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Abstract. In medical image segmentation, several studies have used
Bayesian neural networks to segment and quantify the uncertainty of the
images. These studies show that there might be an increased epistemic
uncertainty in areas where there are semantically and visually challeng-
ing pixels. The uncertain areas of the image can be of a great interest
as they can possibly indicate the regions of incorrect segmentation. To
leverage the uncertainty information, we propose a segmentation model
that incorporates the uncertainty into its learning process. Firstly, we
generate the uncertainty estimate (sample variance) using Monte-Carlo
dropout during training. Then we incorporate it into the loss function
to improve the segmentation accuracy and probability calibration. The
proposed method is validated on the publicly available EMIDEC MIC-
CAI 2020 dataset that mainly focuses on segmentation of healthy and
infarcted myocardium. Our method achieves the state of the art results
outperforming the top ranked methods of the challenge. The experimen-
tal results show that adding the uncertainty information to the loss func-
tion improves the segmentation results by enhancing the geometrical and
clinical segmentation metrics of both the scar and myocardium. These
improvements are particularly significant at the visually challenging and
difficult images which have higher epistemic uncertainty. The proposed
system also produces more calibrated probabilities.

Keywords: Cardiac MRI Segmentation - Myocardial scar - Uncertainty
- Bayesian deep learning

1 Introduction

Cardiac magnetic resonance (CMR) is a set of magnetic resonance imaging
(MRI) used to provide anatomical and functional information of the heart. Late
Gadolinium Enhancement (LGE), sometimes called delayed-enhancement MRI,
is one type of CMR, which is gold standard for the quantification of myocardial
infarction. Myocardial infarction, also called heart attack, is the interruption
of coronary blood supply to certain myocardial area which leads to irreversible
death of myocardial tissue [11]. No-reflow phenomenon is an incident that usually
appears in a proportion of patients with acute myocardial infarction following
re-perfusion therapy of an occluded coronary artery [1].
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Recently, deep learning based semi-automatic and fully-automatic methods
have been proposed to segment myocardial scar (infarction) from LGE images.
Zabihollahy et al. [22] used manual segmentation for myocardium and 2D Fully
Convolutional Network to segment scar from the myocardium. Zhang [23], Ma
[14] and Girum et al. [8] used a two stage cascaded segmentation framework to
automatically segment myocardial scar and tested their method on EMIDEC
dataset. In the first stage, Zhang [23] used a 2D nnUNet [9] to get a coarse
segmentation. In the second stage, a 3D nnUNet is utilized to further refine
the segmentation result. Ma [14] used a 2D nnUNet [9] to first segment the
whole heart as region of interest (ROI) and then utilized a second 2D nnUNet
to segment the myocardial infarction from the ROI. Arega et al. [2] also used
a cascaded framework of three networks to automatically segment scar from
multi-sequence CMR. The main problem with these cascaded methods is that
they can be time consuming and computationally expensive.

Bayesian deep learning have been used in segmentation task to provide a
prediction as well as quantify the uncertainty associated with each prediction.
Recently, several studies have employed Monte Carlo Dropout to estimate uncer-
tainty for medical image segmentation [15-17,19,20]. Monte Carlo (MC) dropout
is an uncertainty estimation method proposed by Gal and Ghahramani [7]. It is
done by training a network with dropout and taking the Monte Carlo samples of
the prediction using dropout at test time. Nair et al. [16] explored MC dropout
based uncertainty estimates for multiple sclerosis lesion detection and segmen-
tation. They improved the segmentation results by filtering and excluding the
most uncertain voxels. Similarly, Sander et al. [20] applied MC Dropout based
method for cardiac MRI segmentation and showed that the uncertainty maps are
close to the reported segmentation errors and they improved the segmentation
results by correcting the uncertain pixels. These previous studies [10,15,16,19,20]
mostly focused on the correlations between predictive uncertainty and the seg-
mentation accuracy and how the uncertainty metrics can be used to improve the
segmentation by filtering the most uncertain predictions. However, these meth-
ods did not leverage the uncertainty information during training to enhance the
segmentation result.

In this paper, we proposed a segmentation model that generates uncertainty
estimates during training using MC-dropout. Then it leverages these uncertainty
estimates to improve the segmentation results by incorporating them to the loss
function. Uncertainty information can possibly indicate the regions of incorrect
segmentation [20,21]. We hypothesized that by incorporating this information as
part of the learning process, it can help the network to improve the segmentation
results by correcting the segmentation errors that have high epistemic uncer-
tainty. The proposed method was evaluated on the publicly available EMIDEC
MICCAT 2020 dataset [13]. It achieved the state of the art results outperforming
the top ranked methods of the challenge. The experimental results showed that
the uncertainty information was indeed beneficial in enhancing the segmentation
performance. We also observed that the improvements were more significant at
the semantically and visually challenging images which have higher epistemic
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uncertainty. Assessing the probability calibration, we showed that the proposed
method produced more calibrated probabilities than the baseline method.

2 Materials and Methods

2.1 Dataset

The Automatic Evaluation of Myocardial Infarction from Delayed-Enhancement
Cardiac MRI challenge (EMIDEC)! is a MICCAIT 2020 challenge that focuses on
cardiac MRI segmentation. The dataset consists of LGE images of 100 patients
for training. From these cases, 67 are pathological cases and the remaining 33 are
normal cases. The testing set includes 50 patients in which 33 are pathological
and 17 are normal cases. Each case has 5 to 10 short-axis slices covering the
left ventricle from base to apex with the following characteristics: slice thickness
of 8 mm, distance between slices of 10 mm and spatial resolution ranging from
1.25 x 1.25 mm? to 2 x 2 mm? [13]. As a pre-processing step, we normalized
the intensity of every patient image to have zero-mean and unit-variance and
we resampled all the volumes to have a voxel spacing of 1.458mm x 1.458mm x
10.0mm.

2.2 Methods

Various Bayesian deep learning methods are used to estimate uncertainties in
images. Among the most widely used Bayesian deep learning methods in med-
ical images is Monte-Carlo dropout (MC-dropout). In MC-dropout, a network
with dropout is trained, then during testing the network is sampled N times
in order to get N segmentation samples. From these N segmentation samples,
the uncertainty measure (sample variance) is computed. In our method, we used
MC-dropout during training in order to get the uncertainty estimates. During
training, the model is sampled N times and the mean of these samples is used
as the final segmentation as can be seen from Fig. 1. The uncertainty metric is
computed from the N Monte-Carlo dropout samples. It can be calculated per
pixel or per structure [17]. In this work, we used the pixel-wise uncertainty and
image-level uncertainty. Pixel-wise uncertainty is computed per pixel. Sample
variance is one of the pixel-wise uncertainty measures. It is calculated as the
variance of the N Monte-Carlo prediction samples of a pixel. Each pixel i has
N sigmoid predictions (y;,1...y; n). From these predictions, the mean p; is com-
puted (Eq. 1). In Eq. 2, 07 is the sample variance of each pixel i of the image [16].
In order to compute the image-level uncertainty, the per-pixel uncertainty is av-
eraged over all pixels of the image as shown in Eq. 4. In this equation, I is the
total number of pixels of the image.

b= e i) (1)

! http://emidec.com/
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07 = 2 > — i) 2)

n

As stated by [20] and [21], uncertainty information indicates potential mis-
segmentations and the most uncertain part of the segmentation results cover
regions of incorrect segmentations. In order to leverage this uncertainty infor-
mation, we proposed to include it as part of the loss function so that the network
will learn to correct the possible mis-segmentations. Hence, the total loss is com-
puted as a sum of the segmentation loss and uncertainty loss as can be seen from
Fig. 1. The segmentation loss is the weighted average of cross-entropy (CE) loss
and Dice loss (Eq. 3). For the uncertainty loss, we first computed the image level
uncertainty (Eq. 4). Then, it is added to the segmentation loss with a hyper-
parameter value alpha (a) that controls the contribution of the uncertainty loss
to the total loss (Eq. 5).

Sample-variance

yariance [
MC-Dropout

Samples

Predicted-mean

Input image
mean

Il Convolution + Batch Norm + Leaky ReLU
[] Pooling/ Upsampling B oropout (p=0.1)
=] skip connections [ ] Softmax

’ Total Loss = SegLoss + a * Uncertainty loss

Fig. 1. The proposed method

LSeg = ApiceLDice + AcELCE (3)
1 2

LUncertainty = T ;(0’1‘ ) (4)

Lrotar = LSeg +aXx LUncertainty (5)

For the segmentation network, we used a 3D UNet [9] architecture with
dropout placed at the middle layers of the network (Fig. 1) as suggested by the
literatures [4,6,12,17]. The dropout rate was set at 0.1. The UNet’s encoder
and decoder consists of 8 convolutional layers where each convolution is followed
by batch normalization and Leaky ReLU (negative slope of 0.01) activation
function.
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2.3 Training

The weights of the segmentation network are optimized using Stochastic gradient
descent (SGD) with nesterov momentum (x = 0.99) with an initial learning rate
of 0.01. The mini-batch size was 5 and the model was trained for 1000 epochs on
a five-fold cross validation scheme. For the segmentation loss, we set a weighting
factor of 1.0 for Dice loss and 1.0 for CE loss as they provided the best results.
In order to generate the segmentation uncertainty (sample variance), we used 5
Monte Carlo samples (the N value in Eq. 1). The weighting factor («) for the
uncertainty loss (in Eq. 5) is empirically selected to be 3.0 after experimenting
with different weighting factors. The training was done on NVIDIA Tesla V100
GPUs using Pytorch deep learning framework based on nnU-Net implementation
[9].

3 Results and Discussion

To evaluate the segmentation results, we used geometrical metrics such as Dice
coefficient (DSC) and Hausdorff distance (HD). In addition, we computed clinical
metrics which are commonly used in cardiac clinical practice. These include the
average volume error (VD) of the left ventricular myocardium (in em?), the
volume (in ¢m?) and percentage (PD) of infarction and no-reflow [13].

To measure probability calibration of the models, we used Brier score (BS).
Brier score measures how close the predicted segmentation probabilities are to
their corresponding ground truth probabilities (one-hot encoding of each classes)
by computing the mean square error of the two probabilities [17]. To compare
image level uncertainties among the segmentation results, we utilized Dice agree-
ment within MC samples (Dice WithinSamples) [17,19]. It is the average Dice
score of the mean predicted segmentation (Syeqn) and the individual N MC
prediction samples as shown in Eq. 6. Note that DicewitninSampies is inversely
related to uncertainty.

. 1 .
cheWithinSamples = N Z che(smeany Sn) (6)

3.1 Ablation Study

To evaluate the effect of adding uncertainty information to the segmentation loss,
we compared the model that uses only segmentation loss which is called baseline
with the model that uses combined loss of segmentation loss and uncertainty
loss which is referred as proposed. Both networks have the same architecture
and the comparison is done on the test dataset. For the ablation study, most of
the comparisons are done on the main two classes that are healthy myocardium
and infarction. The comparison on all the three classes can be found in the
supplementary material.

As can be seen from the table 1, the addition of uncertainty information
into the segmentation loss enhanced the segmentation accuracy. It increased the



6 T.W. Arega et al.

DSC of scar (infarction) by 3% and that of myocardium by around 0.2%. It also
improved the HD and the average volume error of both scar and myocardium.
The segmentation enhancement is more significant on scar than on myocardium.
This can be explained by the fact that scar has more irregular shape, smaller area
and visually challenging pixels which may result in higher uncertainty compared
to myocardium (Fig. 2 (b)).

The apical and basal slices of the left ventricle are more difficult to segment
than mid-ventricular images even for human experts [3,18]. Particularly at the
apical slices, the MRI resolution is very low that it is even difficult to resolve
size of small structures (first row in Fig. 3). Assessing the segmentation perfor-
mance and uncertainties at different slice positions of the left ventricle, it can
be observed that the apical slices have the highest epistemic uncertainty (lowest
DiceWithinSamples) among the slices (Fig. 2 (b)). Similarly, in the comparison
of segmentation performance, most of the improvements due to the addition
of uncertainty information (proposed method) are predominantly on the api-
cal slices (Fig. 2 (a)). The DSC increased by 2% for scar and by almost 1%
for myocardium in the apical slices. While the segmentation performance of the
proposed method at the mid and basal slices are similar or slightly better than
the baseline method. This tells us that the addition of uncertainty information
to the loss function is more advantageous to the semantically and visually chal-
lenging images which generate higher epistemic uncertainty. This confirms our
initial assumption about the proposed method.

Table 1. Comparison of myocardium and scar (infarction) segmentation performance
of the baseline method and the proposed method in terms of geometrical and clinical
metrics obtained on the test set (50 cases). The values mentioned are mean (standard
deviation). The best results are in bold. VD is the volume error. For DSC, the higher
the value the better whereas for HD, Brier score (BS) and VD the lower is the better.

Method Myocardium Infarction

BS BS
DSC (%) |HD (mm) [(1072%) DSC (%) |VD (ecm?®) |(1072)

Baseline [88.0 (2.63) |12.1(7.79) |4.03 (2.45)]65.0 (29.7) |3.04 (5.0) |1.19 (1.81)

Proposed |88.2 (2.55)|11.8 (7.26)(3.86 (2.8)[67.6 (28.8)(2.99 (4.55)|1.18 (1.83)

Fig. 3 shows examples of the segmentation results of baseline and proposed
method at apical, mid-ventricular and basal slices. At the apical slice, one can
see that the segmentation result of the baseline method has a lot of errors.
In the generated uncertainties (sample variance), the incorrectly segmented re-
gions have higher uncertainty. The proposed method, which utilizes the sample
variance as part of the loss, minimized the segmentation errors of the baseline.
Similarly, our proposed method produced more robust segmentation results at
the mid and basal slices. From the results, we can say that the uncertainty cap-
tures relevant information that can be leveraged to improve the segmentation
result.
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A) Dice score comparison at different slice positions B) Certainty comparison at different slice positions
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Fig. 2. Dice score (A) and certainty (B) comparison of the baseline and proposed
method at different slice locations. Myo_baseline and Scar_baseline refer to my-
ocardium and scar Dice score or certainty of the baseline method respectively. Similarly,

Myo_proposed and Scar_proposed refer to myocardium and scar Dice score or certainty
of the proposed method.

Regarding the probability calibration, the proposed method produced more
calibrated probabilities than the baseline method on both myocardium and scar
as it yielded lower Brier score. This suggests that using MC-dropout during
training and the addition of uncertainty information to the loss can improve not
only the segmentation accuracy but also the calibration of the probabilities.

Baseline method Proposed Method
A

Input Image Ground Truth " Prediction Uncertainty Prediction Uncertainty

Fig. 3. Qualitative results comparison of the proposed method with the baseline on a
typical cardiac MRI. The generated uncertainty is sample variance. Scar (green) and
myocardium (yellow).

3.2 Comparison with state of the art

Table 2 shows the comparison of the proposed method with state of the art
methods on EMIDEC challenge. One can observe that the proposed method
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outperformed the state of the art methods on most of the geometrical and clinical
metrics. Our proposed method yielded much better results in all metrics than
Feng et al. [5], which used a dilated 2D Unet. Zhang [23] and Ma [14] employed
nnU-Net based segmentation pipeline which is similar to the proposed method’s
pipeline. However, the proposed method, which utilizes a novel loss function that
took into account the uncertainty generated during training, outperformed these
two top ranked methods. In the segmentation of infarction, the proposed method
reduced the average volume error from 3.12 cm? to 2.99 em? and the percentage
from 2.38% to 2.29% compared to Zhang’s [23] method. In terms of the Dice
score of infarction, Zhang’s [23] method achieved better results, however, this
was obtained using two stage cascaded framework which is more computationally
expensive framework.

Table 2. Comparison of segmentation performance with state of the art methods on
EMIDEC challenge’s test set (50 cases). Bold results are the best.

Authors Myocardium Infarction NoReflow
DSCJ] VD [ HD
(%) |(em®)|(mm) | DSC(%)|VD(cm?)|PD(%)|DSC(%)|VD(cm?®)|PD (%)

Zhang 87.86 19.26 |13.01 |71.24 |3.12 2.38 78.51 0.635 0.38
Ma 86.28 [10.2 [14.31 |62.24 4.87 3.50 77.76 0.830 0.49
Feng et al.|83.56 [15.2 |33.77 |54.68 3.97 2.89 72.22 0.883 0.53

[Proposed [88.22]9.23 [11.78[67.64 [2.99  [2.29 [81.00 [0.601 [0.37 |

4 Conclusion

In this paper, we proposed a segmentation model that generates uncertainty
estimates during training using MC-dropout method and utilizes the uncer-
tainty information to enhance the segmentation results by incorporating it into
the loss function. The proposed method was evaluated on the publicly avail-
able EMIDEC dataset. It achieved state of the art results outperforming the
top ranked methods. Assessing the segmentation performance of the proposed
method at different slice positions, we observed that the Dice scores of the more
challenging apical slices increased much more than the other slice positions. Fur-
thermore, the improvements in the more difficult scar segmentation was higher
than that of myocardium segmentation. In the quantitative and qualitative re-
sults, we demonstrated that the uncertainty information was indeed advanta-
geous in enhancing the segmentation performance and the improvements were
more significant at the semantically and visually challenging images which have
higher epistemic uncertainty. In addition, the proposed method produced more
calibrated segmentation probabilities.

The main limitation of our method is that it takes more time to train than
the baseline method as it uses MC-dropout during training to generate the un-
certainty estimates. However, once it is trained, the inference time is exactly the
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same as the baseline method. Future work will focus on utilizing the uncertainty
estimates generated by other Bayesian methods such as variational inference to
improve the segmentation performance. We will also extend the evaluation onto
other challenging public datasets.
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