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Abstract—Cascaded binary hypothesis testing is studied in this
paper with two decision centers at the relay and the receiver.
All terminals have their own observations, where we assume that
the observations at the transmitter, the relay, and the receiver
form a Markov chain in this order. The communication occurs
over two hops, from the transmitter to the relay, and from the
relay to the receiver. Expected rate constraints are imposed on
both communication links. In this work, we characterize the
optimal type-II error exponents at the two decision centers under
constraints on the allowed type-I error probabilities. Our recent
work characterized the optimal type-II error exponents in the
special case when the two decision centers have same type-I error
constraints and provided an achievability scheme for the general
setup. To obtain the exact characterization for the general case,
in this paper we provide a new converse proof as well as a new
matching achievability scheme. Our results indicate that under
unequal type-I error constraints at the relay and the receiver, a
tradeoff arises between the maximum type-II error probabilities at
these two terminals. Previous results showed that such a tradeoff
does not exist under equal type-I error constraints or under
general type-I error constraints when a maximum rate constraint
is imposed on the communication links.

Index Terms—Multi-hop, distributed hypothesis testing, error
exponents, expected rate constraints, variable-length coding.

I. INTRODUCTION

In a very connected world, where Internet of things (IoT)
and sensor networks are emerging widely, distributed hypoth-
esis testing have been utilized for improving decisions under
communication constraints. A well-known application is the
cascaded hypothesis testing where sensors communicate in a
serial way forming a multi-hop network. We consider binary
hypothesis testing over a two-hop network composed of a
sensor, a relay, a receiver, and two decision centers placed
at the relay and the receiver. In such a setup, both decision
centers try to correctly guess the binary hypothesis H ∈ {0, 1}
underlying all terminals’ observations including their own. Each
decision center aims to maximize the accuracy of its decisions,
where the error under the alternative hypothesis H = 1 (called
type-II error) is more critical than the error under the null
hypothesis H = 0 (called type-I error). Specifically, both
decision centers aim at maximizing the exponential decay (in the
number of observed samples) of the type-II error probabilities
under constraints on the accepted type-I error probabilities.

While most information-theoretic works on distributed hy-
pothesis testing constrain the maximum communication rates
between the terminals [1]–[6], some recent works [7]–[10] have
considered expected rate constraints. Expected rate constraints
were first considered in [7], [8] in a single-sensor single-
decision center setup, and the maximum error exponents were

exactly characterized for testing-against independence when
under the alternative hypothesis the observations are distributed
according to the product of the distributions under the null
hypothesis. The optimal error exponent for this setup [7], [8],
is achieved by a simple coding and decision scheme which
chooses an event Sn of probability close to the permissible
type-I error probability ε. Under this event, the transmitter
sends a single bit to the decision center, allowing it to decide
directly on the hypothesisH = 1. Otherwise, the transmitter and
the receiver run the optimal scheme under the maximum rate
constraints [1], [2]. The described scheme achieves same type-II
error exponent as in [1], [2], but with a reduced communication
rate of (1−ε)−1R. This gain is achieved by means of variable-
length coding which allows to send a message of different rate
for each sequence observed at the transmitter. Notice that only
under an expected rate constraint, variable-length coding can
improve performance, but not under maximum rate constraints.
Similar conclusions also hold for more complicated setups,
as we showed in [9] for the partially-cooperating multi-access
network with two sensors and a single decision center, and in
[10] for a special case of the two-hop network studied in this
paper.

Fig. 1: Cascaded two-hop setup with two decision centers.

We consider the distributed hypothesis testing over the two-
hop network in Figure 1, which consists of a transmitter, a relay,
and a receiver, and where the observations at the transmitter
Xn, the relay Y n, and the receiver Zn form a Markov chain
Xn → Y n → Zn under both hypotheses. Under maximum rate-
constraints, the optimal type-II error exponents at the relay and
the receiver for testing against independence were characterized
in [11], [12]. Under expected rate constraints, [10] characterized
the optimal type-II error exponents only when the relay and
the receiver have same type-I error constraint ε > 0. The result
shows that under equal type-I error probability ε > 0, maximum
type-II error exponents can be simultaneously achieved at both
of them. Moreover, the expected rate constraints allow to boost
both rates by a factor (1− ε)−1 as compared to maximum rate-
constraints. As in the single-user setup, the optimal exponents
are achieved by a simple scheme where the transmitter chooses



an event of probability ε, and under this event both the trans-
mitter and the relay send a single bit indicating the event to
the relay and the receiver, which then decide on H = 1, and
otherwise the optimal scheme of [11] is run. For the general
case, our previous work [10] only provides a set of achievable
error exponents but no matching converse.

In this paper, we provide an exact characterization of the
optimal error exponents in the general case. We thus recover
the main results of [10] as a special case. To obtain our results,
we present both a new achievability result as well as a new
converse proof.

Notation: We follow the notation in [13], [8]. In particular,
we use sans serif font for bit-strings: e.g., m for a deterministic
and M for a random bit-string. We let string(m) denote the
shortest bit-string representation of a positive integer m, and for
any bit-string m, we let len(m) and dec(m) denote its length
and its corresponding positive integer. In addition, T (n)

µ denotes
the strongly typical set as defined in [14, Definition 2.8].

II. SYSTEM MODEL

Consider the distributed hypothesis testing problem in Fig-
ure 1 under the Markov chain

Xn → Y n → Zn (1)

and in the special case of testing against independence, i.e.,
depending on the binary hypothesis H ∈ {0, 1}, the tuple
(Xn, Y n, Zn) is distributed as:

under H = 0 : (Xn, Y n, Zn) ∼ i.i.d.PXY · PZ|Y ; (2a)
under H = 1 : (Xn, Y n, Zn) ∼ i.i.d.PX · PY · PZ (2b)

for given pmfs PXY and PZ|Y .
The system consists of a transmitter TX , a relay RY , and a

receiver RZ . The transmitter TX observes the source sequence
Xn and sends its bit-string message M1 = φ

(n)
1 (Xn) to RY ,

where the encoding function is of the form φ
(n)
1 : Xn → {0, 1}?

and satisfies the expected rate constraint

E [len (M1)] ≤ nR1. (3)

The relay RY observes the source sequence Y n and with the
message M1 received from TX , it produces a guess ĤY of the
hypothesis H using a decision function g(n)

1 : Yn × {0, 1}? →
{0, 1}:

ĤY = g
(n)
1 (Y n,M1) ∈ {0, 1}. (4)

Relay RY also computes a bit-string message M2 =

φ
(n)
2 (Y n,M1) using some encoding function φ

(n)
2 : Yn ×

{0, 1}? → {0, 1}? that satisfies the expected rate constraint

E [len (M2)] ≤ nR2. (5)

Then it sends M2 to the receiver RZ , which guesses hypothesis
H using its observation Zn and the received message M2, i.e.,
using a decision function g

(n)
2 : Zn × {0, 1}? → {0, 1}, it

produces the guess:

ĤZ = g
(n)
2 (Zn,M2) ∈ {0, 1}. (6)

The goal is to design encoding and decision functions such
that their type-I error probabilities

α1,n , Pr[ĤY = 1|H = 0] (7)

α2,n , Pr[ĤZ = 1|H = 0] (8)

stay below given thresholds ε1 > 0, ε2 > 0, and the type-II
error probabilities

β1,n , Pr[ĤY = 0|H = 1] (9)

β2,n , Pr[ĤZ = 0|H = 1] (10)

decay to 0 with largest possible exponential decay.
Definition 1: Fix maximum type-I error probabilities ε1, ε2 ∈

(0, 1) and rates R1, R2 ≥ 0. The exponent pair (θ1, θ2) is called
(ε1, ε2)-achievable if there exists a sequence of encoding and
decision functions {φ(n)

1 , φ
(n)
2 , g

(n)
1 , g

(n)
2 }n≥1 satisfying ∀j ∈

{1, 2}:

E[len(Mi)] ≤ nRj , (11)
lim
n→∞

αj,n ≤ εj , (12)

lim
n→∞

1

n
log

1

βj,n
≥ θj . (13)

Definition 2: The closure of the set of all (ε1, ε2)-achievable
exponent pairs (θ1, θ2) is called the (ε1, ε2)-exponents region (or
exponents region for short) and is denoted by E∗(R1, R2, ε1, ε2).

The maximum exponents that are achievable at each of the
two decision centers are also of interest:

θ∗1,ε1(R1) := max{θ1 : (θ1, θ2) ∈ E∗(R1, R2, ε1, ε2)

for some ε2 > 0, θ2 ≥ 0} (14)
θ∗2,ε2(R1, R2) := max{θ2 : (θ1, θ2) ∈ E∗(R1, R2, ε1, ε2)

for some ε1 > 0, θ1 ≥ 0}. (15)

III. MAIN RESULTS

Our main result provides an exact characterization of the
exponents region E∗(R1, R2, ε1, ε2).

Theorem 1: ∀ ε1 + ε2 ≤ 1, the exponents region
E∗(R1, R2, ε1, ε2) is the set of all (θ1, θ2) pairs satisfying

θ1 ≤ min{I(U1;Y ), I(U2;Y )}, (16a)
θ2 ≤ min{I(U2;Y ) + I(V2;Z), I(U3;Y ) + I(V3;Z)}, (16b)

for some conditional pmfs PU1|X , PU2|X , PU3|X , PV2|Y , PV3|Y
and a number σ ∈ [1− (ε1 + ε2), 1−max{ε1, ε2}] so that

R1 ≥ (1− ε1 − σ)I(U1;X) + σI(U2;X)

+(1− ε2 − σ)I(U3;X), (16c)
R2 ≥ σI(V2;Y ) + (1− ε2 − σ)I(V3;Y ). (16d)

Proof: Achievability is proved in Section IV, and the
converse is proved in Section V.

It can be shown that in the special case ε1 = ε2, in Theorem 1,
one can set without loss in optimality σ = (1− ε1) = (1− ε2),
U1 = U3 = X , V3 = Y . This recovers the simpler characteriza-
tion of the exponents region in [10, Theorem 1]. The result is
presented in the following corollary, where for readability we
exchanged U2 by U and V2 by V .

Corollary 1 (Theorem 1 in [10]): If ε1 = ε2 = ε, then the
exponents region E∗(R1, R2, ε1, ε2) is the set of all (θ1, θ2) pairs
satisfying

θ1 ≤ I(U ;Y ), (17a)
θ2 ≤ I(U ;Y ) + I(V ;Z) (17b)



for some conditional pmfs PU |X , PV |Y so that

R1 ≥ (1− ε)I(U ;X), (17c)
R2 ≥ (1− ε)I(V ;Y ). (17d)

Proof: See [10].
We remark the factors (1 − ε) in the rate constraints (17c)

and (17d) compared to the optimal exponents under a maximum
rate constraint determined in [12]. Under equal type-I error
probabilities ε1 = ε2 = ε, the expected rate constraint thus
allows to boost the communication rates by a factor (1− ε)−1

compared to maximum rate constraints. Similar boosts can also
be observed in the rate constraints (16c) and (16d) under general
maximum type-I error probabilities ε1, ε2.

Example 1: In this example, we confirm the benefit of
variable-length coding compared to fixed-length coding for
general permissible type-I error probabilities. Let X,S, T be
independent Bernoulli random variables of parameters pX =
0.5, pS = 0.9, pT = 0.8 and set Y = X ⊕ S and Z = Y ⊕ T .
We consider ε1 = 0.1 > ε2 = 0.05 and we plot in Figure 2 the
optimal error exponents region E∗ for R1 = R2 = 0.5, which
shows a tradeoff between the two exponents at the relay and the
receiver. As already mentioned, such a tradeoff does not exist
in the case of equal type-I error probabilities ε1 = ε2 = 0.05
(obtained by Corollary 1). Figure 2 illustrates also the gain
obtained by the expected rate constraints as opposed to the
maximum rate-constraints; in fact, the rectangular region E∗maxR
shows the maximum exponents region under maximum rate
constraints R1 = R2 = 0.5 for any values of ε1, ε2. (Under
maximum rate constraints a strong converse holds, and the
exponents region E∗maxR does not depend on ε1, ε2.)
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Fig. 2: Error exponents regions under expected and maximum
rate constraints when ε1 ≥ ε2.

IV. GENERAL ACHIEVABILITY SCHEME

We provide a general coding and decision scheme that
includes the coding and decision schemes described in [10,
Section III]. The idea is to employ three different versions
of the basic two-hop scheme [11], depending on the observed
sequence xn. For each version, we can choose different code-
books, rates, and decision making strategy. To distinguish each
case, 2-bit flags are used. Details are as follows.

We first choose a subset Sn ⊆ T (n)
µ (PX) of probability

Pr [Xn ∈ Sn] = σ + ε1 + ε2 − 1− µ, (18)

where µ ∈ [0, σ − (1− (ε1 + ε2))]. We partition the remaining
subset of Xn into three disjoint sets D1, D2 and D3

D1 ∪ D2 ∪ D3 = Xn\Sn
Di ∩ Dj = ∅, i, j ∈ {1, 2, 3}, i 6= j (19)

such that

Pr [Xn ∈ D1] = 1− ε1 − σ (20)
Pr [Xn ∈ D2] = σ + µ (21)
Pr [Xn ∈ D3] = 1− ε2 − σ. (22)

We further split R1 = R1,1 +R1,2 +R1,3 and R2 = R2,2 +R2,3

for R1,1, R1,2, R1,3, R2,2, R2,3 > 0.
Whenever Xn ∈ Sn, TX and RY both send the 2-bit flag

M1 = M2 = [0, 0], and RY and RZ declare ĤY = ĤZ = 1.
Whenever Xn ∈ D1, TX and RY follow the basic single-hop

scheme in [1], [2] (which is included in the two-hop scheme
[11] as a special case) with a choice of parameters µ, PU1|X
satisfying

R1,1 = (1− ε1 − σ)(I(U1;X) + 2µ), (23)

and where TX additionally sends a [0, 1]-flag at the beginning
of M1 to RY , which simply relays this flag M2 = [0, 1] without
adding additional information. Upon observing M2 = [0, 1], RZ
immediately declares ĤZ = 1.

Whenever Xn ∈ D2, TX , RY , and RZ follow the basic two-
hop scheme in [11] but now for a different choice of parameters
µ, PU2|X , PV2|Y satisfying

R1,2 = (σ + µ)(I(U2;X) + 2µ) (24)
R2,2 = (σ + µ)(I(V2;Y ) + 2µ). (25)

Whenever Xn ∈ D3, TX , RY , and RZ follow the basic two-
hop scheme but now for parameters µ, PU3|X , PV3|Y satisfying

R1,3 = (1− ε2 − σ)(I(U3;X) + 2µ) (26)
R2,3 = (1− ε2 − σ)(I(V3;Y ) + 2µ), (27)

and TX and RY add a [1, 1]-flag to their messages M1 and M2 to
indicate to RY and RZ that Xn ∈ D3. Here, we note that RY ,
upon observing the [1, 1]-flag, declares ĤY = 1 even if the
computed decision ĤY,3 following the basic two-hop scheme is
different.

In a similar way to [10], it can be shown that this scheme
achieves the error exponents in Theorem 1 when n → ∞ and
µ ↓ 0. Details omitted for brevity and can be found in [15].

V. CONVERSE PROOF TO THEOREM 1

Fix an exponent pair in E∗(ε1, ε2, R1, R2) and a sequence (in
n) of encoding and decision functions {(φ(n)

1 , φ
(n)
2 , g

(n)
1 , g

(n)
2 )}

satisfying the constraints on the rate and the error probabilities
in (11)–(13). Our proof relies on the following lemma:

Lemma 1: Fix a blocklength n and a set D ⊆ Xn × Yn
of positive probability, and let the tuple (M̃1, M̃2, X̃

n, Ỹ n, Z̃n)
follow the pmf

PM̃1M̃2X̃nỸ nZ̃n(m1,m2, x
n, yn, zn) ,



PXnY nZn(xn, yn, zn) · 1{(x
n, yn) ∈ D}

PXnY n(D)

·1{φ1(xn) = m1} · 1{φ2(yn, φ1(xn)) = m2}. (28)

Further, define U , (M̃1, X̃
T−1, Ỹ T−1, T ), V ,

(M̃2, X̃
T−1, Ỹ T−1, T ), X̃ , X̃T , Ỹ , ỸT , and Z̃ , Z̃T ,

where T is uniform over {1, . . . , n} and independent of all
other random variables. Notice the Markov chain V → Ỹ → Z̃.
The following (in)equalities hold:

H(M̃1) ≥ nI(U ; X̃) + logPXnY n(D), (29)
H(M̃2) ≥ nI(V ; Ỹ ) + logPXnY n(D), (30)

I(U ; Ỹ |X̃) = ø1(n), (31)

where ø1(n) is a function that tends to 0 as n→∞.
Let η > 0 be arbitrary. If

Pr[ĤZ = 0|H = 0, Xn = xn, Y n = yn] ≥ η, ∀(xn, yn) ∈ D,
(32)

then

− 1

n
log β2,n ≤ I(U ; Ỹ ) + I(V ; Z̃) + ø2(n), (33)

and if

Pr[ĤY = 0|H = 0, Xn = xn, Y n = yn] ≥ η, ∀(xn, yn) ∈ D,
(34)

then
− 1

n
log β1,n ≤ I(U ; Ỹ ) + ø3(n), (35)

where ø2(n), ø3(n) are functions that tend to 0 as n→∞.
Proof: See Appendix A.

We now prove the converse to Theorem 1. Fix a positive
η > 0. Denote for each blocklength n, the set of strongly jointly
typical sequences in Xn×Yn by T (n)

µn (PXY ). Set µn = n−1/3

and define the sets

B1(η) , {(xn, yn) ∈ T (n)
µn

(PXY ) :

Pr[ĤY = 0|Xn = xn, Y n = yn,H = 0] ≥ η}, (36)
B2(η) , {(xn, yn) ∈ T (n)

µn
(PXY ) :

Pr[ĤZ = 0|Xn = xn, Y n = yn,H = 0] ≥ η}, (37)
D2(η) , B1(η) ∩ B2(η), (38)
D1(η) , B1(η)\D2(η), (39)
D3(η) , B2(η)\D2(η). (40)

Further define for each n the probabilities

∆i , PXnY n(Di(η)), i ∈ {1, 2, 3}, (41)

and notice that by the laws of probability

∆1 + ∆2 = PXnY n(B1(η)) (42)
∆2 + ∆3 = PXnY n(B2(η)) (43)

∆2 ≥ PXnY n(B1(η)) + PXnY n(B2(η))− 1. (44)

By [14, Remark to Lemma 2.12] and the type-I error probability
constraints in (12):

PXnY n(Bj(η)) ≥ 1− εj − η
1− η

− |X ||Y|
4µ2

nn
, j ∈ {1, 2}, (45)

and we thus conclude that in the limit n→∞ and η ↓ 0:

lim
η↓0

lim
n→∞

(∆1 + ∆2) ≥ 1− ε1 (46a)

lim
η↓0

lim
n→∞

(∆2 + ∆3) ≥ 1− ε2 (46b)

lim
η↓0

lim
n→∞

∆2 ≥ 1− ε1 − ε2 (46c)

lim
η↓0

lim
n→∞

∑
i∈{1,2,3}

∆i ≤ 1. (46d)

Fix a blocklength n where ∆i > 0 for all i ∈ {1, 2, 3}.
Degenerate cases can be treated similarly. We proceed by
applying Lemma 1 to each set Di, to conclude that

H(M̃1,i) ≥ nI(Ui; X̃i) + logPXnY n(Di), i ∈ {1, 2, 3}, (47)

H(M̃2,i) ≥ nI(Vi; Ỹi) + logPXnY n(Di), i ∈ {2, 3}, (48)

I(Ui; Ỹ |X̃) = ø1,i(n), (49)

and

− 1

n
log β1,n ≤ min{I(U1; Ỹ ); I(U2; Ỹ )}+ ø2(n), (50)

− 1

n
log β2,n ≤ min{I(U2; Ỹ ) + I(V2; Z̃);

I(U3; Ỹ ) + I(V3; Z̃)}+ ø3(n), (51)

where for each i, the functions ø1,i(n), ø2(n), ø3(n) → 0 as
n→∞ and the random variables Ui, Vi, X̃i, Ỹi, Z̃i, M̃1,i, M̃2,i

are defined as in the lemma applied to the subset Di. Further
define the following random variables for j ∈ {1, 2} and i ∈
{1, 2, 3}

L̃j,i , len(M̃j,i). (52)

By the rate constraints (3) and (5), and the definition of the ran-
dom variables M̃j,i, we obtain by the total law of expectations:

nR1 ≥ E[L1] (53)

≥
∑

i∈{1,2,3}

E[L̃1,i]∆i. (54)

Moreover,

H(M̃1,i) = H(M̃1,i, L̃1,i) (55)

=
∑
li

Pr[L̃1,i = li]H(M̃1,i|L̃1,i = li) +H(L̃1,i) (56)

≤
∑
li

Pr[L̃1,i = li]li +H(L̃1,i) (57)

= E[L̃1,i] +H(L̃1,i), (58)

which combined with (54) establishes∑
i∈{1,2,3}

∆iH(M̃1,i) ≤
∑

i∈{1,2,3}

∆iE[L̃1,i] + ∆iH(L̃1,i) (59)

≤ nR1

1 +
∑

i∈{1,2,3}

hb

(
∆i

nR1

) , (60)

where (60) holds by (54) and because the entropy of the discrete
and positive random variable L̃1,i of mean E[L̃1,i] ≤ nR1

∆i
is

bounded by nR1

∆i
· hb

(
∆i

nR1

)
, see [16, Theorem 12.1.1].

In a similar way we obtain

∑
i∈{2,3}

∆iH(M̃2,i) ≤ nR2

1 +
∑

i∈{2,3}

hb

(
∆i

nR2

) . (61)

As illustrated with more details in [15], combining (60) and
(61) with (47) and (48), noting (42) and (45), and considering



also (50) and (51), we can show by Carathéodory’s theorem
[13, Appendix C] and by invoking Bolzano-Weierstrass theorem
that there exist limiting pmfs P ∗U,i,P

∗
V,i (as n → ∞ and η ↓

0) of the sequences PUiX̃Ỹ
= PUi|X̃PX̃Ỹ for i ∈ {1, 2, 3},

and PViỸ Z̃
= PVi|Ỹ PỸ Z̃ for i ∈ {2, 3} satisfying the Markov

conditions Ui → X̃ → Ỹ , Vi → Ỹ → Z̃, and where the
following conditions hold:

R1 ≥ σ1 · IP∗U,1
(U1;X) + σ2 · IP∗U,2

(U2;X)

+σ3 · IP∗U,3
(U3;X), (62)

R2 ≥ σ2 · IP∗V,2
(V2;Y ) + σ3 · IP∗V,3

(V3;Y ), (63)

θ1 ≤ min{IP∗U1
(U1;Y ), IP∗U2

(U2;Y )}, (64)

θ2 ≤ min{IP∗U2
(U2;Y ) + IP∗V2

(V2;Z),

IP∗U3
(U3;Y ) + IP∗V3

(V3;Z)}, (65)

where σ1, σ2, σ3 > 0 are numbers satisfying σ1 + σ2 + σ3 ≤ 1,
σ1 +σ2 ≥ 1−ε1, σ2 ≥ 1−ε1−ε2, and σ2 +σ3 ≥ 1−ε2. Notice
further that since for any k the pair (X̃nk , Ỹ nk) lies in the
jointly typical set T (nk)

µnk
(PXY ), we have |PX̃Ỹ − PXY | ≤ µnk

and thus the limiting pmfs satisfy P ∗
X̃Ỹ

= PXY . Moreover,
since for each nk the random variable Z̃ is drawn according to
PZ|Y given Ỹ , irrespective of X̃ , the limiting pmf also satisfies
P ∗Z|XY = PZ|Y . Finally, one can argue that without loss of
generality one can restrict to σ2 ≤ min{1 − ε1, 1 − ε2} and
σ1 + σ2 = 1− ε1, σ2 + σ3 = 1− ε2.
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APPENDIX A
PROOF OF LEMMA 1

Note first that by (28):

D(PX̃nỸ n ||PnXY ) ≤ log ∆−1
n , (66)

where we defined ∆n , PXnY n(D).
Further define Ṽt , (M̃2, X̃

t−1, Ỹ t−1) and Ũt ,
(M̃1, X̃

t−1, Ỹ t−1) and notice:

H(M̃1) ≥ I(M̃1; X̃nỸ n) +D(PX̃nỸ n ||PnXY ) + log ∆n (67)

≥ n[H(X̃T ỸT ) +D(PX̃T ỸT
||PXY )]

−
n∑
t=1

H(X̃tỸt|Ũt) + log ∆n (68)

≥ n[H(X̃T ỸT )−H(X̃T ỸT |ŨT , T )] + log ∆n (69)

≥ n
[
I(X̃;U) +

1

n
log ∆n

]
. (70)

Here, (67) holds by (66); (68) holds by the super-additivity
property in [17, Proposition 1], by the chain rule, and by the
definition of Ũt; (69) by defining T uniform over {1, . . . , n}
independent of all other random variables; and (70) by the
definitions of U, X̃, Ỹ in the lemma.

We can lower bound the entropy of M̃2 in a similar way:

H(M̃2) ≥ n
[
I(Ỹ ;V ) +

1

n
log ∆n

]
. (71)

We next upper bound the error exponent at the receiver.
Define

AZ,n(m2) , {zn : g2(zn,m2) = 0}, (72)

and its Hamming neighborhood:

Â`nZ,n(m2) , {z̃n : ∃ zn ∈ AZ,n(m2) s.t. dH(zn, z̃n) ≤ `n}
(73)

for some real number `n satisfying limn→∞ `n/n = 0 and
limn→∞ `n/

√
n =∞. Since by Condition (32),

PZ̃n|X̃nỸ n(AZ,n(m2)|xn, yn) ≥ η, ∀(xn, yn) ∈ D, (74)

the blowing-up lemma [18] yields

PZ̃n|X̃nỸ n(Â`nZ,n(m2)|xn, yn) ≥ 1− ζn, ∀(xn, yn) ∈ D,
(75)

for a real number ζn > 0 such that lim
n→∞

ζn = 0.
Define

AZ,n ,
⋃

m2∈M2

{m2} × AZ,n(m2), (76)

Â`nZ,n ,
⋃

m2∈M2

{m2} × Â`nZ,n(m2), (77)

and notice that by (75) and (77),

PM̃2Z̃n(Â`nZ,n) ≥ (1− ζn). (78)

Defining

QM̃2
(m2) ,

∑
yn,m1

PM̃1
(m1)PỸ n(yn) · 1{φ2(yn,m1) = m2},

(79)
we can write

QM̃2
PZ̃n

(
Â`nZ,n

)
≤ QM2

PnZ

(
Â`nZ,n

)
∆−3
n (80)

≤ QM2
PnZ (AZ,n) · enδn (81)

where (81) holds by [14, Proof of Lemma 5.1], δn ,
hb(`n/n)+ `n

n log(|Z|·kn)− 3
n log ∆n, β2,n = QM2P

n
Z (AZ,n),

kn , min
z,z′:PZ(z′)>0

PZ(z)
PZ(z′) .

By standard inequalities (see [8, Lemma 1]), we obtain the
following expression:

− 1

n
log β2,n ≤

1

n(1− ζn)
D(PM̃2Z̃n ||QM̃2

PZ̃n) + δn (82)

where δn tends to 0 as n → ∞, and we can upper bound the
divergence term as

D(PM̃2Z̃n ||QM̃2
PZ̃n)

= I(M̃2; Z̃n) +D(PM̃2
||QM̃2

) (83)

≤ I(M̃2; Z̃n) +D(PỸ nM̃1
||PỸ nPM̃1

) (84)

≤
n∑
t=1

I(M̃2Ỹ
t−1; Z̃t) + I(M̃1X̃

t−1; Ỹt) (85)

= n[I(ṼT ; Z̃T |T ) + I(ŨT ; ỸT |T )] (86)
≤ n[I(V ; Z̃) + I(U ; Ỹ )]. (87)

Here (84) is obtained by data processing inequality for relative
entropy; (85) by the chain rule and by the Markov chains
Z̃t−1 → Ỹ t−1 → Z̃t and Ỹ t−1 → X̃t−1 → Ỹt; and (86)–
(87) by definitions of Ũt, Ṽt, U, V, Ỹ , Z̃.

Following similar steps, one can prove also the desired upper
bound for β1,n if (34) is satisfied. A full detailed proof is
presented in [15].
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