side (see
[1, Proof of Lemma 5.2] for details)

∂t(∂tθ
n
h) =

1

τ2

(
θn+2

h − 2θn+1
h + θn

h

)

=
1

τ2

(∫ (n+2)τ

(n+1)τ

((n + 2)τ − t)θ̈h(t)dt +

∫ (n+1)τ

nτ

(t − nτ)θ̈h(t)dt

)
.
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Hence we arrive at

‖∂t(∂tθ
n
h)‖2

0,ΩH
≤ C

1

τ

∫ (n+2)τ

nτ

∥∥∥θ̈h(t)
∥∥∥

2

0,ΩH

dt.

Recalling the definition of θh, we conclude with Lemma 5.5 and (5.1) that

τ

J−2∑

n=0

‖∂t(∂tθ
n
h)‖2

0,ΩH
≤ Ch2

(
‖ü‖2

0,2,Ω +

∥∥∥∥
∂4u

∂t4

∥∥∥∥
2

0,1,Ω

)
.(A.15)

The second term on the right-hand side of (A.14) gives with (A.3) and (A.4)

ρ
n+1/2
h − ∂tπ

n
h = Zh

(
1

4
ün+2 +

1

2
ün+1 +

1

4
ün −

1

τ2
un+2 +

2

τ2
un+1 −

1

τ2
un

)
.

Taylor expansion at t = (n + 1)τ , summation over n, and (5.3) lead to

τ

J−2∑

n=0

‖ρ
n+1/2
h − ∂tπ

n
h‖

2
0,ΩH

≤ Cτ4

∥∥∥∥
∂4u

∂t4

∥∥∥∥
2

0,0,Ω

.(A.16)

Inequalities (A.15) and (A.16) conclude the proof.
Now we are able to prove Theorem 6.1.
Proof. With un

h − un = ξn
h + (wn

h − un) we can estimate

max
0≤n≤J−1

(
‖∂t(u

n
h − un)‖0,ΩH

+ ‖u
n+1/2
h − un+1/2‖1,Ω

)
(A.17)

≤ max
0≤n≤J−1

(
‖∂t(w

n
h − un)‖0,ΩH

+ ‖w
n+1/2
h − un+1/2‖1,Ω

+ ‖∂tξ
n
h‖0,ΩH

+ ‖ξ
n+1/2
h ‖1,Ω

)
.

Using Taylor expansion as well as Lemmas 5.2 and 5.5, the first term gives

‖∂t(w
n
h − un)‖2

0,ΩH
≤ ‖∂t(w

n
h − un) − (ẇh − u̇)n+1/2‖2

0,ΩH
+ ‖(ẇh − u̇)n+1/2‖2

0,ΩH

≤ τ

∫ τ

0

‖ẅh(t) − ü(t)‖2
0,ΩH

dt + ‖(ẇh − u̇)n+1/2‖2
0,ΩH

≤ C
(
‖ẅh − ü‖2

0,0,ΩH
+ ‖ẇh − u̇‖2

0,0,ΩH

)

≤ Ch2

(
1∑

s=0

∥∥∥∥
∂su

∂ts

∥∥∥∥
2

0,2,Ω

+

3∑

s=2

∥∥∥∥
∂su

∂ts

∥∥∥∥
2

0,1,Ω

)
.

The second term yields the same upper bound, due to Lemmas 5.2 and 5.5.
For the last two terms of (A.17) we employ Lemmas A.2 and A.3 to obtain

max
0≤n≤(J−1)

(
‖∂tξ

n
h‖

2
0,ΩH

+ ‖ξ
n+1/2
h ‖2

1,Ω

)
≤ C

(
‖∂tξ

0
h‖

2
0,ΩH

+ ‖ξ
1/2
h ‖2

1,Ω

)

+ C

(
h2

(
‖ü‖2

0,2,Ω +

∥∥∥∥
∂4u

∂t4

∥∥∥∥
2

0,1,Ω

)
+ τ4

∥∥∥∥
∂4u

∂t4

∥∥∥∥
2

0,0,Ω

)
.(A.18)
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Only the initial terms remain to be bounded. By the definitions (A.1) and (A.5), we
get

mi
H(∂tξ

0
h, χh) +

τ

2
a(ξ

1/2
h , χh) = mi

H(ǫ0
h, χh).

Hence, by choosing the test function χh = ∂tξ
0
h, we obtain with Young’s inequality

|∂tξ
0
h|

2
H,i +

1

4

(
a(ξ1

h, ξ1
h) − a(ξ0

h, ξ0
h)

)
= mi

H(ǫ0
h, ∂tξ

0
h) ≤ C|ǫ0

h|
2
H,i +

1

2
|∂tξ

0
h|

2
H,i.

Using the seminorm equivalence (4.2), this leads to

‖∂tξ
0
h‖

2
0,ΩH

+ ‖ξ1
h‖

2
1,Ω ≤ C

(
‖ǫ0

h‖
2
0,ΩH

+ ‖ξ0
h‖

2
1,Ω

)
.

As we have ξ0
h = θh(0), the last term is treated as in (5.16). The first term yields by

definition (A.5)

(A.19) ‖ǫ0
h‖

2
0,ΩH

≤ 3

(
‖∂tθ

0
h‖

2
0,ΩH

+ ‖π0
h‖

2
0,ΩH

+
τ2

4
‖ρ0

h‖
2
0,ΩH

)
.

Further, we have with Lemma 5.5

‖∂tθ
0
h‖

2
0,ΩH

=
1

τ

∥∥∥∥
∫ τ

0

θ̇h(t)dt

∥∥∥∥
2

0,ΩH

≤

∫ τ

0

‖θ̇h(t)‖2
0,ΩH

dt

≤ ‖Zhu̇ − u̇‖2
0,0,ΩH

+ ‖u̇− ẇh‖
2
0,0,ΩH

≤ Ch2

(
‖u̇‖2

0,2,Ω +

∥∥∥∥
∂3u

∂t3

∥∥∥∥
2

0,1,Ω

)
.

The second and third terms of (A.19) are estimated by means of (5.3), Lemma 5.2,
and Taylor expansion:

‖π0
h‖

2
0,ΩH

+
τ2

4
‖ρ0

h‖
2
0,ΩH

≤ Cτ4
4∑

s=3

∥∥∥∥
∂su

∂ts

∥∥∥∥
2

0,0,Ω

.

All together, the initial terms are bounded by

‖∂tξ
0
h‖

2
0,ΩH

+ ‖ξ1
h‖

2
1,Ω

≤ C

(
h2

(
1∑

s=0

∥∥∥∥
∂su

∂ts

∥∥∥∥
2

0,2,Ω

+

3∑

s=2

∥∥∥∥
∂su

∂ts

∥∥∥∥
2

0,1,Ω

)
+ τ4

4∑

s=3

∥∥∥∥
∂su

∂ts

∥∥∥∥
2

0,0,Ω

)
.

Combined with (A.18), this yields the desired inequality (6.2).
For the estimates in the L2(Ω)-norm we again need to impose restrictions as in

Theorem 5.8. We begin with bounding the right-hand side of (A.7).
Lemma A.4. Assume that the problem (2.2) is H2(Ω)-regular and that ∂su

∂ts ∈
L2((0, T ),H2(Ω)) holds for all s ∈ {1, . . . , 4}. Let Ii

h satisfy conditions P1–P3, and
let u be the solution of (2.2) and (un

h)J
n=0 the solution of (6.1). Then we have the

following estimate for the sequence (ǫn
h)J

N=0 defined by (A.6):

τ

J−1∑

n=0

‖ǫn
h‖

2
0,ΩH

≤ C

(
h2

3∑

s=1

∥∥∥∥
∂su

∂ts

∥∥∥∥
0,2,Ω

+ h2τ2

∥∥∥∥
∂4u

∂t4

∥∥∥∥
0,2,Ω

+ τ2
4∑

s=3

∥∥∥∥
∂su

∂ts

∥∥∥∥
0,0,Ω

)2

.

(A.20)
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Proof. We proceed along the lines of [1, Lemma 5.2], using Lemma 5.7 and the
norm equivalence (4.2).

We can now prove Theorem 6.2.
Proof. With the given initial conditions, Lemma 5.2, (A.1), and the triangle

inequality, we have

‖ξ0
h‖0,ΩH

≤ ‖Zhu0 − u0‖0,ΩH
+ ‖u− wh‖0,0,ΩH

+ ‖u̇− ẇh‖0,0,ΩH
.

Using (5.1) as well as Lemma 5.7, we get

(A.21) ‖ξ0
h‖0,ΩH

≤ Ch2
3∑

s=0

∥∥∥∥
∂su

∂ts

∥∥∥∥
0,2,Ω

.

Combining the results of Lemmas A.1 and A.4 and (A.21), we obtain

max
0≤n≤J

‖ξn
h‖0,ΩH

≤ C

(
h2

3∑

s=0

∥∥∥∥
∂su

∂ts

∥∥∥∥
0,2,Ω

+ h2τ2

∥∥∥∥
∂4u

∂t4

∥∥∥∥
0,2,Ω

+ τ2
4∑

s=3

∥∥∥∥
∂su

∂ts

∥∥∥∥
0,0,Ω

)
.

With Lemma 5.2 we finally get

max
0≤n≤J

‖un
h − un‖0,ΩH

≤ max
0≤n≤J

‖ξn
h‖0,ΩH

+ ‖u− wh‖0,0,ΩH
+ ‖u̇− ẇh‖0,0,ΩH

,

which concludes the proof using Lemma 5.7.
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[9] C. Hager, S. Hüeber, and B. Wohlmuth, A stable energy conserving approach for frictional

contact problems based on quadrature formulas, Internat. J. Numer. Methods Engrg., 73
(2008), pp. 205–225.

[10] P. Hauret and P. Le Tallec, Energy-controlling time integration methods for nonlinear
elastodynamics and low-velocity impact, Comput. Methods Appl. Mech. Engrg., 195 (2006),
pp. 4890–4916.
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et élastodynamique. Etude mathématique et résolution numérique., Ph.D. thesis, INSA de
Toulouse, Toulouse, France, 2005.

[12] H. Khenous, P. Laborde, and Y. Renard, Comparison of two approaches for the discretiza-
tion of elastodynamic contact problems, C. R. Math. Acad. Sci. Paris, 342 (2006), pp. 791–
796.

[13] H. Khenous, P. Laborde, and Y. Renard, On the discretization of contact problems in
elastodynamics, in Analysis and Simulation of Contact Problems, Lect. Notes Appl. Com-
put. Mech. 27, P. Wriggers and U. Nackenhorst, eds., Springer, Berlin, Heidelberg, 2006,
pp. 31–38.

22



 
 
 

 
 
 
 
 
 

 

[14] H. Khenous, P. Laborde, and Y. Renard, Mass redistribution method for finite element
contact problems in elastodynamics, Eur. J. Mech. A Solids, 27 (2008), pp. 918–932.

[15] N. Kikuchi and J. T. Oden, Contact Problems in Elasticity: A Study of Variational In-
equalities and Finite Element Methods, SIAM Stud. Appl. Math. 8, SIAM, Philadelphia,
1988.

[16] R. Kornhuber, R. Krause, O. Sander, P. Deuflhard, and S. Ertel, A monotone multigrid
solver for two body contact problems in biomechanics, Comput. Vis. Sci., 11 (2008), pp. 3–
15.

[17] T. Laursen, Computational Contact and Impact Mechanics, Springer, Berlin, 2002.
[18] L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying

boundary conditions, Math. Comp., 54 (1990), pp. 483–493.
[19] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, Springer, Berlin, 1997.
[20] K. Willner, Kontinuums- und Kontaktmechanik, Springer, Berlin, Heidelberg, 2003.
[21] B. I. Wohlmuth, A mortar finite element method using dual spaces for the Lagrange multiplier,

SIAM J. Numer. Anal., 38 (2000), pp. 989–1012.
[22] P. Wriggers, Computational Contact Mechanics, J. Wiley & Sons, New York, 2002.

23


