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Abstract—This paper studies the channel capacity of intensity-
modulation direct-detection (IM/DD) visible light communication
(VLC) systems under both optical and electrical power con-
straints. Specifically, it derives the asymptotic capacities in the
high and low signal-to-noise ratio (SNR) regimes under peak,
first-moment, and second-moment constraints. The results show
that first- and second-moment constraints are never simultane-
ously active in the asymptotic low-SNR regime, and only in few
cases in the asymptotic high-SNR regime. Moreover, the second-
moment constraint is more stringent in the asymptotic low-SNR
regime than in the high-SNR regime.

I. INTRODUCTION

The ever-increasing number of wireless devices and high-
speed communication requirements cause a spectrum scarcity
of conventional radio-frequencies (RF). A promising solu-
tion is visible light communication (VLC) with its abundant
unlicensed spectrum [1], [2]. In particular, when utilizing
the simple and practical intensity modulation–direct detection
(IM/DD) technology, transmitters directly modulate informa-
tion onto the real, non-negative optical intensity of the VLC
signals (in contrast to RF signals which modulate the complex
field) and receivers apply photodetectors to measure incoming
optical intensities. For eye safety reasons and hardware limi-
tations, both the maximum and average optical intensities of
VLC transmit signals typically have to be restricted. Since
these apply directly to the intensities, they impose both peak
and first-moment constraints on the transmit signals. Addi-
tional second-moment constraints are imposed by limitations
of the electronic circuits that control the transmit signal, such
as the boundedness of the linear amplification regime and
electric power consumption [3]–[8].

A close-form expression for the capacity of such IM/DD
systems is still unknown, even when some of the first or
second-moment constraints are relaxed. However, bounds and
asymptotic results in the high and low signal-to-noise ratio
(SNR) regimes are known under certain relaxations. For ex-
ample, various upper and lower bounds on the capacity, as
well as its exact high- and low-SNR asymptotics, have been
derived under only a first-moment constraint without a second-
moment constraint [9]–[15]. An interesting related model with
optical amplifiers was also studied in [16].

In this work, we derive the exact expressions for the
asymptotic high- and low-SNR capacities under peak, first-

moment, and second-moment constraints. Our results show
that in the asymptotic low-SNR regime, only one of the
two moment constraints is stringent. Specifically, the second-
moment constraint is active if the peak-constraint A times
the first-moment-constraint α1A exceeds this second-moment
constraint α2A

2, and otherwise the first-moment constraint is
active. This can be seen as a consequence of the optimality of
on-off keying in the asymptotic low-SNR regime. Our results
further show that for most constraint-parameters (α1, α2) also
in the high-SNR regime, only one of the moment-constraints is
active. Interestingly, the second-moment constraint is inactive
over a larger region of (α1, α2)-pairs in the high-SNR regime
than in the low-SNR regime, and the first-moment constraint
over a smaller region. An additional second-moment constraint
is thus more restrictive in the low-SNR regime than in the
high-SNR regime. In the asymptotic high-SNR regime, we
further observe a small region of (α1, α2)-pairs where both
moment-constraints are simultaneously active and limit the
asymptotic capacity.

II. CHANNEL MODEL

Consider a typical VLC communication link, where the
transmitter is equipped with a single LED or laser and the
receiver with a single photodetector. The photodetector mea-
sures the incoming light intensity, which can be modeled as
[9]–[11], [13]–[15].

Y = x+ Z, (1)

where x denotes the input signal produced by the transmitter’s
LED or laser, and Z is standard additive white Gaussian noise
independent of x. The noise Z includes both optical noise and
thermal noise. Note that, in contrast to the input x, the output
Y can be negative.

Inputs x are subject to both a peak and an average optical
power (average-intensity) constraints:

X ∈ [0,A], (2)
E[X] ≤ α1A, (3)

for some fixed parameters A > 0 and α1 ∈ (0, 1). These
constraints come from (eye- and skin-) safety reasons, and
from limitations (caused by non-linearities) on the optical
operating regimes of LEDs or lasers.
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Due to battery limitations on the attached RF circuit and
power amplifier limitations, the second moment of the transmit
signal also has to be restricted:

E
[
X2
]
≤ α2A

2. (4)

where α2 ∈ (0, 5/4).
We denote the capacity of the channel (1) with allowed

peak power A, maximum average power α1A, and maximum
second moment α2A

2 by C(α1, α2,A). It is given by [17]

C(α1, α2,A) = sup
PX

I(X;Y ), (5)

where the supremum is over input laws PX satisfying (2)–(4).
Notice that, for any random variable X ∈ [0,A], we

have E
[
X2
]
≤ E[X]A and of course E[X] ≤

√
E[X2].

Therefore, whenever α1 < α2, the second moment constraint
(4) is inactive in view of the first moment-constraint (3),
and whenever

√
α2 < α1, the first moment constraint (3) is

inactive in view of the second moment-constraint (4). Observe
further that by the symmetry of the Gaussian density, for any
input X , we have I(X;Y ) = I(X ′;Y ) for the derived input
X ′ = A − X , which has smaller first and second moments
than X if E[X] ≥ A/2:

E[X ′] = A− E[X] ≤ 1/2A ≤ E[X], (6)

and

E
[
X ′2

]
= A2 − 2 E[X]A + E

[
X2
]
≤ E

[
X2
]
. (7)

Therefore, for any α1 ≥ 1/2, the first-moment constraint (3)
is not active, and for α2 ≥ 1/2, the second-moment constraint
(4) is not active.

As a consequence:

C(α1, α2,A) = C(1, α2,A), ∀α1 ≥ min{
√
α2, 1/2}, (8)

and

C(α1, α2,A) = C(α1, 1,A), ∀α2 ≥ min{α1, 1/2}. (9)

In the remainder of the paper, we present bounds on the
capacities, and establish the exact asymptotic results in the
high and low SNR regimes, respectively.

The following functions will be used throughout the paper.
For i = 0, 1, 2, 3, 4, define:

ζi(λ1, λ2) :=

∫ 1

0

yie−λ1y−λ2y
2

dy. (10)

III. THE ASYMPTOTIC HIGH-SNR CAPACITY

Consider first the asymptotic high-SNR regime, where
α1, α2 are fixed and A grows without bound.

Theorem 1: Depending on the parameters α1, α2 > 0, the
asymptotic high-SNR capacity satisfies one of the following
limiting behaviours.

1) If α1 ≥ 1
2 and α2 ≥ 1

3 , then both the first- and second-
moment constraints are inactive and

lim
A→∞

(
C(α1, α2,A)− log

A√
2πeσ2

)
= 0. (11)

2) If 0 < α1 < 1/2 is such that the unique solution λ∗1 to
the equation (in λ1)

1

λ1
− e−λ1

1− e−λ1
= α1, (12a)

satisfies

2

(λ∗1)2
−
e−λ

∗
1

(
1 + 2

λ∗
1

)
1− e−λ∗

1
< α2, (12b)

then only the first moment constraint is active and

lim
A→∞

(
C(α1, α2,A)− log

A√
2πeσ2

)
= log ζ0(λ∗1, 0) + λ∗1α1. (12c)

3) If 0 < α2 < 1/3 is such that the unique solution λ∗2 to
the equation (in λ2)

2
√
πλ2

(
(2λ2)−1 − α2

)[1

2
−Q

(√
2λ2

)]
= e−λ2 ,

(13a)

satisfies

2
√
πλ∗2α1

[
1

2
−Q

(√
2λ∗2

)]
> 1− e−λ

∗
2 , (13b)

then only the second moment constraint is active and

lim
A→∞

(
C(α1, α2,A)− log

A√
2πeσ2

)
= log ζ0(0, λ∗2) + λ∗2α2. (13c)

4) Else, both moment constraints are active and

lim
A→∞

(
C(α1, α2,A)− log

A√
2πeσ2

)
= log ζ0(λ∗1, λ

∗
2) + λ∗1α1 + λ∗2α2, (14)

for λ∗1, λ
∗
2 > 0 the unique solution to the equations√

πλ2e
λ21
4λ2

(
2α1 +

λ1

λ2

)[
Q
(

λ1√
2λ2

)
−Q

(
λ1 + 2λ2√

2λ2

)]
= 1− e−(λ1+λ2) (15a)

and√
π

λ2
e
λ21
4λ2

(
α2 −

λ2 − λ2
1

2λ2
2

)[
Q
(

λ1√
2λ2

)
−Q

(
λ1 + 2λ2√

2λ2

)]
=

1

2λ2
e−(λ1+λ2)

(
λ1

λ2
− 1

)
− λ1

2λ2
2

. (15b)

IV. THE ASYMPTOTIC LOW-SNR CAPACITY

Consider now the asymptotic low-SNR regime, where
α1, α2 are again kept fixed and A→ 0.

Proposition 2: Given parameters α1, α2 > 0,

lim
A↓0

C(α1, α2,A)

A2 = max
T∈[0,1] :

E[T ]≤α1
1
2 E[T 2]≤α2

Var[T ]. (16)

Proof: The achievability follows directly from Prelov’s
and Verdú’s classical result on the mutual information of peak-
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constrained channels [18, Corollary 2]. The converse follows
by the well-known Gaussian max-entropy bound:

C(α1, α2,A) ≤ max
1

2
log

(
1 +

Var[X]

σ2

)
,

where the maximization is over random variables X ∈ [0, 1]
satisfying (2)–(4). Defining T := X/A and using that
limt↓0

log(1+bt)
t = b, for any constant b > 0, establishes the

desired asymptotic converse bound.
Lemma 3: The maximization in Proposition 2 is attained by

a binary random variable T ∈ {0,A}:

max
T∈[0,1] :
E[T ]≤α1

E[T 2]≤α2

Var(T ) = max
T∈{0,A} :
E[T ]≤α1

E[T 2]≤α2

Var(T ) (17)

Proof: Fix T satisfying the conditions in the minimization
and construct a new random variable T ′ ∈ {0,A} with pA :=

Pr[T ′ = A] =
E[T 2]
A2 and Pr[T ′ = 0] = 1 − pA. Notice that

E
[
(T ′)2

]
= pAA

2 = E
[
T 2
]

and

E[T ′] = pAA =
E
[
T 2
]

A
≤ E[T ] ·A

A
= E[T ]. (18)

The new random variable T ′ thus also satisfies the conditions
in the maximization, and moreover it has larger objective
function (variance) than T because Var[T ′] = E

[
(T ′)2

]
−

(E[T ′])2 ≥ E
[
(T )2

]
− (E[T ])2 = Var[T ].

Combining Proposition 2 with Lemma 3 establishes the
desired low-SNR asymptotics.

Theorem 4: For any parameters α1, α2 > 0:

lim
A↓0

C(α1, α2,A)

A2 = p∗(1− p∗), (19)

where p∗ := min{α1, α2, 1/2}.
Proof: By Lemma 3:

max
T∈[0,1] :
E[T ]≤α1

E[T 2]≤α2

Var(T ) = max
pA∈[0,1] :
pA≤α1
pA≤α2

pA(1− pA). (20)

Since the function t 7→ t(1 − t) is continuous and monoton-
ically increasing over [0, 1/2] but monotonically decreasing
over [1/2, 1], the maximum value is obtained for pA =
min{α1, α2, 1/2}. Plugging this into Proposition 2 establishes
the desired result.

V. DISCUSSION OF ASYMPTOTIC RESULTS

Figure 1 and Figure 2 both illustrate the regions of (α1, α2)-
pairs where both the first- and the second-moment constraints,
i.e., (3) and (4), are inactive at all SNR values: the first-
moment constraint (3) is not active in the red shaded region
and the second-moment constraint (4) is not active in the blue
shaded region.

Figure 1 further shows the (α1, α2)-regions where the
constraints are inactive in the asymptotic low-SNR regime.
Specifically, in the low-SNR regime the first-moment con-
straint is not active on the right of the thin red solid line,
i.e., whenever α1 ≥ min{α2, 1/2}, and the second-moment
constraint is not active above the thick blue dashed line, i.e.,

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

2nd moment constr.
always inactive

1st moment constr.
always inactive

α1

α
2

Fig. 1: The shaded regions illustrate the parameter values (α1, α2) where
the two moment constraints (3) and (4) are inactive at any SNR value. In

the asymptotic low-SNR regime the first-moment constraint is inactive on the
right of the thin red solid line and the second-moment constraint is inactive

above the thick blue dashed line.
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0

0.1

0.2

0.3

0.4

0.5

2nd moment constr.
always inactive

1st moment constr.
always inactive

α1

α
2

Fig. 2: The shaded regions indicate the parameter values where the two
constraints are inactive for all SNR values. In the in the asymptotic

high-SNR regime the first-moment constraint is inactive on the right of the
thin red solid line and the second-moment constraint is inactive above the

thick blue dashed line.

whenever α2 ≥ min{α1, 1/2}. We see that the first-moment
constraint is far less stringent at low SNR than for general
SNR values.

Figure 2 shows the corresponding regions for the asymptotic
high-SNR regime. In the high-SNR regime, the first-moment
constraint is not active on the right of the thin red solid line
, and the second-moment constraint is not active above the
thick blue dashed line. Both constraints are simultaneously
active only in the small region between these two lines. We
observe that both constraints are less stringent in the high-SNR
regime than for general SNR values, and the second-moment
constraint is also less stringent than in the low-SNR regime.
The first-moment constraint however is more stringent in the
high-SNR regime than in the low-SNR regime.
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VI. PROOF OF THEOREM 1
A. Lower Bound

We first lower-bound the capacity with some simple
entropy-manipulations and by using the entropy-maximizing
input-density f∗X(x) over [0,A]. Under constraints (2)–(4),
f∗X(x) has the form:

f∗X(x) = (Aζ0(λ1, λ2))−1 · e−
λ1
A
x− λ2

A2 x
2

, x ∈ [0,A], (21)

where the parameters λ1, λ2 have to be chosen to satisfy∫ A

0

f∗X(x) · x dx ≤ α1A, (22a)∫ A

0

f∗X(x) · x2 dx ≤ α2A
2. (22b)

Given the form in (21), through a simple variable substitu-
tion y = x

A
, one can prove that (22) are equivalent to

ζ1(λ1, λ2)

ζ0(λ1, λ2)
≤ α1, (23a)

ζ2(λ1, λ2)

ζ0(λ1, λ2)
≤ α2, (23b)

where recall that the functions ζi, for i = 0, 1, . . . , 4, are
defined in (10). Then,

C(α1, α2,A)

≥ If∗
X

(X;Y ) (24)
= hf∗

X
(Y )− h(Z) ≥ hf∗

X
(Y |Z)− h(Z) (25)

= hf∗
X

(X)− h(Z) (26)

= Ef∗
X

[− log f∗X(X)]− 1

2
log(2πeσ2) (27)

= log(A · ζ0(λ1, λ2)) +
λ1

A
Ef∗

X
[X] +

λ2

A2 Ef∗
X

[
X2
]

−1

2
log(2πeσ2) (28)

= log

(
A · ζ0(λ1, λ2)√

2πeσ2

)
+ λ1α1 + λ2α2, (29)

where all (λ1, λ2) satisfying (23) yield valid lower bounds.

B. Upper bound

We turn to the duality-based upper bound with the choice
of output density

fY (y) = τ · f (1)
Y (y) + (1− τ) · f (2)

Y (y), (30)

where τ ∈ (0, 1) is a parameter that we specify later on;
f

(1)
Y (y) is a probability density function over the interval I :=

[0,A] of the form

f
(1)
Y (y) =

1

A · ζ0(λ1, λ2)
e−

λ1
A
y−λ2

A
y2 · 1{y ∈ I}, (31)

where λ1, λ2 ≥ 0 are free parameters, over which we will
optimize in a latter stage; and f (2)

Y (y) is a probability density
function over the rest of the real line Ic := R\I:

f
(2)
Y (y) =

 1√
2πσ2

e−
y2

2σ2 if y < 0,

1√
2πσ2

e−
(y−A)2

2σ2 if y > A.
(32)

For the choice in (30), the duality-based upper bound yields

C(α1, α2,A) (33)

≤ Ef∗
Y

[− log fY (Y )]− 1

2
log(2πeσ2) (34)

≤ Ef∗
Y

[
− log

(
τf

(1)
Y (Y )

)∣∣∣Y ∈ I] · Pf∗
Y

(I)

+ Ef∗
Y

[
− log

(
(1− τ)f

(2)
Y (Y )

)∣∣∣Y ∈ Ic] · Pf∗
Y

(Ic)

−1

2
log(2πeσ2) (35)

= log
A · ζ0(λ1, λ2)

τ
· Pf∗

Y
(I)

+ Ef∗
Y

[
− log

(
τ · f (2)

Y (Y )
)∣∣∣Y ∈ Ic] · Pf∗

Y
(Ic)

+

(
λ1

A
Ef∗

Y
[Y |Y ∈ I] +

λ2

A2 Ef∗
Y

[
Y 2|Y ∈ I

])
· Pf∗

Y
(I)

−1

2
log(2πeσ2). (36)

Following similar steps as, e.g., in [19, Eq. (209)–(226)], we
obtain the following lemmas proved in the extended version
of this paper [20].

Lemma 5: For the Gaussian-tail distribution defined in (32):

Ef∗
Y

[
− log

(
f

(2)
Y (Y )

)∣∣∣Y ∈ Ic] ≤ log
√

2πeσ2. (37)

Lemma 6: For the distribution in (31):

Ef∗
Y

[Y |Y ∈ I] · Pf∗
Y

(I) ≤ Ef∗
Y

[Y ] +
1√
2π

(
1− e−A2

2

)
(38)

= Ef∗
X

[X] +

(
1− 1√

2π
e−

A2

2

)
(39)

and

Ef∗
Y

[
Y 2|Y ∈ I

]
· Pf∗

Y
(I) ≤ Ef∗

Y

[
Y 2
]

= Ef∗
X

[
X2
]

+ σ2. (40)

We continue with our upper bound. By plugging these
lemmas into (36) and choosing

τ =
A · ζ0(λ1, λ2)

A · ζ0(λ1, λ2) +
√

2πeσ2
, (41)

we obtain:

C(α1, α2,A)

≤ log
A · ζ0(λ1, λ2)

τ
· Pf∗

Y
(I) + log

√
2πeσ2

1− τ
· Pf∗

Y
(Ic)

+
λ1

A
Ef∗

X
[X] +

λ2

A2

(
Ef∗

X

[
X2
]

+ σ2
)

+
λ1

A

(
1− 1√

2π
e−

A2

2

)
− 1

2
log(2πeσ2) (42)

= log
(
A · ζ0(λ1, λ2) +

√
2πeσ2

)
· Pf∗

Y
(I)

+ log
(
A · ζ0(λ1, λ2) +

√
2πeσ2

)
· Pf∗

Y
(Ic)

+
λ1

A
Ef∗

X
[X] +

λ2

A2

(
Ef∗

X

[
X2
]

+ σ2
)

+
λ1

A

(
1− 1√

2π
e−

A2

2

)
− 1

2
log(2πeσ2) (43)

≤ log
(
A · ζ0(λ1, λ2) +

√
2πeσ2

)
+ λ1α1 + λ2α2 + λ2

σ2

A2
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+
λ1

A

(
1− 1√

2π
e−

A2

2

)
− 1

2
log(2πeσ2) (44)

= log

(
1 +

A · ζ0(λ1, λ2)

2πeσ2

)
+ λ1α1 + λ2α2

+λ2
σ2

A2 +
λ1

A

(
1− 1√

2π
e−

A2

2

)
. (45)

We can conclude that for any choice of λ1, λ2 ≥ 0:

lim
A→∞

(
C(α1, α2,A)− log

A√
2πeσ2

)
≤ log ζ0(λ1, λ2) + λ1α1 + λ2α2. (46)

C. Distinction of the Four Cases

We now show that the case distinction proposed in the
theorem partitions the set of all (α1, α2)-parameters and
that the described choice of λ∗1, λ

∗
2-parameters exists in each

subset. More specifically, we show that the proposed case
distinction coincides with the case distinction that arises when
minimizing the right-hand side of (46), i.e., the function

Γ(λ1, λ2) := log ζ0(λ1, λ2) + λ1α1 + λ2α2, (47)

over the choices λ1, λ2 > 0, and we show that the λ∗1, λ
∗
2

values given in the theorem are the minimizers of this function.
Consider the partial derivatives of this function:

∂Γ

∂λ1
= −ζ1(λ1, λ2)

ζ0(λ1, λ2)
+ α1 (48a)

and
∂Γ

∂λ2
= −ζ2(λ1, λ2)

ζ0(λ1, λ2)
+ α2, (48b)

as well as its Hessian matrix

HΓ(λ1, λ2) :=

∂2Γ(λ1,λ2)
∂λ2

1

∂2Γ(λ1,λ2)
∂λ1∂λ2

∂2Γ(λ1,λ2)
∂λ1∂λ2

∂2Γ(λ1,λ2)
∂λ2

2

 (49)

=

(
ζ2(λ1, λ2)− ζ2

1 (λ1, λ2) c(λ1, λ2)
c(λ1, λ2) ζ4(λ1, λ2)− ζ2

2 (λ1, λ2)

)
, (50)

where

c(λ1, λ2) := ζ3(λ1, λ2)− ζ1(λ1, λ2) · ζ2(λ1, λ2). (51)

Since for any pair (λ1, λ2) the Hessian HΓ(λ1, λ2) is a two-
by-two matrix with positive trace and determinant, all its
eigenvalues are positive, and the Hessian itself is positive
definite for all (λ1, λ2). As a consequence, the function
Γ(λ1, λ2) is jointly strictly convex in both arguments and the
minimizer (λ∗1, λ

∗
2) of Γ(λ1, λ2), for λ1, λ2 ≥ 0 is accordingly

obtained as follows, depending on the values of α1 and α2:
1) If both partial derivatives of Γ at the origin are strictly

positive, i.e.,

−ζ1(0, 0)

ζ0(0, 0)
+ α1 = −1

2
+ α1 > 0, (52)

−ζ2(0, 0)

ζ0(0, 0)
+ α2 = −1

3
+ α2 > 0, (53)

then λ∗1 = λ∗2 = 0.

2) If for some λ′1 > 0 the partial derivatives of Γ satisfy

−ζ1(λ′1, 0)

ζ0(λ′1, 0)
+ α1 = 0, (54)

−ζ2(λ′1, 0)

ζ0(λ′1, 0)
+ α2 > 0, (55)

then λ∗1 = λ′1 and λ∗2 = 0.
3) If for some λ′2 > 0 the partial derivatives of Γ satisfy

−ζ1(0, λ′2)

ζ0(0, λ′2)
+ α1 > 0 (56)

−ζ2(0, λ′2)

ζ0(0, λ′2)
+ α2 = 0, (57)

then λ∗1 = 0 and λ∗2 = λ′2.
4) If for some λ′1, λ

′
2 > 0 the partial derivatives of Γ at

(λ′1, λ
′
2) are both zero, i.e.,

−ζ1(λ′1, λ
′
2)

ζ0(λ′1, λ
′
2)

+ α1 = 0 (58)

−ζ2(λ′1, λ
′
2)

ζ0(λ′1, λ
′
2)

+ α2 = 0, (59)

then λ∗1 = λ′1 and λ∗2 = λ′2.
Since the strictly convex function Γ(λ1, λ2) has exactly one
minimizing pair, combined with continuity considerations, this
concludes the proof of the theorem.

VII. ACKNOWLEDGEMENT

The authors thank Lina Mroueh for interesting discussions.
The work of M. Wigger was funded by the European Research
Council (ERC) under the European Union’s Horizon 2020
under grant agreement No 715111. The work of S. Ma was
funded by the Young Talents of Xuzhou Science and Tech-
nology Plan Project under Grant KC19051, and by the open
research fund of National Mobile Communications Research
Laboratory, Southeast University(No.2021D02).

REFERENCES

[1] A. Jovicic, J. Li, and T. Richardson, “Visible light communication:
opportunities, challenges and the path to market,” IEEE Commun. Mag.,
vol. 51, no. 12, pp. 26–32, Dec. 2013.

[2] P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light commu-
nication, networking, and sensing: a survey, potential and challenges,”
IEEE Commun. Surveys Tuts., vol. 17, no. 4, pp. 2047–2077, Sept. 2015.

[3] “IEEE standard for local and metropolitan area networks–part 15.7:
Short-range wireless optical communication using visible light,” IEEE
Std 802.15.7-2011, pp. 1–309, 2011.

[4] S. Ma, H. Li, Y. He, R. Yang, S. Lu, W. Cao, and S. Li, “Capacity
bounds and interference management for interference channel in visible
light communication networks,” IEEE Trans. Wireless Commun., vol. 18,
no. 1, pp. 182–193, Jan. 2019.

[5] X. Ling, J. Wang, X. Liang, Z. Ding, and C. Zhao, “Offset and power
optimization for DCO-OFDM in visible light communication systems,”
IEEE Trans. Signal Process., vol. 64, no. 2, pp. 349–363, Jan. 2016.

[6] X. Huang, J. Shi, J. Li, Y. Wang, and N. Chi, “A Gb/s VLC transmission
using hardware preequalization circuit,” IEEE Photon. Technol. Lett.,
vol. 27, no. 18, pp. 1915–1918, Sep. 2015.

[7] F. Che, L. Wu, B. Hussain, X. Li, and C. P. Yue, “A fully integrated
IEEE 802.15.7 visible light communication transmitter with on-chip 8-
W 85% efficiency boost LED driver,” J. Lightw. Technol., vol. 34, no. 10,
pp. 2419–2430, 2016.



6

[8] S. Ma, R. Yang, H. Li, Z.-L. Dong, H. Gu, and S. Li, “Achievable rate
with closed-form for SISO channel and broadcast channel in visible
light communication networks,” J. Lightw. Technol., vol. 35, no. 14,
pp. 2778–2787, Jul. 2017.

[9] A. Lapidoth, S. M. Moser, and M. Wigger, “On the capacity of free-
space optical intensity channels,” IEEE Trans. Inf. Theory, vol. 55,
no. 10, pp. 4449–4461, Oct. 2009.

[10] A. Chaaban, J. Morvan, and M. Alouini, “Free-space optical commu-
nications: capacity bounds, approximations, and a new sphere-packing
perspective,” IEEE Trans. Commun., vol. 64, no. 3, pp. 1176–1191, Mar.
2016.

[11] J. B. Wang, Q. S. Hu, J. Wang, M. Chen, and J. Y. Wang, “Tight bounds
on channel capacity for dimmable visible light communications,” J.
Lightw. Technol., vol. 31, no. 23, pp. 3771–3779, Dec. 2013.

[12] T. Chan, S. Hranilovic, and F. Kschischang, “Capacity-achieving
probability measure for conditionally Gaussian channels with bounded
inputs,” IEEE Trans. Inf. Theory, vol. 51, no. 6, pp. 2073–2088, Jun.
2005.

[13] R. Jiang, Z. Wang, Q. Wang, and L. Dai, “A tight upper bound on
channel capacity for visible light communications,” IEEE Commun.
lett., vol. 20, no. 1, pp. 1089–7798, Jan. 2016.

[14] A. A. Farid and S. Hranilovic, “Capacity bounds for wireless optical
intensity channels with Gaussian noise,” IEEE Trans. Inf. Theory,
vol. 56, no. 12, pp. 6066–6077, Dec. 2010.

[15] A. A. Farid and S. Hranilovic, “Channel capacity and non-uniform
signaling for free-space optical intensity channels,” IEEE J. Sel. Areas
Commun., vol. 17, no. 9, pp. 1553–1563, Dec. 2009.

[16] K. Keykhosravi, E. Agrell, M. Secondini, and M. Karlsson, “When to
use optical amplification in noncoherent transmission: An information-
theoretic approach,” IEEE Transactions on Communications, vol. 68,
no. 4, pp. 2438–2445, 2020.

[17] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd
ed., New York:Wiley, 2006.
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