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Abstract Fog Computing has emerged as a virtual platform extending Cloud services down to the net-
work edge especially (and not exclusively) to host IoT applications. Data replication strategies have been
designed to investigate the best storage location of data copies in geo-distributed storage systems in order
to reduce its access time for different consumer services spread over the infrastructure. Unfortunately,
due to the geographical distance between Fog nodes, misplacing data in such an infrastructure may
generate high latencies when accessing or synchronizing replicas, thus degrading the Quality of Service
(QoS). In this paper, we present two strategies to manage IoT data replication and consistency in Fog
infrastructures. Our strategies choose for each datum, the right replica number and their location in
order to reduce data access latency and replicas synchronization cost. This is done while respecting the
required consistency level. Also, we propose an evaluation platform based on the simulator iFogSim to
enable users to implement and test their own strategies for IoT data replication and consistency man-
agement. Our experiments show that when using our strategies, the service latency can be reduced by
30% in case of small Fog infrastructures and by 13% in case of large scale Fog infrastructures compared
to iFogStor, a state-of-the-art strategy that does not use replication.

Keywords Internet of Things · Fog computing · Data Placement · Replication · Consistency · P-median

1 Introduction

Nowadays, the use of Internet of Things (IoT) [1] devices increased significantly. It is predicted that, by
2025, there will be 75 billion connected objects producing 79.4 ZB of IoT data [4, 6]. With this large
growth, relying exclusively on traditional centralized Clouds for processing and storage purposes, would
cause high access latencies and network congestion, degrading the Quality of Service (QoS) related to
service latency of IoT applications [2, 7]. On the other hand, IoT objects have become ubiquitous, which
imposes the use of a geo-distributed architecture in order to overcome the high latency and the network
congestion limitations of the centralized Cloud-based platform [9].

Fog computing is a highly virtualized platform that provides compute, storage, and networking ser-
vices between end devices and Cloud datacenters, typically, but not exclusively located at the edge of
network [3, 8]. As shown in Figure 1, the Fog presents a geo-distributed and heterogeneous infrastructure
in which Fog nodes such as routers, switches, points of presence (PoP) and set-top-boxes can be used to
process and store data.

One may consider two state-of-the-art work classes for latency minimization in the context of Fog and
IoT. The first one includes studies that focus on service placement [10–13]. The placement of services
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Fig. 1: Fog computing architecture.

can be constrained by properties other than latency, such as security/compatibility (e.g. services can be
ran only in specific Fog nodes), availability, energy consumption or load balancing [14, 15]. The second
class of studies investigated latency reduction by relying on data placement policies. For example, in [16],
authors proposed iFogStor, an exact strategy based on integer programming to place IoT data in Fog
infrastructures minimizing the overall service latency. Due to the high complexity of the data placement
problem, the authors have proposed two heuristics to reduce the placement execution time [18]. There
were no data replication considered in these approaches. In fact, maintaining a single copy per datum
may raise several issues. First, concurrent reads may be delayed when the single server node cannot meet
the required performance. Second, all read requests would be rejected if the storing node is down or
unreachable, which may occur frequently in Fog infrastructures [20].

Adding data replication to the aforementioned state-of-the-art work may enhance the service latency
[19]. Indeed, keeping multiple replicas on different Fog nodes and then satisfying each data request
from the replica with the smallest access latency would decrease the global service latency. However,
adding replication raises several issues to the system such as increasing the storage cost and the energy
consumption or generating a high network traffic when distributing data copies [28]. Another major issue
is to maintain data consistency between replicas (that is the ability of the system to adapt with its data
updates and to synchronize replicas to the same last version [21]). This process of replica synchronization
may add a latency overhead to the system which may vary according to the number of replicas and their
location.

Managing data consistency in distributed storage systems is a known problem. Indeed, several solu-
tions have been proposed [29–33]. With the advent of IoT and Fog computing, this problem has a new
dimension due to the massive amount of data to be managed, the large number of objects to be taken
into account, and the heterogeneity of the system (heterogeneity of data, platforms, protocols, etc.) [21].
In fact, in IoT context, a storage system can be used to store data for several applications with different
data consistency requirements. For instance, in a smart home, security applications need to access to
the latest information in order to trigger an alarm (e.g. intrusion, fire) as soon as the event happens,
in order to make a fast decision hence reducing the damage. On the contrary, applications for energy
management may tolerate some delay in making decisions (e.g. turn off the heating system). The former
application requires a strong consistency model [29] (requiring always the latest data version) whereas
the latter may use a weak consistency model [29] which may provide a non-updated information.

In this paper, we address the data placement problem with replicas by taking into account the
heterogeneity of applications. As Fog infrastructure can be variable in size, we designed two heuristics,
namely iFogStorS and iFogStorP. Both heuristics manage IoT data replication and consistency in Fog
infrastructures while reducing both data access and replicas synchronization latencies. The first strategy,
iFogStorS, is dedicated to small infrastructures (tens of nodes) and has a good latency reduction factor
but its computation time increases exponentially with the number of Fog nodes. The second strategy,
iFogStorP, is dedicated to large infrastructures (up to thousands of nodes), its performance are lower than
the previous one but the computation time is better. Both strategies find for each datum the required
number of replicas and their locations while respecting its consistency level.

We first rely on existing problem formulations such as Median [34], P-median [37] and shortest path
[36] to place data replicas. Then, we simulate data production and consumption context to manage the
data consistency. On the other hand, due to the lack of experimental tools in this context, we propose an
extension to the simulator iFogSim [26], a Fog and IoT environments simulator dedicated for managing
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IoT services placement and scheduling. Our extension enables users to implement and test their strategies
for IoT data replication and consistency management.

The contributions of this paper are the following:

• iFogStorS, a data replication and consistency management strategy which finds the placement of P
replicas minimizing both data access and replicas synchronization latencies considering all shortest
path nodes between producers and consumers,

• iFogStorP, an evolution of iFogStorS, which selects P-median from the shortest paths nodes to place
P replicas hence accelerating the computation time,

• iFogSim simulator extension to enable users to evaluate their own strategies toward IoT data repli-
cation and consistency management.

The experiments show that the service latency can be reduced by 30% when using iFogStorS in case
of small Fog infrastructures, and by 13% when using iFogStorP in case of large scale Fog infrastructures
compared to iFogStor, a state-of-the-art strategy that does not use replication.

The rest of this paper is structured as follows. Section II gives some background knowledge about the
Median, P-median, iFogStor and iFogSim which are used in this work. Section III details our strategies
for IoT data replication and consistency management in Fog infrastructures, and Section IV describes
the iFogSim simulator extension. Section V discusses the evaluation part and Section VI presents some
related work. Section VII concludes this paper and gives perspectives for future work.

2 Background

In this section, we first give the formulation of the Median and the P-median problems and then we
describe both the iFogStor strategy and the iFogSim simulator. These formulations and tools are used in
this work. More precisely, we used the Median and the P-median to formulate and to solve the replicas
placement problem, iFogStor as a reference method to compare our strategies, and iFogSim to perform
the experimentation.

2.1 Median problem

In graph theory, the median vertex of a given undirected weighted-edge graph is the vertex for which the
sum of the shortest paths costs to all other vertices is the smallest one [34]. Mathematically, this can be
formulated as follows.

Let an undirected graph G be given as G = (V,E), where V = {v1, v2, ..., vn} is the vertex set and
E = {e1, e2, ..., em} is the edge set. Let ci,j be the cost of a shortest path existing between the vertex vi
and the vertex vj . The median vertex Y ∈ V can be found by solving the following linear formula.

Y = argminj∈[1..n]
∑

i∈[1..n]
ci,j

An example of this problem is illustrated in Figure 2. In this problem, the median is represented by
the vertex 2 with which the cost to join all others vertices equals 8.

Fig. 2: An example of the Median problem.



4 Mohammed Islam Naas et al.

2.2 P-median problem

The P-median is a generalization of the median problem. The difference is in the number of chosen
medians. Here, the problem consists to find a subset of P medians that minimizes the sum of the shortest
path costs existing between medians and all others vertices. Each vertex should be attached to only its
nearest median. This problem can be formulated by the following linear system [37].

Min
∑

i∈[1..n]

∑
j∈[1..n]/{i}

ci,j .xi,j

Subject ∑
i∈[1..n]

xi,j = 1 ∀j ∈ [1..n] (1)

xi,j ≤ xi,i ∀i ∈ [1..n],
∀j ∈ [1..n] (2)∑

i∈[1..n]
xi,i = P (3)

xi,j ∈ {0, 1} ∀i ∈ [1..n],
∀j ∈ [1..n] (4)

With:

• xi,i = 1 means that the vertex vi is chosen as a median, otherwise, 0
• xi,j = 1 means that the vertex vj is affected to the median vi, otherwise, 0
• Constraint 1 ensures that each vertex vj is attached to one and only one median vi
• Constraint 2 verifies that a vertex is attached to a median
• Constraint 3 sets the number of medians to P
• Constraint 4 forces variables to be set by binary values.

From the complexity point view, Hakimi and Kariv have shown that the P-median problem is NP-
hard [35].

2.3 iFogStor strategy

iFogStor was proposed in [16] to address the data placement problem in the context of Fog computing and
IoT. It was formulated as a Generalized Assignment Problem (GAP) [25] and solved by linear program-
ming. The authors considered a system infrastructure that contains a set of storage nodes (Fog nodes and
data centers) denoted SN = {sn1, ..., snn}, and an amount of IoT data denoted D = {d1, ..., dm} which
are generated and consumed by a set of IoT services. An objective function was defined with the aim
to place D in SN while minimizing the transfer latency (transfer of D from producers to storage nodes,
and then from storage nodes to consumers). The solution respected two constraints: (i) the capacity of
storage nodes was not exceeded, (ii) all data items were stored. iFogStor formulation was described by
the following linear system.

Min
∑

i∈[1..m]

∑
j∈[1..n]

αi,j .xi,j

Subject ∑
i∈[1..m]

S(di).xi,j ≤ F (snj) ∀j ∈ [1..n]∑
j∈[1..n]

xi,j = 1 ∀i ∈ [1..m]

xi,j ∈ {0, 1} ∀i ∈ [1..m],
∀j ∈ [1..n]

With:

• αi,j being the generated latency by storing di in snj
• xi,j = 1 if di is stored in snj , and 0 otherwise
• S(di) is the size (in bytes) of di
• F (snj) is the free storage capacity (in bytes) of snj .

Note that iFogStor leads to an NP-hard optimization problem [16]. The authors in [16] used CPLEX
MILP [39] to solve it.
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2.4 iFogSim simulator

iFogSim [26] is a Fog and IoT environments simulator developed in Java. As shown in Figure 3, iFogSim
is composed of a set of physical entities that may be of different types: FogDevice (i.e. Fog node), Sensor,
and Actuator. iFogSim is also composed of a set of logical entities to model the application scenario. For
instance, as shown in Figure 3, AppModule models IoT services, AppEdge defines the data dependency
between a pair of IoT services, and Tuple models the fundamental unit of communication between entities
that are the data.

In iFogSim, IoT services can be placed and then scheduled for execution among Fog nodes driven
by some objectives related to end-to-end latency minimization, network utilization, energy consumption
or operational cost reduction. The AppModulePlacement and the AppModuleScheduler in Figure 3 are
abstractions of IoT service placement and scheduling policies respectively, and the AppModuleMapping
holds, for each IoT service, the Fog node to which it is affected.

In [17], the authors have proposed an extension to iFogSim to enable the design of data placement
strategies. As shown in Figure 3, three components were added by this extension:

1. Data Placement : it offers to users a set of functionalities to compute a data placement using integer
programming.

2. Infrastructure Partitioning : this component offers the possibility to subdivide the simulated infras-
tructure into several parts and runs a data placement strategy on each one of them hence accelerating
the computation time.

3. Workload Repartition: it includes a generic scenario of smart city that encompasses different con-
figurations of data flows offering to users the possibility to test their strategies with different data
workloads.

Fig. 3: Class diagram of the main components of iFogSim.

3 Proposed data replication and consistency management methods

In this section, we start by giving an overview of the contributions of this paper. Then, we give an
Integer Linear Programming (ILP) formulation of the data replication problem in Fog infrastructures.
After that, we give an exact method and two heuristic-based methods to solve it. Each proposed solution
is detailed in a dedicated section. Finally, we will describe how consistency has been managed.
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Fig. 4: System architecture.

3.1 Overview

As shown in Figure 4, we consider a very simplified system architecture (to ease the comprehension)
that consists of a set of sensors, a set of Fog nodes, a set of datacenters and a set of IoT services. In this
architecture, a Fog node can be located in the edge layer (e.g. a GW), in the aggregation layer (e.g. a
LPOP) or in the core layer of the network (e.g. a RPOP) [16]. We refer to IoT services and to sensors
that produce data as data producers, and IoT services that consume data as data consumers. An IoT
service can be a producer and a consumer at the same time. IoT data can be stored in different locations
of the Fog architecture and datacenters.

In our approach, we assume that IoT services are already placed in the infrastructure and the system
has knowledge about: (i) IoT services location, (ii) the existing data flows between data producers and
data consumers, (iii) network latencies between Fog nodes, and (iv) data hosts locations and their storage
capacities [16]. Indeed, this assumption may hold as our data placement and replication strategies are to
be implemented by a service provider who has the knowledge of the IoT services location (by deploying
a service instance placement strategy such as proposed in [11]) and their data dependencies. For the
remaining information, it can be inferred by deploying a software component which monitors the state
of Fog nodes, latencies and storage capacities, as proposed in [7].

First, sensors collect data from the physical environment. Once collected, data are replicated and sent
through gateways to the storage nodes. Data replication is used in order to reduce the access latency.
Once stored, associated IoT service instances (data consumers) can retrieve data from storage nodes for
analysis / processing sake. To ensure the reliability of IoT services, each pair of IoT data - IoT service
should obey to a given consistency requirement which is specified in the Service Level Agreement (SLA)
adopted between the service provider and the service owner, and it is assumed to be known and to be
guaranteed by the storage system. Indeed, the system should select a synchronized data replica from the
existing ones to respond to a given data access request emitted by an IoT service. As aforementioned,
replicas synchronization process may add a latency overhead to the system. This latency depends on the
number of replicas, their locations and on the associated consistency level.

Our objective is to reduce the overall service latency which encompasses the data transfer and the
replicas synchronization latencies. To do so, we propose two heuristics : iFogStorS and iFogStorP. Both
heuristics find for each produced IoT datum in the system, the number of replicas to be stored and their
locations minimizing the overall service latency and conforming to the required consistency level.

In the following sections, an exact method and the two proposed heuristics for managing data repli-
cation are described.
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Table 1: Notation table.

Notation Description
FN The set of Fog nodes, with |FN | = n
Fni The Fog node fni

F (Fni) The free storage capacity (in bytes) of the Fog node fni

D The data amount to be replicated and stored in FN , with |D| = m
dj The datum dj , with dj ∈ D
S(dj) The size (in bytes) of the datum dj
Qj The used data consistency protocol for the datum dj
Wj The number of available replicas needed to process a write request on the datum dj
Rj The number of available replicas needed to process a read request on the datum dj
p The number of replicas of a datum, with p ∈ [Pmin, Pmax]

Cj,p
n The set of possible assignments of p replicas of the datum dj in FN

cp The number of possible assignments of p replicas of the datum dj in FN

Aj,p
c The cth assignment of p replicas of the datum dj in FN

Lj,p
c The system latency overhead generated by the cth assignment Aj,p

c of p replicas of the datum dj in FN

yj,pi,c Selection variables of Fog nodes that form the cth assignment of p replicas of the datum dj in FN

xj,p
c Selection variable of assignments of the datum dj

3.2 Data replication problem formulation

In this section, we give a formulation of the data replication problem using an Integer Linear Programming
method. The used notations are summarized in Table 1.

Let FN = {fn1, fn2, . . . , fnn} be a Fog infrastructure and D = {d1, d2, . . . , dm} the data amount to
be replicated and stored in FN .

Let Pmin and Pmax be the minimum and maximum number of replicas used in the system, respectively.

Let Qj = [Wj , Rj ] be the data consistency protocol based on Quorum (see Section 3.6.2) used in
the system for the datum dj , with Wj is the number of invoked replicas to answer a write (replicas
synchronization) request, and Rj is the number of invoked replicas to answer a read (data access)
request.

Let Cj,p
n = {Aj,p

1 , Aj,p
2 , . . . , Aj,p

cp } be the set of possible placement assignments of p replicas of the

datum dj in FN , with cp = |Cj,p
n | = n!

p!(n−p)! (the number of combination nCp of p replicas from n

nodes), and Aj,p
c is the cth assignment of p replicas of the datum dj in the infrastructure FN . Note that,

for each assignment Aj,p
c of p replicas, p Fog nodes are chosen to place these p replicas.

In this system, each assignment Aj,p
c generates Lj,p

c latency overhead. This latency represent the
synchronization (write) time of Wj replicas of the datum dj plus the retrieving (read) time of Rj replicas
of the datum dj . Since the latency Lj,p

c depends on the locations of replicas, the data consistency protocol
used for the datum dj , and the arrival time of read and write requests for the datum dj , this latency cannot
be known in advance, but simulation-based or machine learning-based methods can help to estimate its
value (in this work, we used a simulation-based method to estimate the replica synchronization latency,
see Section 3.3).

The goal of our data replication and placement strategy is to find for each datum dj ∈ D, the number
of replicas p ∈ [Pmin, Pmax] and their locations in FN , which minimize the overall system latency. That
is to select for each dj ∈ D, the assignment Aj,p

c ∈ Cj,p
n which minimizes the global system latency. This

returns to solving the following linear system.
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Min
∑

j∈[1,m]

∑
p∈[Pmin,Pmax]

∑
c∈[1,cp]

Lj,p
c .xj,pc

Subject ∑
p∈[Pmin,Pmax]

∑
c∈[1,cp]

xj,pc = 1 ∀j ∈ [1,m] (1)

∑
i∈[1,n]

yj,pi,c = p ∀xj,pc = 1 (2)

yj,pi,c ≤ xj,pc ∀i ∈ [1, n],∀j ∈ [1,m],∀p ∈ [Pmin, Pmax],∀c ∈ [1, cp] (3)∑
j∈[1,m]

S(dj).y
j,p
i,c ≤ F (fni) ∀xj,pc = 1,∀i ∈ [1, n] (4)

yj,pi,c ∈ {0, 1} ∀i ∈ [1, n],∀j ∈ [1,m],∀p ∈ [Pmin, Pmax],∀c ∈ [1, cp] (5)

xj,pc ∈ {0, 1} ∀j ∈ [1,m],∀p ∈ [Pmin, Pmax],∀c ∈ [1, cp] (6)

With:

• xj,pc = 1 means that the cth assignment of p replicas is chosen to replicate and place the datum dj in
FN , and 0 otherwise.

• yj,pi,c = 1 means that the Fog node fni is chosen to place a replica of the datum dj for the cth

assignment of p replicas, and 0 otherwise
• S(dj) is the size (in bytes) of dj
• F (fni) is the free storage capacity (in bytes) of fni
• Constraint 1 ensures that one and only one assignment (combination) of p ∈ [pmin, pmax] replicas is

chosen (among all possible combinations of replicas assignments) for each datum dj .
• Constraint 2 ensures that p Fog nodes are chosen to place p replicas
• Constraint 3 ensures that the chosen Fog node fni to place a replica of datum dj for the cth assign-

ment, belongs to the cth assignment
• Constraint 4 ensures that the data amount assigned to a given Fog node fni (specified by yj,pi,c = 1)

must be lower than its free storage capacity F (fni)
• Constraint 5 ensures that the selection variables of Fog nodes of the cth assignment, are binary
• Constraint 6 ensures that the selection variables for assignments of the datum dj , are binary.

3.3 Motivation: the exact method

Fig. 5: Exact method model.

A possible way to solve the ILP formulation presented above that is to find the optimal number
of replicas and their placement for minimizing both data access and replica synchronization latencies
consists to enumerate all replica placement options. As shown in Figure 5, based on the infrastructure
topology (latencies, IoT services placement and Fog nodes free storage capacities), the predicted workload
and the required consistency level per datum, a micro-simulation (considering only the underlying datum)
is ran in order to estimate the generated latency for each placement case. Once all placement options
simulated, for the sake of simplification, the best solution with the minimum latency is selected for each
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datum (instead of solving the linear system using an ILP solver). This is done by satisfying the following
two constraints: (i) the amount of data affected to a Fog node must be lower than the free storage
capacity in that Fog node, and (ii) the number of data replicas must be included between a minimum
and a maximum fixed in advance for each data. The overall service latency is represented by the sum
of all data access and replicas synchronization latencies. Hereinafter the description of the search space
size (the number of simulated cases) of the exact method followed by an example, which could give an
intuition of its complexity by multiplying the complexity of a placement case computation by the search
space size.

3.3.1 Exact method search space size

The total number of simulated cases Nbc is computed by:

Nbcd = Cpmin
n + C

pmin+1
n + ...+ Cpmax

n .
Nbc = d×Nbcd.

With:

• Nbcd : the number of simulations for each datum.
• Nbc : the total number of simulations.
• d : the number of data elements to be stored.
• n : the number of Fog nodes (data hosts).
• pmin : the minimum number of replicas.
• pmax : the maximum number of replicas.
• Cp

n : a combination of p from n, Cp
n = n!

p!(n−p)! .

The total number of cases is equal to the number of data multiplied by the sum of the possible placement
options for each datum for all possible number of replicas.

We can bound the Nbcd using the following formula:

n!
pmin!(n−pmin)!

≤ Nbcd ≤ 2n

Explanation:

First, we demonstrate the left part of the inequality.
As mentioned above, the number of simulations for each datum is

Nbcd = Cpmin
n + C

pmin+1
n + ...+ Cpmax

n ...(1)

From the equation (1) we get

Cpmin
n = Nbcd − (C

pmin+1
n + ...+ Cpmax

n ) ...(2)

As the combination of p from n is always greater than 0, whenever p is greater or equal to 0, we have

Cp
n > 0, p ≥ 0 ...(3)

From the equation (2) and the equation (3) we get

Cpmin
n ≤ Nbcd ...(4)

As mentioned above, the factorial representation of a combination of p from n is

Cpmin
n = n!

pmin!(n−pmin)!
...(5)

By substituting the factorial representation of a combination given by the equation (5), in the equation
(4), we get the left part of the inequality

n!
pmin!(n−pmin)!

≤ Nbcd

Now, we demonstrate the right par of the inequality. Considering (1) and (3) we get

Nbcd = Cpmin
n + ...+ Cpmax

n ≤ C0
n + ...+ Cpmin

n + ...+ Cpmax
n + ...+ Cn

n ...(6)

Furthermore, it is well known that the sum of the binomial coefficients

C0
n + C1

n + ...+ Cn
n = 2n ...(7)

By substituting the equation (7) in the equation (6), we get the right side of the inequality

Nbcd ≤ 2n
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3.3.2 Example

To replicate 200 data elements with a number of replicas varying from 3 to 5, in three infrastructures:
FN1, FN2 and FN3 involving respectively 20, 25 and 30 data hosts, the total number of simulated cases
is:

• For FN1, Nbc = 200× (C3
20 + C4

20 + C5
20) = 4, 297, 800

• For FN2, Nbc = 200× (C3
25 + C4

25 + C5
25) = 13, 616, 000

• For FN3, Nbc = 200× (C3
30 + C4

30 + C5
30) = 34, 794, 200.

As shown in Figure 6, from the large increase in number of possible placement cases Nbc by varying the
number of Fog nodes or by varying the number of data replicas, we can conclude that we encounter a
combinatorial explosion problem.

Fig. 6: Number of placement cases according to the Fog infrastructure size and the number of replicas.

3.4 Heuristic 1: iFogStorS

As we have seen above, the number of possible placement options enumerated by the exact method can
be very large. Thus, the idea behind the heuristic iFogStorS is to reduce the number of possible replica
placement possibilities by considering only nodes on the shortest paths between producers and consumers
rather than the whole infrastructure nodes.

For example in Figure 4, considering the network topology information presented in Table 2, the set
of shortest paths nodes selected by iFogStorS as candidates to store the data generated by the Node 1
and consumed by Node 3, Node 4 and Node 5, are {Node 1, Node 2, Node 3, Node 4, Node 5}.

Table 2: Network topology.

Source Destination Shortest Path cost (ms)
Node 1 Node 3 A-D 5
Node 1 Node 4 A-B 4
Node 1 Node 5 A-B-E 8

Our idea is relevant in case the number of shortest path nodes is small. In this case, the number of
placement cases generated can be calculated in runtime. This happens for a small infrastructure compris-
ing tens of Fog nodes (it depends of course on the performance of the server running the calculations),
or in case of large infrastructure in which data consumers are concentrated in a given region (or part)
of the infrastructure, for instance, in Figure 4, all consumers of the data generated by the Node 1 are
located in the left-part of the infrastructure. This latter case implies that the optimal replica placement
solution could, very likely, be located in this same part of the infrastructure near the consumers. This
eliminates the calculation of the placement of replicas in the rest of the infrastructure. However, in case
of large infrastructures with highly distributed consumers, the second heuristic iFogStorP, presented in
the following section, is more relevant.
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Algorithm 1 describes the operating process of the heuristic iFogStorS. First, based on the infrastruc-
ture topology, iFogStorS computes the set of nodes of the shortest path existing between producers and
consumers. Then, for each possible number of replicas P , iFogStorS simulates each placement case of P
replicas and estimates its latency overhead. Finally, it chooses the number of replicas and their locations
for which the sum of both data access and replica synchronization latencies is minimized. Like the exact
method, this is done by satisfying two constraints: (i) the amount of data affected to a Fog node must
be lower than the free storage capacity in that Fog node, and (ii) the number of data replicas must be
included between a minimum and a maximum fixed in advance for each data. This process is repeated
for each datum produced in the system.

Algorithm 1: iFogStorS algorithm
Input: Workload, Producers and consumers locations, Network latency between Fog nodes, Required consistency

level
Output: Number of replicas and their locations

1 function iFogStorS ()
2 foreach data do
3 Get all shortest paths nodes between producers and consumers
4 foreach P ∈ [pmin, pmax] do
5 foreach C ∈ all possible placement cases of P replicas do
6 Estimate the latency overhead of C

7 Choose C with the minimum latency overhead

8 return All data replicas locations

3.4.1 iFogStorS search space size

The number of simulated replica placement cases Nbc done by iFogStorS, is computed by the following
formula.

Nbci = (Cpmin
ni

+ C
pmin+1
ni + ...+ Cpmax

ni
).

Nbc =
∑
i∈D

Nbci.

• i : a datum.
• Nbci : the number of simulations for the datum i.
• D : the set of data to be stored.
• ni : the number of shortest path Fog nodes existing between the producer of datum i and its con-

sumers.

The total number of cases is equal to the sum of the possible placement cases for each datum.
The complexity of iFogStorS can be computed by multiplying the number of simulated cases by the
computational complexity of a simulation, plus the complexity of a shortest path computation algorithm
(e.g. in the case of Floyd-Warshall algorithm [36] which is used in this work, the complexity is O(n3),
with n being the number of Fog nodes).

3.4.2 Example

Considering the same infrastructure configuration example presented in Section 3.3.2 with FN1 (i.e. 20
Fog nodes), and assuming that for each datum, the number of the shortest path nodes is 7 (one third
of the number of Fog nodes in the infrastructure). The total number of simulated cases is computed as
follows:

Nbc =
200∑
i=1

(C3
7 + C4

7 + C5
7 ) = 18, 200.

For the aforementioned infrastructure configuration, iFogStorS reduces the number of simulated cases
by 236 times as compared to the exact method.

However, in case of large scale infrastructures involving thousands of Fog nodes with highly distributed
consumers, selecting all shortest path nodes may result in a large number of nodes. For instance, beyond
20 shortest path nodes, the number of possible cases for replica placement exceeds million (see the
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example in Section 3.3.2). This gives a huge number of possible replica placement options giving rise
to a combinatorial explosion problem. To solve this issue, we propose iFogStorP, a second heuristic to
manage data replication and consistency in case of large scale infrastructures.

3.5 Heuristic 2: iFogStorP

iFogStorP is an improvement of iFogStorS in terms of complexity. It reduces drastically the number of
possible replica placement cases by working with median nodes. In fact, rather than enumerating all
possible cases of replica placement across the shortest paths nodes set, it selects P-median nodes to place
P replicas. As shown in Figure 4, iFogStorP selects two median nodes (Node 2 and Node 4) from the
set of shortest path nodes (Node 1, Node 2, Node 3, Node 4 and Node 5) to place two replicas for the
data generated by Node 1 and consumed by Node 3, Node 4 and Node 5. Thus, iFogStorP does just one
simulation for a given number of replicas. The operating process of iFogStorP is described in algorithm
2. iFogStorP starts by computing all shortest path nodes existing between the producer of each datum
and its consumers. Then, for each number of replicas, it selects P placement nodes from the shortest path
nodes solving a P-median problem and estimates its latency overhead. Finally, it chooses for each datum
the number of replicas (i.e. medians) which minimizes both data access and replicas synchronization
latencies. As the exact method and iFogStorS, iFogStorP should satisfy the two constraints: (i) the
amount of data affected to a Fog node must be lower than the free storage capacity in that Fog node,
and (ii) the number of data replicas must be included between a minimum and a maximum fixed in
advance for each data.

Algorithm 2: iFogStorP algorithm
Input: Workload,Producers and consumers locations, Network latency between Fog nodes, Required consistency

level
Output: Number of replicas and their locations

1 function iFogStorP ()
2 foreach data do
3 Get all shortest paths nodes between producers and consumers
4 foreach P ∈ [pmin, pmax] do
5 Select P placements to place P replicas
6 Estimate the latency overhead

7 Choose P with the minimum latency overhead

8 return All data replicas locations

3.5.1 iFogStorP search space size

The number of simulated replica placement cases Nbc by iFogStorP, is calculated as follows:

Nbc = d× (Cpmin
pmin

+ Cpmin+1
pmin+1 + ...+ Cpmax

pmax
) =

d× (pmax − pmin + 1).

The total number of cases is equal to the number of data multiplied by the sum of each combination
of P replicas from P medians with P ranging from the minimum number of replicas to the maximum
number of replicas. As Cp

p = 1, the possible placement cases for each datum is equal to: pmax− pmin + 1.
The complexity of iFogStorP can be computed by multiplying the number of simulated cases by

the computational complexity of a simulation. As iFogStorP uses shortest path nodes and P-median
computation algorithms, the the complexity of iFogStorP should include these algorithms’ complexities.
As aforementioned, the complexity of the shortest path nodes computation is O(n3), while the complexity
of P-median computation is O(n2.P 2), with n being the number of Fog nodes and P the number of
medians [38].

3.5.2 Example

Considering the same infrastructure configuration presented in Section 3.3.2 with FN1 (i.e. 20 Fog nodes),
the number of possible replica placement cases Nbc is computed as follows.
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Nbc = 200× (5− 3 + 1) = 600.

For this infrastructure configuration, iFogStorP reduces Nbc by a factor of 7,163 as compared to the
exact method and by 30.33 times as compared to iFogStorS.

Note that the computation of P-median nodes may add an overhead to the execution time of
iFogStorP. This overhead will be discussed in the evaluation Section.

3.6 Data consistency protocols

In the previous section, we proposed two heuristics to find the best number of replicas and their locations
for each datum to reduce both data access and replicas synchronization latencies while respecting their
consistency protocols. One must notice that we can affect a consistency level on a per datum basis in
our work. In this section, we describe how these consistency protocols are considered in this work. We
first give the set of assumptions and then we explain how data consistency protocols were deployed in
this work.

3.6.1 Assumptions

In this work, we have considered a set of assumptions in order to manage data consistency for both
aforementioned strategies, which are given below [5, 21, 22, 33]. To facilitate the understanding of certain
assumptions, we will refer to Figure 7 in which an example of read and write requests on data replicas
is illustrated.

Fig. 7: Write/reading protocol.

1. A consistency protocol is defined by the number of replicas that should respond to read/write requests
[21]. That means, to consider a given read/write request as a completed request, it should be made
simultaneously on a required number of available replicas which we call response replicas (replicas 1
and 3 for write request and replicas 5 and 6 for read request in Figure 7).

2. Response replicas are chosen from the set of the nearest (to reduce the latency) and unlocked replicas
(i.e. replicas for which there are no concurrent requests) to the requester.

3. Response replicas for a given write request are locked for all other concurrent read/write requests (to
avoid conflict) [22], for example, replicas 1 and 3 in Figure 7.

4. Response replicas for a given read request are locked for all other concurrent write requests (replicas
5 and 6 in Figure 7). So, several concurrent read requests could be made on the same replica [22].

5. Write requests are delayed and processed in background for non-response replicas (the replica number
4 in Figure 7) [5, 33].

6. When a write request arrives, and one or several replicas are locked by other read/write requests (for
example, replicas 2 and 7 in Figure 7), this write request is saved in the system for the locked replicas
in order to synchronize them once unlocked.

7. Write requests for which the required number of response replicas is not satisfied are called blocked
writes. They are timestamped and saved in the system. They are triggered when the number of
required response replicas for writes is satisfied following a chronological order (from older to recent)
in order to maintain the Linearizability of writes (i.e. all write requests are ordered chronologically
by their arrival time in the system and all requests always see the effects of the preceding ones) [33].

8. Read requests for which the required number of response replicas is not satisfied will not be served
and an ”unavailable data” event is sent to the requester.
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3.6.2 Data consistency protocols implementation

As aforementioned, in our work, the consistency level is expressed by the number of replicas that should
respond to read/write requests. In case of a strong consistency requirement, a quorum based replica
selection algorithm is applied [21]. This algorithm consists in selecting from N unlocked replicas, QW
replicas to respond to a given write request and QR replicas to respond to a given read request. Fixing
QW and QR must satisfy two conditions: QW > N/2 and QW +QR > N . This is done in order to force
the system to select a replica with the last version. An example with N = 5, QW = 3 and QR = 3 is
illustrated in Figure 8. This example consists in writing/reading simultaneously in/from three available
replicas. First, a write request arrives to the system which chooses 3 unlocked replicas from the 5 available
ones to respond to this request. By completing this request, 3 replicas (the responding ones) will have
the recent version and the 2 others replicas will have an old version. After that, a read request arrives
to the system requiring QR = 3, the system chooses 3 replicas from the 5 available ones to respond to
this request. Logically, at least one replica (2 replicas in this example) from the chosen ones must show
the recent version of data assuring thereby a strong consistency context.

Fig. 8: An example of a strong consistency protocol.

On the other hand, in case of a weak consistency requirement, we use the quorum based algorithm but
without satisfying both conditions on the number of response replicas. That means, QW and QW +QR
can be less than N/2 and N , respectively. An example with N = 5, QW = 3 and QR = 1 is illustrated
in Figure 9. This example consists in writing in three available replicas and reading from one available
replica. Contrary to the previous example, here the read request requires only one response replica
(QR = 1) thereby the system cannot be forced to chose a response replica with the recent version.

For the weak consistency, we assume that replicas will be eventually updated [33]. That is, they will
converge to the same latest version in case there is no new data update requests.

Fig. 9: An example of a weak consistency protocol.

4 iFogSim extension

In this section, we will describe our extension to iFogSim which can be used to test and evaluate strategies.
As shown in Figure 10, we added three main components to resource management entities in iFogSim:

ConsistencyManager, ConsistencyProtocol and DataReplicationAndConsistencyStrategy. Also, we imple-
mented three interfaces to model and solve all shortest path nodes, Median and P-median problems
which are used in this extension. The other classes are sub-components which inherit the DataReplica-
tionAndConsistencyStrategy and the ConsistencyProtocol components.
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Fig. 10: Class diagram of the main added components to iFogSim.

In brief, the ConsistencyManager is responsible for handling replicas locking, unlocking and synchro-
nization as well as managing read and write requests. The ConsistencyProtocol is an implementation of
three data consistency management protocols. Each generated datum in the system should obey to one
protocol (obviously, users can define new protocols). The DataReplicationAndConsistencyStrategy imple-
ments strategies for managing data replication and consistency in Fog infrastructures. These strategies
could be employed by users to compare with their methods. They rely on the consistency protocol of the
previous component. The set of added components are detailed below.

4.1 Consistency Manager

This component is the most important one in this extension. It manages the data consistency in iFogSim
by ensuring mutual exclusion between read/write requests and maintaining replica synchronization. To
do so, it uses a set of functions, for instance, for identifying the set of replicas of a given datum and
locking/unlocking the set of response replicas for a given read/write request. Also, this component ensures
that all read/write requests should be done according to the required data consistency protocol associated
to each datum. Furthermore, this component manages locked and blocked write requests by implementing
chronological queues (see, respectively, the 6th and the 7th elements of the set of assumptions given in
Section 3.6.1).

It is worth to mention that, to respond to a read request, the ConsistencyManager uses the Median
API to choose a replica among the set of response replicas to send data to the requester. In fact, a
median of all response replicas is used to solve a consensus problem of the most recent version of the
stored data in the set of response replicas. In case several replicas have the updated version, the nearest
one (in terms of latency) to the requester is chosen. The Median API is used to formulate and solve a
median problem; see Section 2.1.

4.2 Consistency protocol

In this extension, we implemented three consistency protocols. Each datum in the system uses a given
protocol. Users have the possibility to add new protocols. The implemented protocols are the following:

• Read One-Write All : this is a strong consistency protocol. It consists in writing simultaneously on
all replicas and reading from one replica [40].

• Read One-Write One: this is a weak consistency protocol in which a given read/write request requires
to be applied to one (unlocked) replica to be validated [5].

• Quorum: with this protocol, the user defines the number of replicas that should respond to a
read/write request. This protocol could be implemented for strong as well as for weak consistency as
mentioned in Section 3.6.2.
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4.3 Data replication and consistency strategy

This component is an abstraction of three data replication and consistency management strategies defined
in Section 3:

• Exact : an implementation of the exact strategy which consists in enumerating all replica placement
options to choose the optimal solution.

• iFogStorS : an implementation of the first heuristic proposed in this work. It enumerates all possibilities
of replica placement within shortest path nodes rather than the whole infrastructure. This strategy
uses the AllShortestPathNodes API to compute the shortest path nodes between data producers and
consumers.

• iFogStorP : an implementation of the second heuristic proposed in this work which reduces the number
of replica placement options by choosing P median nodes from the shortest paths nodes to place P
replicas. This strategy uses the AllShortestPathNodes API to compute the shortest path nodes and
then the P-median API to compute the P median nodes.

5 Evaluation

This section presents the evaluation part of our strategies for managing data replication and consistency
in Fog infrastructures. We first describe the used evaluation methodology and the use-case scenario.
Then, we give the experimental setup. Finally, results will be discussed.

5.1 Methodology

We evaluated a set of metrics on a given set of strategies on which we applied different workloads with
data having different consistency levels.

5.1.1 Evaluated strategies

The considered replicas placement and consistency management strategies are the following:

a) iFogStor [16]: this is the data placement strategy from state-of-the-art that we consider as a reference
in our evaluation for comparison sake. It is an exact method that finds the location to store one copy
of each datum in order to minimize the overall service latency. This strategy does not use any replica,
it was presented in Section 2.3.

b) 3-Replicas: this strategy stores three replicas for each datum. It computes replicas location by solving
the P-median problem presented in Section 2.2, using the Cplex MILP solver [39]. Note that, this
strategy does not take into account the latency induced by the data consistency management, when
computing the replicas location. We introduce this strategy also for comparison sake to emphasize
the usefulness of considering synchronization cost in the problem solving.

c) Exact : this strategy enumerates all data replication options to choose the best storage location solution
minimizing the overall service latency while respecting the required consistency level for each datum.

d) iFogStorS : this strategy reduces the number of replicas location options by considering only the set
of shortest path nodes existing between producers and consumers. In this work, we used the Floyd-
Warshall algorithm to compute the set of shortest path nodes.

e) iFogStorP : this strategy chooses P medians from the set of shortest path nodes to place P replicas.
In this work, we used the Cplex MILP [39] to solve iFogStorP ’s P-median sub-problems.

5.1.2 Metrics of comparison

Several metrics were evaluated:

a) Overall service latency : the main objective in this work is to reduce the service latency in Fog infras-
tructures. Thus, for each strategy, we evaluated the overall generated latency time, that is the sum
of generated latencies for accessing all the data in the system.
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Table 3: Placement strategies computation time components.

Problem formu-
lation

Problem solving Simulation Shortest path
nodes

P-median re-
solving

iFogStor X X
3-Replicas X

Exact X
iFogStorS X X
iFogStorP X X X

b) Computation time: as Fog infrastructures are dynamic and their topology often changes, management
strategies should be feasible at runtime (online) [18]. Thus, in our experiments, we measured the
computation time taken by each strategy. The computation time is the time spent to compute the
data locations by formulation and solving data placement (sub-)problems (e.g. the shortest path
nodes and P-median sub-problems for iFogStorP) as well as the simulation time taking by iFogSim to
simulate the Fog infrastructure with a given workload and a given data placement solution in order
to compute the system latency related to this data placement solution. As shown in Table 3, the
computation time encompasses (i) the one-copy placement problem formulation and solving times for
iFogStor, (ii) the P-median solving time for the 3-Replicas strategy, (iii) the simulation time for the
Exact strategy, (iv) the shortest path nodes computation time and the simulation time for iFogStorS,
and (v) the shortest path nodes computation time, the P-median resolving time and the simulation
time in case of iFogStorP.

c) Number of replicas: we measured the average number of replicas generated by applying each strategy.
This metric can give an idea about the network traffic, the storage cost and the energy consumption
of each strategy. These are all correlated to the the number of replicas generated.

d) Unsatisfied read requests: another important metric to be evaluated is the number of unsatisfied read
requests. This metric translates the availability of the service according to a given number of replicas.
In fact, the unsatisfied read requests happen when the required number of available replicas (for
read requests) is not satisfied, see Section 3.6.1. That means, replicas are currently occupied by write
requests.

5.1.3 Data workloads

We used two different types of synthetic data workload distribution [18]: (i) Zoned in which data are
consumed by IoT services located in the neighborhood of producers Fog nodes (such as traffic management
applications), and (ii) Distributed in which data are consumed by IoT services located anywhere in the
infrastructure (such as in online gaming applications). Note that we applied these two data workload
distribution mainly in case of large scale infrastructures in which the distribution nature of the used data
workload would make a significant difference (in replicas synchronization time and in number of shortest
path nodes) in contrast to small infrastructures in which all nodes may be considered as neighbors. In
this latter case, we only show results of the Zoned data workload (as they are similar to distributed
ones).

5.1.4 Data criticality

As in a given IoT application data may not be all subject to the same consistency protocol [21], we
varied the amount of data that have strong consistency requirements (critical data). We considered this
proportion to be 0%, 10%, 20% and 30% of the total data volume. In each case, the rest of data are
assigned a weak consistency requirement. These levels of data criticality are applied for both Zoned and
Distributed workloads, and for all proposed strategies except the 3-Replicas strategy. For the latter, data
are managed following a weak data consistency protocol. In effect, with this consistency management
protocol 3-Replicas shows the best performance. Indeed, by increasing criticality, the latency would
increase due to replicas synchronization. Note that iFogStor uses only one copy of data and it does not
need a consistency protocol (of course, read and write requests are mutually exclusive, see Section 3.6.1).
This variation of data workload distribution and data consistency requirement allows to properly study
the behavior of each strategy.

We used the generic use-case of smart city proposed in [16], where several types of sensors (humidity,
temperature and luminosity) collect environmental data and send them to a variety of IoT services for
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Table 4: Infrastructure configuration.

Strategy Workload Criticality Infrastructure Objective
iFogStor

Zoned all

1 DC To compare our proposed
3-Replicas 1 RPOP method to manage data

Exact 1 LPOP replication and consistency
iFogStorS 10 GW with the state of the art
iFogStorP
iFogStor

Zoned all

1 DC
3-Replicas 1 RPOP To compare our proposed
iFogStorS 1 LPOP heuristics
iFogStorP 50 GW
iFogStor

Zoned
all

1 DC
3-Replicas 10 RPOP To test the scalability
iFogStorP Distributed 100 RPOP of iFogStorP

1,000 GW

Table 5: Network latencies.

Network link Latency (ms)
Sensor - GW 10
GW - LPOP 50

LPOP - RPOP 5
RPOP - DC 100

RPOP - RPOP 5
DC - DC 100

Table 6: Free storage capacities.

DataHost Free storage capacity
GW 100 GB

LPOP 10 TB
RPOP 100 TB
DC 10 PB

processing and analytical sake. These IoT services are implemented within an infrastructure encompassing
Fog nodes and Cloud data-centers. As shown in Figure 4, Fog nodes consist of gateways (GW), Local
PoPs (LPOP) and Regional PoPs (RPOP), arranged hierarchically.

5.2 Experimental Setup

In our simulations, we varied the infrastructure configuration according to various objectives, and for each
one, we used iFogStor as a reference strategy for comparison. As shown in Table 4, these configurations
are the following:

• We used a small infrastructure encompassing 10 Fog nodes in order to compare our proposed heuristics
with the Exact method which is not scalable, and this, using the Zoned workload with all data
criticality levels defined previously.

• We used a medium sized infrastructure involving about 50 Fog nodes in order to test the scalability of
iFogStorS using the Zoned workload with all data criticality levels. However, we cannot test iFogStorS
with large number (hundreds) of Fog nodes due to its limited scalability.

• Finally, we evaluated a large infrastructure with up to 1,000 Fog nodes to test the scalability of
iFogStorP using both Zoned and Distributed workload with various data criticality levels.

In these simulations, we have fixed 100 sensors per GW. Table 5 shows the considered network
latencies between nodes, and Table 6 illustrates available storage capacity on each type of data host
[16, 24].

As aforementioned, in our work, the data consistency is represented by the number of replicas re-
sponding to a given read/write request. In our experiments, we varied the number of replicas of each
datum from 1 to 5 [16, 18] except for the 3-Replicas strategy, for which it is fixed to 3. Data management
strategies find the best combination between the total number of replicas and QW and QR that minimize
the overall service latency while respecting its consistency requirement.

In our experiments, data exchange is achieved on a packet basis. We set the size of data packets
generated by sensors to 96 bytes and data packets generated by IoT services to 960 bytes [24]. For
service data sharing, we varied the number of consumers sharing data randomly from 1 to 10 for each
datum. The evaluation was done on a server with 48 Xeon E5-2650 CPU cores clocked at 2.2 GHz and
352 GB of RAM.
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5.3 Results and Discussion

Note that Exact and iFogStorS strategies were not evaluated with all infrastructure configurations due
to their limited scalability (see Figures 11, 12, 13 and 14).

5.3.1 Latency time

Figure 11 (a), (b), (c) and (d) show the latency reduction of our data management strategies compared
to iFogStor, using infrastructure configurations involving 10, 50 and 1000 Fog nodes and applying various
data criticality and data workloads. We remember here that for the purpose of simplifying the evaluation
part, the 3-Replicas strategy is evaluated only with Critical 0 which represents its best case of latency.
We observe that:

a) In Figure 11 (a), when there are no critical data (Critical 0 ), the 3-Replicas strategy reduces the
service latency by only 6%, whereas the Exact, iFogStorS and iFogStorP strategies reduce the service
latency by about 30% compared to iFogStor, the one-copy placement strategy. Also, the service latency
is reduced by 23% when increasing the level of data criticality to 30% (i.e. Critical 30 ) for all proposed
strategies (i.e. Exact, iFogStorS and iFogStorP) compared to iFogStor. This performance degradation
is induced by the implementation of a strong consistency protocol for 30% of data, which delays
read/write requests when replicas are locked

b) When increasing the number of Fog nodes to 50 (see Figure 11 (b)), we observe that the service latency
reduction for 3-Replicas remains unchanged (about 6%), while for iFogStorS and iFogStorP it is 25%
and 19%, respectively, when there is no critical data, and it is about 19% and 13%, respectively, with
30% critical data.

c) With an infrastructure of 1000 Fog nodes, we see a difference in the enhancement of the 3-Replicas
strategy with regards to iFogStor when the type of data workload is changed from Zoned to Dis-
tributed, from 2% to 8%, respectively (see Figure 11 (c) and (d)). Tn fact, this is not a performance
degradation of the 3-Replicas strategy, but rather a better behavior of iFogStor. Indeed, both strategies
enhance the performance for the Zoned workload compared to the Distributed one because of lower
network latencies. However, with 3 replicas, the synchronization cost is higher, thus the enhancement
of Zoned over the Distributed workload is smaller. This reduces the enhancement of 3-replicas with
regards to iFogStor in case of Zoned workloads. Compared to iFogStorP), in case of Zoned workload,
the number of replicas is higher (for 3-Replicas) which generates additional latencies. Indeed, Figure
13 (c) shows that iFogStorP uses only 2.2 replicas on average (against 3 for 3-Replicas) to have a re-
duction of 19% of the service latency. For the Distributed workload, iFogStorP uses about 2.8 replicas
on average (see Figure 13 (d)). For the iFogStorP strategy, the latency reduction is stable whatever
the workload as the number of replicas is adjusted for each data criticality level (see Figure 11 (c)
and (d)). Indeed, the service latency is reduced by about 17% when there is no critical data and 13%
when 30% of data are subject to a strong consistency protocol. The more the data are critical, the
higher is the synchronization latency.

5.3.2 Computation time

Figure 12 shows the total computation time and the time duration of each phase for the different strategies
using 10, 20 and 1000 Fog nodes in the simulated infrastructure. We recall that the computation time
encompasses (i) the one-copy placement problem formulation and solving times for iFogStor, (ii) the
P-median solving time for the 3-Replicas strategy, (iii) the simulation time for the Exact strategy, (iv)
the shortest path nodes computation time and the simulation time for iFogStorS, and (v) the shortest
path nodes computation time, the P-median resolving time and the simulation time in case of iFogStorP,
see Table 3.

One can observe that the computation time of the Exact and iFogStorS strategy is very high compared
to iFogStor, 3-Replicas and iFogStorP. For instance, as shown in Table 7, it is about 200 seconds and 10000
seconds for iFogStorS and Exact respectively, when using only 10 Fog nodes. This proves their limited
scalability. Also, we notice that the computation time of the 3-Replicas strategy increases faster than
that of iFogStorP. In fact, the computation time of the 3-Replicas strategy increases from 0.19 second
when using 10 Fog nodes to 4429.49 seconds when using 1000 Fog nodes, whereas the computation time
of the iFogStorP increases from 1.38 second when using 10 Fog nodes to 193.43 seconds when using 1000
Fog nodes (see Table 7), making a speed up of 22.5 times compared to that of the 3-Replicas strategy
(in case of 1000 Fog nodes).
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(a) Latency-reduction-10. (b) Latency-reduction-50.

(c) Latency-reduction-1000-Zoned. (d) Latency-reduction-1000-Distributed.

Fig. 11: Latency results.

Fig. 12: Computation time results.

Table 7: Computation time results.

Computation time (s)
10 Fog nodes 50 Fog nodes 1000 Fog nodes

iFogStor 0.14 0.55 7
3-Replicas 0.19 2.26 4429.49

Exact 10197 Not evaluated Not evaluated
iFogStorS 210.96 6044.44 Not evaluated
iFogStorP 1.38 5 193.43

5.3.3 Number of replicas

Figure 13 (a), (b), (c) and (d) show the average number of replicas per datum when using each strategy.
We recall that iFogStor and the 3-Replicas places one replica and 3 replicas per datum, respectively. We
observe that:

a) In Figure 13 (a), when applying the Exact strategy, the average number of replicas is approximately 3
when there is no critical data. This number is lower when increasing the amount of critical data. For
instance, it is 2.3 when using Critical 30. In fact, when there are no critical data, there is no replicas
synchronization latency. Thus, the number of replicas is higher in order to minimize the data access
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latency. On the contrary, increasing the amount of critical data reduces the number of replicas as the
synchronization latency grows higher.

b) Also, the average number of replicas using iFogStorP is lower than that of iFogStorS which is smaller
than that of the Exact solution, see Figure 13 (a) and (b). This can be explained by the fact that
iFogStorP has fewer node options to store replicas (the medians of the shortest paths nodes), as a
consequence, it stores fewer replicas in comparison to iFogStorS and Exact strategies which have a
broader vision of the infrastructure. This is why Exact and iFogStorS place more replicas and reduce
further the service latency than iFogStorP.

c) In Figure 13 (c) and (d), the average number of replicas of iFogStorP on the Zoned workload is lower
than that in the Distributed one as geographically spread consumers require more replicas than closer
ones in order to reduce their latency. Indeed, the average number of replicas of iFogStorP is about
2.25 when using the Zoned workload, and about 2.7 about when using the Distributed one.

(a) av-rep-10. (b) av-rep-50.

(c) av-rep-1000-Zoned. (d) av-rep-1000-Distributed.

Fig. 13: Replicas number results.

5.3.4 Unsatisfied read requests

Figure 14 (a), (b), (c) and (d) show the number of satisfied and unsatisfied read requests and the total
read requests of each data management strategy using the different configurations. We notice that the
distribution nature of the used workload does not have a considerable impact on the amount of satisfied
requests. This is why we present the results using a single workload distribution which is the Distributed
one, see Figure 14. We observe that:

a) In Figure 14 (a), using iFogStor (one copy), the system does not satisfy about 3% of the read requests,
whereas, using the 3-Replicas, Exact, iFogStorS and iFogStorP strategies, the system responds to
almost all read requests. For instance, it rejects (in the worst case) less than 0.8% of read requests
with 30% criticality. In fact, iFogStor uses only one copy per datum and having concurrent read and
write requests in this case has a higher probability. In the contrary, the other strategies use several
replicas allowing to write in some replicas and to read from others. The proportion of unsatisfied
requests grows higher with data criticality rate as data locking happens more frequently when data
criticality is higher.

b) When increasing the number of Fog nodes to 50 (see Figure 14 (b)), the system responds to almost all
read requests and the percentage of unsatisfied read requests is always under to 1% for all strategies.
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c) When increasing the number of Fog nodes to 1000 (see Figure 14 (c) and (d)), we observe that
the distribution nature of the used workload does not have a considerable impact on the amount
of satisfied requests, and both figures show approximately the same results. Moreover, when using
iFogStor the system rejects more read requests due to the high concurrency of access operations on a
single data copy. For instance, 10% of the total read requests are rejected by iFogStor, whereas, when
using 3-Replicas and iFogStorP, the percentage of unsatisfied read requests is 0.03% with the workload
Critical 0. So, if we ignore failure and congestion, we can conclude that the system availability (for
read requests) is 30 times higher using 3-Replicas and iFogStorP than using iFogStor. Moreover,
considering failure and congestion, the system availability using 3-Replicas and iFogStorP is better
than iFogStor because this latter uses only one copy which will be unavailable if its host node is
offline.

(a) read-10. (b) read-50.

(c) read-1000-Zoned. (d) read-1000-Distributed.

Fig. 14: Read requests results.

5.4 Summary

Our experimental work can be summarized as follows:

1) In case of small infrastructures iFogStorS can be used in order to reduce the service latency. In fact,
it reduces the service latency by 21% to 30% (while 3-Replicas reduces the service latency by only
6%) compared to iFogStor. To achieve this latency reduction, iFogStorS stores on average between
2 and 3 replicas per datum depending on the amount of critical data in the system. iFogStorS (as
for 3-Replicas) also offers a better availability by satisfying almost all read requests while iFogStor
rejects 3% of reads. We notice that the computation time of iFogStorS is about 1000 times greater
than iFogStor and 3-Replicas as they did not use simulation to compute data placement. We notice
that, if we want to speed up the computation time by sacrificing performance a little, we can use
iFogStorP which has a computation time less than 2 seconds (0.2 second for 3-Replicas and 1.3 second
for iFogStorP).

2) In case of large scale infrastructures encompassing up to thousands of Fog nodes, iFogStorP can be
used to reduce the service latency by 13% to 18% (while 3-Replicas reduces the service latency by 2%
to 8%) compared to iFogStor. Moreover, using iFogStorP (as for 3-Replicas) the system can answer
99% of read requests against 90% using iFogStor. To achieve this performance, iFogStorP stores on
average 2.5 replicas per datum which makes the system twice more resilient against data loss and
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node failures which are very common in Fog infrastructures, as compared to iFogStor. Concerning the
computation time, we showed that iFogStorP is about 22.5 times faster than the 3-Replicas strategy.

6 Related work

In [21], the authors have proposed FogStore, a strategy for managing replica placement and data context-
sensitive consistency in Fog computing. FogStore subdivides the Fog infrastructure to failure groups then
it chooses the ”N” closest ones to each data producer to place ”N” replicas for which the number is fixed
by the user. However, FogStore neither considers consumers data access nor replicas synchronization
latencies to place replicas. For the data consistency management, FogStore defines several consistency
levels according the number of replicas that should respond to read requests (e.g. one, all, quorum).
Then, it maps each incoming consumer read request to the appropriate consistency level based on the
consumer context, in particular the location.

In [23], Xie et al. proposed a strategy for short-latency and low-overhead data placement and retrieval
services for Edge computing, called Greedy Routing for Edge Data (GRED). This strategy computes
the data placement by hashing data identifiers which are defined by a string of characters. In order to
make data replication, the authors suggested a naive algorithm that concatenates the serial number of
the data copy (i.e. replica) with the data identifier to form a new string. By hashing the new string, the
placement of the corresponding data copy is calculated. Nevertheless, this strategy does not consider the
data access latency in replica placement computation and does not manage data consistency.

In [24], Huang et al. have proposed MultiCopyStorage, a latency-aware multiple data replicas place-
ment strategy for Fog infrastructures. The experiment result demonstrates that MultiCopyStorage strat-
egy reduces the overall latency by 6% compared to iFogStor. Also, the authors have proposed iFogStorM,
an exact replica placement strategy based on MILP model. However, in this work, data consistency man-
agement was not addressed and the replicas synchronization latency was not considered when calculating
the data placement. Indeed, replicas synchronization may add a high latency overhead to the system due
to the large distribution of Fog nodes.

Aral et al. proposed a distributed data dissemination approach in Edge/Fog computing [19]. Their
approach is two-fold. First, they proposed a decentralized, dynamic, and online algorithm for cre-
ation/replacement/removal of data replicas based on Uncapacitated Facility Location Problem formu-
lation (UFLP) [27]. Second, they proposed a low overhead messaging methodology to notify edge/Fog
entities about nearby replicas to send them their future data requests, instead of remote cloud stor-
age. Similar to the two previous studies, data consistency and replicas synchronization latency were not
addressed in this work.

In [16], authors proposed iFogStor, a one-copy data placement strategy to minimize the data access
latency in Fog infrastructures. The authors have formulated the data placement problem as a General-
ized Assignment Problem [25] using integer programming model. As GAP is NP-hard, the authors have
proposed two heuristics based on Divide and Conquer to reduce the placement computation time [16, 18].
Both heuristics subdivide the infrastructure into several parts generating thereby several sub-problems
with a lower complexity. The global data placement problem is built by aggregating sub-problems solu-
tions. However, in these approaches, there were no data replication considered.

To the best of our knowledge, there are no other research proposed to manage data placement,
replication or consistency in Fog computing environment.

7 Conclusion

In this paper, we proposed an exact method and two heuristic-based strategies, iFogStorS and iFogStorP,
to manage data replication and consistency in a Fog infrastructure. The first heuristic is dedicated to
small infrastructures including several tens of Fog nodes, whereas the second one is dedicated to large
infrastructures including up to thousands of Fog nodes. Both strategies choose for each datum, the
number of replicas and their location while reducing the sum of data access and replicas synchronization
latencies.

In this work, we investigated and gave solutions to the problem of replica placement in a Fog in-
frastructure considering the service latency and data consistency. However, geo distributed data storage
systems operate in a trade-off between latency, consistency, availability and network partitioning toler-
ance [21]. As a continuation of the work presented in this paper, we plan to adapt the proposed solutions
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to consider also the availability and partitioning tolerance when placing data replicas. Furthermore, to
the best of our knowledge, currently there is no large-scale platform managing the availability and par-
titioning tolerance in Fog computing. Thus, we plan to further extend the iFogSim simulator to address
this lack of management platforms. Also, by adding the support to the availability management and par-
titioning tolerance, the iFogSim simulation time would be high. Thus, it is interesting to make iFogSim
able to manage simulations in a parallel way whether on a single machine or in a cluster in order to
reduce the simulation time in case of large scale infrastructures.

The Java source code used in this work is made available in:

https://github.com/medislam/iFogSimWithDataConsistency
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