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This study investigates how different types of presentation order influence category learning and generalization, by simultaneously manipulating withincategory (rule-based vs. similarity-based), between-category (blocked vs. interleaved), and across-blocks (constant vs. variable) orders. This research offers a unique and novel approach through both an individual and concurrent analysis of the studied factors (with the investigation of across-blocks manipulations being unprecedented). Both within-category and across-blocks manipulations were found to affect learning, with rule-based and constant orders being more beneficial than similarity-based and variable orders, respectively. Moreover, a significant interaction was found between within-category and across-blocks manipulations. Regarding the classification of novel stimuli, learners in the rule-based and interleaved orders showed generalization patterns that were more consistent with a rule-based strategy, as compared to learners in the similarity-based and blocked orders, respectively.

Introduction

What is the best way to memorize lists of vocabulary in another language? Would you study words category by category (for instance, red -blue -yellow -etc., then dog -cat -canaryetc.) to reinforce associations within categories, or would you rather alternate words from different categories (for instance, black -dog -yellow -canary -white -cat -etc.) because you think the two categories can better benefit each other when intertwined? Also, how would you arrange words within a category? Would you first learn words that are phonetically similar (for instance, catbat -etc.) or words that are related by a given structure (for instance, warm vs. cold colors) to induce sub-groups, or would you rather study them in random order to facilitate more personal associations from the learner? We believe that these alternative sequences and their combination inevitably produce different outcomes.

A few studies have shown that presentation order influences learning speed and retention in a variety of domains such as memory [START_REF] Bloom | Effects of massed and distributed practice on the learning and retention of second-language vocabulary[END_REF][START_REF] Farrell | Multiple roles for time in short-term memory: Evidence from serial recall of order and timing[END_REF], eyewitness identification [START_REF] Wells | Eyewitness identification: Probative value, criterion shifts, and policy regarding the sequential lineup[END_REF], serial recall [START_REF] Miller | Serial recall, word frequency, and mixed lists: the influence of item arrangement[END_REF], risk perception [START_REF] Helsdingen | The effects of practice schedule on learning a complex judgment task[END_REF][START_REF] Kwan | Effects of symptom presentation order on perceived disease risk[END_REF], and categorization [START_REF] Jones | Learning myopia: An adaptive recency effect in category learning[END_REF][START_REF] Mack | The dynamics of categorization: Unraveling rapid categorization[END_REF][START_REF] Mcdaniel | Effects of spaced versus massed raining in function learning[END_REF][START_REF] Sandhofer | Order of presentation effects in learning color categories[END_REF][START_REF] Zeithamova | Learning mode and exemplar sequencing in unsupervised category learning[END_REF][START_REF] Zotov | Contrast and assimilation in categorization and exemplar production[END_REF]. In categorization for instance, considerable effort has been directed toward the study of between-category orders (Carvalho & Goldstone, 2014a,b, 2015a[START_REF] Carvalho | The most efficient sequence of study depends on the type of test[END_REF][START_REF] Goldstone | Isolated and interrelated concepts[END_REF][START_REF] Kornell | Learning concepts and categories: is spacing the "enemy of induction[END_REF][START_REF] Kornell | Spacing as the friend of both memory and induction in young and older adults[END_REF][START_REF] Kost | Can you repeat that? the effect of item repetition on interleaved and blocked study[END_REF][START_REF] Noh | Optimal sequencing during category learning: Testing a dual-learning systems perspective[END_REF][START_REF] Rohrer | The effects of spacing and mixing practice problems[END_REF][START_REF] Rohrer | Interleaving helps students distinguish among similar concepts[END_REF][START_REF] Sana | Study sequence matters for the inductive learning of cognitive concepts[END_REF][START_REF] Yan | How should exemplars be sequenced in inductive learning? empirical evidence versus learners' opinions[END_REF]Zulkiply & Burt, 2012;Zulkiply et al., 2012).

More specifically, between-category orders have been thoroughly examined by manipulating interleaving (in which categories are presented alternatively, i.e. a Category-1 member followed by a Category-2 member) vs. blocking (in which members of a single category are presented in a row on successive trials, i.e. a Category-1 member followed by other Category-1 members). In addition to a spacing effect [START_REF] Carpenter | Using spacing to enhance diverse forms of learning: Review of recent research and implications for instruction[END_REF][START_REF] Carpenter | The effects of interleaving versus blocking on foreign language pronunciation learning[END_REF][START_REF] Cepeda | Spacing effects in learning: a temporal ridgeline of optimal retention[END_REF][START_REF] Hintzman | What causes the spacing effect? some effects of repetition, duration, and spacing on memory for pictures[END_REF], interleaving stimuli of different categories has been shown to highlight the differences between these stimuli, thus facilitating learning and transfer [START_REF] Birnbaum | Why interleaving enhances inductive learning: The roles of discrimination and retrieval[END_REF]Kang & Pashler, 2012;[START_REF] Kornell | Learning concepts and categories: is spacing the "enemy of induction[END_REF][START_REF] Wahlheim | Metacognitive judgments of repetition and variability effects in natural concept learning: Evidence for variability neglect[END_REF][START_REF] Yan | How should exemplars be sequenced in inductive learning? empirical evidence versus learners' opinions[END_REF]Zulkiply et al., 2012). However, there has also been evidence in favor of blocking members of a same category [START_REF] Carpenter | The effects of interleaving versus blocking on foreign language pronunciation learning[END_REF][START_REF] Carvalho | Memory encoding of stimulus features in human perceptual learning[END_REF][START_REF] Carvalho | Sequential similarity and comparison effects in category learning[END_REF][START_REF] De Zilva | Effects of exposure on discrimination of similar stimuli and on memory for their unique and common features[END_REF][START_REF] Rawson | The power of examples: Illustrative examples enhance conceptual learning of declarative concepts[END_REF].

A lesser number of studies have focused on within-category order effects on category learning [START_REF] Elio | The effects of category generalizations and instance similarity on schema abstraction[END_REF], 1984). Originally explored in word recall [START_REF] Bower | Hierarchical retrieval schemes in recall of categorized word lists[END_REF] and old-new recognition tasks [START_REF] Medin | Presentation order and recognition of categorically related examples[END_REF], the manipulation of order within members of a same category has moderately been extended to categorization tasks after the original work of Elio [START_REF] Corcoran | Fast similarities: Efficiency advantages of similarity-focused comparisons[END_REF][START_REF] Mathy | A rule-based presentation order facilitates category learning[END_REF], 2016;[START_REF] Stewart | Sequence effects in categorization of simple perceptual stimuli[END_REF]. An example of within-category manipulation is the similarity-based order in which stimuli of a same category are arranged in order to maximize the similarity between contiguous examples. This typical manipulation has recently been contrasted with a rule-based order in which stimuli obeying a rule precede the exceptions to the rule. For instance, [START_REF] Mathy | The influence of presentation order on category transfer[END_REF] have found that participants following a "rule plus exceptions" structure show a greater number of generalization patterns consistent with rule-based retrieval than participants in the similaritybased condition. The study of rule-based vs. similarity-based order is particularly relevant since these order manipulations match two extreme ways of learning: an inductive process based on abstraction and an elementary process based on associative mechanisms [START_REF] Sloman | The empirical case for two systems of reasoning[END_REF]. The rulebased order is supposed to help participants abstract the logical rule describing the stimuli, while the similarity-based order uses temporal proximity to strengthen the memory traces of contiguous items.

The rationale for the present study is to investigate the effect of presentation orders on memorization and subsequent categorization. While all above-mentioned studies have manipulated a single factor (either between-category or within-category orders), the present study si-multaneously manipulates between-category orders (blocked vs. interleaved), within-category orders (rule-based vs. similarity-based), and across-blocks orders (constant vs. variable). Effectively, because we used generic types of within-category presentation orders (rule-based vs. similaritybased), the order in which stimuli are presented can still vary once this type of order is chosen. For instance, if we presented a series of faces to be categorized by grouping them by gender or by hair color, we could still apply within-order variations between blocks. A first example of manipulation would consist of varying the order of the faces (within categories) from one block to another. This is what we call across-block variability in our design. Manipulations across-blocks were thought to be particularly important because they have not been addressed by previous studies. For instance, we know that repeating the same sequences using a Hebb-repetition learning procedure increases memorization [START_REF] French | TRACX: A recognition-based connectionist framework for sequence segmentation and chunk extraction[END_REF][START_REF] O'shea | Stimulus and response chunking in the hebb digits task[END_REF]. We therefore hypothesized that maintaining a constant presentation order across blocks could facilitate grouping processes, in comparison to variable orders.

We expected an interaction between within-category orders (rule-based vs. similaritybased) and across-blocks orders (constant vs. variable) because grouping processes should greater benefit the extraction of rules (which in the conception adopted in the present study are more hierarchical by nature than similarity relations). We finally hypothesized a full interaction between our three factors. For instance, we expected a maximal beneficial effect using a rule-based presentation order for which the categories would be blocked and using constant orders across blocks. This combined condition should let participants more easily extract rules and exceptions by focusing on stimuli of one category and by grouping them. On a more theoretical level, the presence or absence of interactions should be informative for current categorization models, which in the future could be adapted to account for differential effects of presentation orders. Any type of model (for instance, rule-based) should be able to account for the conditions that can favor the formation of a particular type of representation (such as a rule). On a more practical level, our findings could have a huge impact on how to organize learning (for instance in the classroom), train experts (for medical image classification), or improve machine learning algorithms.

Because we tested new factors and combinations of factors, we decided to use the widely employed 5-4 category structure from Medin and Schaffer [START_REF] Medin | Context theory of classification learning[END_REF] to generate the stimuli and categories, and to study the strategies engaged by participants. A detailed description of the 5-4 category set can be found in Categories. This structure has been analyzed in numerous studies and has influenced research in category learning for more than a quarter century [START_REF] Blair | As easy to memorize as they are to classify: The 5-4 categories and the category advantage[END_REF]Cohen & Nosofsky, 2003;[START_REF] Johansen | Category representation for classification and feature inference[END_REF][START_REF] Johansen | Are there representational shifts in category learning[END_REF][START_REF] Lafond | Complexity minimization in rule-based category learning: Revising the catalog of boolean concepts and evidence for non-minimal rules[END_REF][START_REF] Lamberts | Information accumulation theory of categorization[END_REF][START_REF] Minda | Comparing prototype-based and exemplar-based accounts of category learning and attentional allocation[END_REF][START_REF] Rehder | Thirty-something categorization results explained: Attention, eyetracking, and models of category learning[END_REF][START_REF] Smith | Thirty categorization results in search of a model[END_REF][START_REF] Zaki | Prototype and exemplar accounts of category learning and attentional allocation: A reassessment[END_REF][START_REF] Nosofsky | Combining exemplar-based category representations and connectionist learning rules[END_REF][START_REF] Nosofsky | Comparing modes of rule-based classification learning: A replication and extension of shepard, hovland, and jenkins[END_REF][START_REF] Palmeri | Recognition memory for exceptions to the category rule[END_REF][START_REF] Medin | Strategies and classification learning[END_REF][START_REF] Medin | Given versus induced category representations: use of prototype and exemplar information in classification[END_REF][START_REF] Anderson | A hybrid model of categorization[END_REF]. Moreover, the artificial structure of this category set allows for the presence of stimuli without a category label. The advantage is that on these stimuli different classification strategies lead to distinctive response patterns, allowing us to study the mental representation of the categories (see details in Transfer phase). For these reasons, the 5-4 category set appeared to be a fruitful starting point for our investigation. This study intends to evaluate how different presentation orders impact the speed at which categories are learned, as well as the nature of learning.
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Categories and stimulus items of the categorization task. At the top, the 5-4 category set of Medin and Schaffer [START_REF] Medin | Context theory of classification learning[END_REF], represented here in a Hasse Diagram forming a hypercube. Members of category A are represented by black dots, members of category B are represented by white dots, and transfer items are represented by empty vertices. At the bottom, illustration of the stimulus items that varied along four Boolean dimensions (Color, Shape, Size and Filling pattern).

Method Participants

One hundred and eighty-nine participants contributed to this study. Among them, one hundred and thirty were sophomore or junior students from University Côte d'Azur who received course credits in exchange for their participation. The remaining fifty-nine participants were recruited on campus on a voluntary basis. We used G * Power [START_REF] Faul | G* power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences[END_REF] to estimate the power of detecting a small-medium effect size (f = 0.2) for the interaction between the three types of order manipulation (2 × 2 × 2 = 8 between-subject groups) with a three-way ANCOVA model, considering 189 participants, 1 co-variate (i.e., the block number), and α = 0.05. The power achieved was 78%. Note that the data-set corresponding to the first one hundred and thirty participants has already been used in [START_REF] Mezzadri | An order-dependent transfer model in categorization[END_REF] for testing categorization models. The experimental procedure was approved by the local ethics committee (CERNI #2020-74) of Université Côte d'Azur and the experiment was performed in accordance with relevant guidelines and regulations. Informed consent was obtained from all participants prior to participation.

Categories

Each participant was administrated a single 5-4 category set [START_REF] Medin | Context theory of classification learning[END_REF]. This structure is composed of 16 stimuli, varying on four different binary-valued dimensions (see Figure 1, on the top). In this category set, 5 stimuli belong to category A, 4 belong to category B, and the remaining 7 are transfer stimuli. These categories are more structured than random (i.e., a clear rule-plus-exceptions pattern emerges) and are linearly separable. The 5 + 4 = 9 stimuli characterized by a category label were presented in both the learning and transfer phases, whereas the 7 transfer stimuli were presented in the transfer phase exclusively.

Stimuli

Stimuli varied along four Boolean dimensions (Color, Shape, Size, and Filling pattern). The colors were either blue or red; shapes were either square or circle; sizes were either small or big, and filling patterns were either plain or striped. The combination of these options formed 2 4 = 16 items (see Figure 1, on the bottom). Color distinguished the objects at the front of the hypercube from those at the back, Shape distinguished the objects in the left cube from those in the right cube, Size distinguished the right and left objects within the cubes, and Filling pattern distinguished the objects at the top of the hypercube from those at the bottom. Each dimension was instantiated by the same physical features and the same category structure was applied to these features across participants.

Phases

A learning phase in which participants were instructed to learn the classification of 9 learning stimuli was followed by a transfer phase in which participants were tested upon presentation of 7 novel stimuli (plus the 9 stimuli previously acquired). In the learning phase, both feedback and no-feedback training were used. In particular, two blocks of feedback training (in which the order of the stimuli was manipulated) were followed by one block of no-feedback training (in which stimuli were randomly presented). This pattern was repeated until the end of the learning phase. The use of random blocks with no-feedback allowed us to assess learning with neither order manipulation nor feedback interfering with the measure of performance. The unbalanced ratio of two blocks of feedback training followed by one block of no-feedback training aimed at increasing the influence of our manipulation, with the idea that the random block could still interfere with the learning process. Participants had to correctly classify stimuli in three no-feedback blocks of 5 + 4 = 9 stimuli (not necessarily consecutive) to complete the learning phase. The choice of three is arbitrary, but appeared to be a good trade-off between maximizing the memorization of the categories and minimizing the duration of the task (a fundamental point considering that the task was conducted online). Participants were given 200 blocks at the most to reach the learning criterion. Once participants met the learning criterion, the transfer phase was initiated. Participants were informed that they successfully completed the learning phase and that the transfer phase was about to start. The transfer phase was composed of 5 blocks of 16 stimuli (the 5 + 4 = 9 learning stimuli and the 7 novel stimuli).

Ordering of stimuli

The experiment was characterized by a full factorial design. Three factors were used, each one having two levels: a within-category order manipulation (Rule-based vs. Similarity-based), a between-category order manipulation (Blocked vs. Interleaved), and a manipulation of order across blocks (Variable vs. Constant). The combination of these factors formed eight conditions (e.g., "Rule-based + Interleaved + Constant", etc.). For simplicity purposes, each condition is denoted using the first letter of each type of order. For instance, condition "Rule-based + Interleaved + Constant" is denoted R+I+C. The number of participants assigned to each condition is given in Table 1. As mentioned above, order was only manipulated in the no-feedback blocks of the learning phase.

Within-category order manipulation. In the rule-based order, stimuli were ordered following a "principal rule plus exceptions" structure, meaning that examples obeying the principal rule were presented strictly before the exceptions. The specific "principal rule plus exceptions" structure of our experiment was the following: all striped items belong to category A except for the small red square, while all plain items belong to category B except for the big red circle (see Figure 1). Therefore, items A 1 , A 2 , A 3 , A 5 were strictly presented before item A 4 , and items B 1 , B 2 , B 4 were strictly presented before item B 3 . The items belonging to the principal rule (whether belonging to categories A or B) were randomly selected. Presenting stimuli belonging to the dominant rule in a random order was thought to favor an abstraction process, given that other sequences would have increased the risk of temporarily inducing less informative rules, thus delaying learning. Note that instead of using a principal rule based on Filling pattern (plain vs. striped stimuli), we could have used a principal rule based on Shape (circles vs. squares). Indeed, both rules minimize the number of exceptions.

In the similarity-based order, members within a category were presented in a way that maximized the similarity between adjacent learning stimuli. The first stimulus was randomly chosen while subsequent stimuli were (randomly) chosen among those that were the most similar to the immediately previous item. Similarity between two items x and y was computed by counting the number of common features they shared:

s xy = 4 i=1 1 {x i =y i } ,
where x i and y i are the feature values of stimuli x and y on dimension i. For instance, the small plain blue circle and the small striped red square have one single feature in common (small), thus their similarity is 1.

Between-category order manipulation. In the blocked study, categories were strictly blocked (AAAABBBB or BBBBAAAA), while in the interleaved study categories were strictly alternated (ABABABAB). Because of the regularity of both patterns, the introduction of random blocks during learning was necessary. Indeed because of these repetitive patterns, participants could have guessed the correct classification without paying attention to the stimuli. The ratio between blocked (or interleaved) blocks and random blocks is 1:3, as for the feedback/no-feedback blocks. Therefore, a random block with no-feedback always follows two blocks in which categories are blocked (or interleaved) and feedback is provided. Note that in random blocks feedback was never provided, whereas in blocked/interleaved blocks feedback was always provided.

Across-blocks order manipulation. In the constant manipulation across blocks, the same sequence of stimuli (but obeying the constraints of the between-and within-category orders) was presented in all blocks, while in the variable manipulation across blocks the sequence of stimuli varied from one block to another (again, obeying the constraints of the between-and within-category orders).

Procedure

The categorization task was computer-driven and was conducted online. Participants received instructions before the task began. Stimuli were presented one at a time for 3 s on the center of the computer screen. Category A was associated with the up key, while category B was associated with the down key. Participants had to classify the stimulus in one of the two categories (A and B) using these two response keys. Once the key pressed, a feedback indicating the correctness of participants' classification appeared for 1 s at the bottom of the screen (this was the case only in blocks where feedback was provided). If no key was pressed, the text 'too late' appeared for 1 s at the bottom of the screen. In order to encourage learning, the percentage of correct responses in a block was displayed for 1 s at the end of each random block.

Results

Learning phase

Two of our main questions of interest are i) whether the speed at which the concept is learned is affected by the types of order, and ii) whether there are interactions between these types of order. To answer the first question, we analyzed the time needed by participants to complete the learning phase (in Analysis of the learning times), whereas to answer the second question, we performed an analysis of the interactions using a three-way ANCOVA (in Analysis of the interactions between the types of order). Two additional analyses can be found in Appendix A and B. The first looks at the number of individuals who did not reach the learning criterion, whereas the second analyzes the percentage of correct responses given by participants over the course of the learning phase. Data from 2 participants who pressed no key on more than 15% of the trials were excluded from the analyses.

Analysis of the learning times

Figure 2 shows the average number of blocks which were required for participants to meet the learning criterion as a function of the experimental conditions, taken separately (Figure A) and combined (Figure B). Visually, the rule-based order appears more beneficial than the similaritybased order, and the constant condition appears more beneficial than the variable condition. Note that not all participants were taken into account in Figure 2, since 20 of them did not meet the learning criterion (see Appendix A for details).

To determine which condition led to the fastest learning while accounting for "unsuccessful participants" (i.e., individuals who did not meet the learning criterion), we used two survival analysis techniques: the Kaplan-Meier survival curves and the Cox proportional-hazards model.

Kaplan-Meier survival curves. We used the Kaplan-Meier estimator [START_REF] Kaplan | Nonparametric estimation from incomplete observations[END_REF] to estimate the expected duration of time until the successful completion of the learning phase, considering data from participants who did not complete the task as censored. Figure 3 shows the survival probability as a function of block number for each type of order, taken separately ( pants assigned to a given condition are to continue the task (i.e., to not meet the learning criterion).

A log-rank test was performed to evaluate the difference between survival curves. The log-rank test was significant at 0.05 level for the within-category and across-blocks orders (for rule-based vs. similarity-based p = .049, and for constant vs. variable p = .0076). This shows that learning was faster in the rule-based and constant orders as compared to the similarity-based and variable orders, respectively.

Cox proportional-hazards model. Similarly to the Kaplan-Meier estimator, the Cox model [START_REF] Cox | Regression models and life-tables[END_REF] allows us to consider failures to complete the task as censored data, avoiding to remove unsuccessful participants. This model is particularly advantageous because of its ability to simultaneously account for multiple variables. Therefore, we use it to simultaneously analyze the influence of the three types of order (within-category, between-category, across-blocks orders) on survival probability. Figure 4A shows the result of the Cox model as a function of our three variables (within-category, between-category, across-blocks orders). The graphs show that the similarity-based order, the interleaved study, and the variable manipulation across-blocks reduced participants' hazard ratio as compared to their respective reference condition (i.e., rule-based order, blocked study, and constant manipulation across-blocks). This means that these types of order were found to reduce participants' speed to meet the learning criterion. However, only the impact of across-blocks manipulations was found significant (p = .06 for within-category orders, p = .132 for between-category orders, and p = .009 for across-blocks orders). Figure 4B shows the result of the Cox model as a function of the conditions. Hazard ratio of conditions S+B+V and S+I+V were found to be significantly smaller than the hazard ratio of the reference condition R+B+C (p = .007 and p = .003, respectively), meaning that participants in conditions S+B+V and S+I+V were statistically slower than participants in condition R+B+C in reaching the learning criterion. We can therefore anticipate on the conclusion of the present study (based on all analyses) that the combination S+V was the most detrimental.

Analysis of the interactions between the types of order

The previous survival analysis techniques allowed us to basically look at main effects. We now aim at searching for interactions between the three types of order manipulation during learning. To do so, we performed a three-way ANCOVA (2 × 2 × 2 with interactions) with withincategory order (rule-based vs. similarity-based), between-category order (blocked vs. interleaved), and across-blocks manipulation (constant vs. variable) as between-subject factors. The number of correct responses per block was the dependent variable and block number was the only co-variate. A probit transformation was applied to the dependent variable in order to meet the assumption of normality. To ensure an equal contribution from each participant, we completed participants' responses until block 72. Since 80% of the participants ended the learning phase before block 72, Estimated marginal means (EMMs) for the interaction between within-category and across-blocks orders, with Bonferroni adjustment for multiple testing correction.

this choice allowed us to ensure an equal number of observations for each participant, while limiting the number of observations that were removed or added. Note that we applied the three-way ANCOVA multiple times by varying the block number until which the responses where completed (i.e., block number 48, 51, and 57 corresponding to the 65%, 70%, and 75% quantile). The results were qualitatively the same each time. To complete the data set of participants who ended the experiment before block 72, we iterated their last random block until block 72. We thought it was reasonable to think that participants would have continued to perform in a similar way after ending or abandoning the learning phase. Eighteen observations were found to be multivariate outliers and were excluded from the analysis. Only the interaction between within-category and across-blocks orders was found significant (F (1, 4461) = 41.52, p < .0001,η 2 p = .009). To further investigate this interaction, we conducted an analysis of simple main effects, applying Bonferroni adjustment [START_REF] Dunn | Multiple comparisons among means[END_REF] for multiple testing correction. The simple main effect of within-category order was significant in both the constant (p < .019) and variable (p < .0001) across-blocks group, while the simple main effect of across-blocks order was only significant in the similarity-based within-category group (p < .0001). These effects can be visualized in Figure 5. To complete the analysis, we performed a chi-squared test to assess the difference in performance between the three-way ANCOVA with and without interactions. The difference was significant (p < .0001) and the three-way ANCOVA with interactions was the best fitting model.

Transfer phase

Our next aim was to determine whether the types of order affected i) performance on learning stimuli and ii) generalization patterns on transfer stimuli during the transfer phase. Because we were interested in studying performance and generalization patterns in participants who learned the studied categories, participants who did not meet the learning criterion (amounting to twenty) were excluded from the following analyses. Data from 8 participants who pressed no key on more than 15% of the trials were additionally excluded from the analyses. 

Analysis of performance on learned stimuli

Figure 6 shows the percentage of correct responses for the learning stimuli presented during transfer, as a function of the types of order (taken separately). The percentage of correct responses was first computed for each participant and then averaged across participants. A two-sided Wilcoxon-Mann-Whitney test was performed to assess the difference in performance between the two conditions within each type of manipulation. None of the tests were found significant (p = .703 for rule-based vs. similarity-based, p = .370 for blocked vs. interleaved, p = .057 for constant vs. variable), showing that performance on learning stimuli was not influenced by the type of order. Although no significant effect was found, one can note that the p-value for constant vs. variable is close to 0.05 and that the direction of the effect (i.e., participants in the constant condition learned better) is coherent with the one that was found in the learning phase (i.e., participants in the constant condition learned faster).

Analysis of generalization patterns on transfer stimuli

Figure 7 shows the average classification of the transfer items over the course of the transfer phase as a function of type of order (taken separately). Quantity p(A) is the observed proportion that each transfer item was classified into category A during transfer. To determine whether participants in different conditions applied different strategies for the classification of novel stimuli, we computed the distance of the observed generalization patterns to four specific strategies (distances were computed using the L1 metric and were normalized).

The following strategies were considered: a rule-based strategy that uses Filling pattern (plain vs. striped stimuli) as main rule, a rule-based strategy that uses Shape (circles vs. squares) as main rule, a similarity-based strategy, and a random strategy. Participants adopting a rulebased strategy would classify new stimuli on the basis of the main rule (Filling pattern or Shape, depending on the chosen main rule), whereas participants adopting a similarity-based strategy would classify new stimuli on the basis of their similarity to the closest stored items. In the random strategy, novel stimuli would be randomly classified (50% of chance to classify them into category Average classification of the transfer items (T 1 , T 2 , T 3 , T 4 , T 5 , T 6 , T 7 ) during the transfer phase (amounting to five blocks) as a function of types of order (taken separately). Quantity p(A) is the observed proportion that each of the stimuli labeled under the abscissa was classified into category A during the transfer phase. Quantity p(A) was first computed for each participants before being averaged across participants. Average classification of the nine learning items is not included. Error bars show ±1SE. q q q q q q q 0.00 Putative classification of the transfer items (T 1 , T 2 , T 3 , T 4 , T 5 , T 6 , T 7 ) as a function of the applied strategy (rule-based strategy using Filling pattern, rule-based strategy using Shape, similarity-based strategy, and random strategy). Quantity p(A) is the putative probability for a chosen strategy to classify into category A each of the stimuli labeled under the abscissa.

A). The rule-based strategy that uses Shape as main rule was included because Shape (as Filling pattern) allows participants to minimize the number of exceptions when used as the diagnostic dimension (see Ordering of stimuli). Putative classification of the transfer stimuli for each of the above-mentioned strategies is shown in Figure 8.

Figure 9A shows the average distance of the observed generalization patterns to the above-mentioned strategies. The closest strategies to the observed generalization patterns are the similarity-based strategy and the Filling pattern rule-based strategy, followed by the random strategy, and finally by the Shape rule-based strategy. A two-sided Wilcoxon-Mann-Whitney test was performed to assess the difference in distribution between the different strategies. We found a significant difference between Shape rule-based strategy and random strategy (p < .0001), and between random strategy and Filling rule-based strategy (p < .0001), but not between Filling rule-based strategy and similarity-based strategy (p = .458). Since the Shape rule-based strategy and the random strategy were the farthest to the observed patterns, they were excluded from the following analyses. Average distance of participants' generalization patterns on novel stimuli to specific strategies (rulebased strategy using Filling pattern, rule-based strategy using Shape, similarity-based strategy, and random strategy), for all participants (Figure A) and for each type of order within the same manipulation (Figure B-C-D). Distances were first computed for each participant before being averaged. The L1 norm was used and distances were normalized prior to averaging. Asterisks show the significance of the two-sided Wilcoxon-Mann-Whitney test.

Discussion

Previous studies on category learning have shown that the sequence in which stimuli are encountered can profoundly influence learning speed and category formation [START_REF] Carvalho | The most efficient sequence of study depends on the type of test[END_REF]Kang & Pashler, 2012;[START_REF] Mathy | The influence of presentation order on category transfer[END_REF]. However, the totality of these studies have only focused on a subset of types of presentation orders (either within-category or between-category manipulations), separately, ignoring potential interactions between different types of manipulations. Here, we manipulated within-category, between-category, and acrossblocks order manipulations within a single task to study their separate and combined impact on learning speed and generalization patterns. The main question of interest is whether these types of order manipulation i) influence how fast categories are learned, ii) interact with one another during learning, and iii) affect classification of novel stimuli. We here used a single category structure, namely the '5-4', to which we applied our combined manipulations of presentations orders. Our result most probably reflects the nature of this specific category structure. We have no doubt that other effects could apply to other structures. The question here is simply whether presentation orders can potentially modify learning and category representations. If yes, future research should attempt to generalize our observations to other cases.

To address the first point, we analyzed how long participants took to reach the learning criterion as a function of the conditions within each order manipulation. Both the Kaplan-Meier and Cox survival analyses showed that the pace at which categories are learned is influenced by both within-category and across-blocks orders (with the across-blocks manipulation being the main predictor of participants' learning speed). More specifically, the rule-based (within-category) and constant (across-blocks) order manipulations were found to lead to faster learning than the similarity-based (within-category) and variable (across-blocks) order manipulations, respectively. Moreover, participants in the condition combining similarity-based within-category order and variable across-blocks order have been found to be the slowest at learning the categories.

However, these findings alone do not allow us to determine which condition is the most beneficial. A further analysis of performance on learned stimuli during transfer was more adequate to reach this goal. Indeed, conditions that lead learners to more rapidly reach the learning criterion are not always the ones that lead to better learning [START_REF] Soderstrom | Learning versus performance: An integrative review[END_REF]. No significant effect of order manipulation was found on participants' performance on learned stimuli during transfer. Moreover, the only effect close to significant that showed better learning in the constant condition (as compared to the variable one) went in the same direction as the effect found in the learning phase (i.e., faster learning in the constant condition). We can thus conclude that the rule-based and constant conditions are more beneficial to learning, since performance (on learned stimuli) during transfer was statistically the same for every type of order, but participants in these conditions were exposed to a fewer number of trials.

Following the interpretation of [START_REF] Mathy | A rule-based presentation order facilitates category learning[END_REF], the benefit of the rule-based order over the similarity-based order might be imputed to the illusory proximity of stimuli that the similarity-based order might induce in participants' mind. The similarity-based order promotes a structure that is not fully informative about the categories, which might temporarily mislead participants. This is especially true for the 5-4 category set that is often considered 'rule-based' in itself because of its use of discrete features. By contrast, the rule-based order first presents the most informative information, which could yield superior learning. The superiority of the constant across-blocks presentation over the variable one might be attributed to the limited amount of information carried by the constant order. Limiting the variability of the sequences might have helped participants focus on diagnostic information, enhancing the probability to either induct the simplest rule or memorize the category membership of the items. Another explanation is that memory can benefit from the repetition of the same sequences [START_REF] French | TRACX: A recognition-based connectionist framework for sequence segmentation and chunk extraction[END_REF][START_REF] O'shea | Stimulus and response chunking in the hebb digits task[END_REF], in particular to group items. A grouping process could have benefited the formation of rules.

To determine whether different types of order interact with one another during learning, we performed statistical analyses with and without interactions. Data were best explained by the model with interactions, that lead to one significant interaction between within-category and across-blocks orders. In particular, the similarity-based order (in comparison to the rule-based order) was detrimental for participants in both the constant and variable conditions (with the variable condition being the most detrimental), whereas the variable condition (in comparison to the constant condition) was only detrimental for participants in the similarity-based order. Therefore, the condition combining similarity-based within-category order with variable across-blocks order was the most detrimental for learning.

Our last analysis aimed at determining the influence of order manipulation on the classification of novel stimuli by analyzing how close are the observed patterns to some main strategies. The rule-based strategy that uses Filling pattern as the main rule as well as the similarity-based strategy were found to be the closest to participants' generalization patterns. Moreover, distance to the Filling pattern rule-based strategy was significantly higher for participants in the similaritybased order (as compared to those in the rule-based order) and for participants in the blocked order (as compared to those in the interleaved order). By contrast, across-blocks manipulations were not found to alter category transfer. These results show that both within-category and betweencategory orders affect how learning is transferred to novel stimuli, with the Filling pattern rulebased strategy being preferred more often in the rule-based and interleaved conditions than in the similarity-based and blocked conditions, respectively. This difference in preference between rule-based and similarity-based learners might be attributed to the logic upon which the rule-based order is grounded. Presenting items following a "main rule (Filling pattern) plus exceptions" structure might have facilitated participants to infer the simplest rule, encouraging them to classify new items using the same inferred strategy. Conversely, the difference in preference between blocked and interleaved learners might find an explanation in the Sequential Attention Theory (Carvalho & Goldstone, 2015b). Alternating stimuli from different categories (interleaved study) leads to an attentional focus on properties that discriminate the categories, which might have promoted a rule-based transfer of the knowledge. By contrast, when stimuli from the same category are presented sequentially (blocked study), the encoding of the similarities among items of the same category is stronger, which might have promoted the use of a similarity-based strategy. In addition, the structure of the 5-4 category set (in particular the fact that the within-category similarity exceeds the between-category similarity) might also have played a role.

An additional contribution of the present study is the promotion of underemployed statistical tools. A common practice in psychology is to remove participants who did not fulfill the objective of the task [START_REF] Mathy | The influence of presentation order on category transfer[END_REF][START_REF] Meagher | Organized simultaneous displays facilitate learning of complex natural science categories[END_REF][START_REF] Meagher | Training of rock classifications: The use of computer images versus physical rock samples[END_REF]. Nevertheless, unsuccessful participants can carry useful information. In the present study, we made use of two survival analysis techniques (the Kaplan-Meier survival curves and the Cox model) that allow us to account for individuals who did not complete the task. We advise the use of similar statistical tools when the conditions allow them.

Study limitations

Although Medin and Shaffer's 5-4 category set has multiple benefits (see Introduction), it has the disadvantage of presenting a clear "rule plus exceptions" structure and of being distant from real-world categories. Moreover, the absence of transfer stimuli with a category label did not allow us to generalize the benefit of the rule-based and constant orders to novel stimuli. However, because it has been thoroughly scrutinized in the past, this structure seemed the best option as first investigation of new experimental factors. Another limitation of this category structure is that it allows the co-existence of two different main rules that minimizes the number of exceptions (Filling pattern and Shape). Stimuli in the rule-based order were ordered following the "Filling pattern rule plus exceptions" structure. However, the dimension Shape could have equivalently been used instead of the dimension Filling pattern. In the same spirit, dimensions could have been instantiated by different features. For instance, Color could have distinguished the right and left objects within the cubes, Shape the objects at the front of the hypercube from those at the back, Size the objects at the top of the hypercube from those at the bottom, and Filling pattern the objects in the left cube from those in the right cube. We felt that multiplying our sample to consider all above-mentioned variations would have been too costly.

Table A1

Number of successful and unsuccessful participants split per type of order, taken both separately and combined.

Type of order Successful Unsuccessful

Within-category orders over the course of the learning phase. Only participants' performance during random blocks is represented in the graph. Because it was reasonable to think that successful participants would have continued to correctly classify stimuli after reaching the learning criterion, their responses were completed with the highest performance (i.e., 100% of correct responses) until block number 72. Because 80% of the participants ended the learning phase before block 72, this choice appeared to be a good trade-off between minimizing the number of observations that were both removed and added. In Figure B1A, learning was more efficient in the rule-based, blocked, and constant orders than in the similarity-based, interleaved, and variable orders, respectively. To assess the difference between the learning curves, we performed a two-sided Wilcoxon-Mann-Whitney test at each block with Benjamini-Hochberg adjustment [START_REF] Benjamini | Controlling the false discovery rate: A practical and powerful approach to multiple testing[END_REF] for multiple testing corrections. In the within-category and across-blocks manipulations, half of the test were significant (11/24 rejected tests for the within-category and 12/24 rejected tests for the across-blocks), whereas in the between-category order none of the tests were significant. We can conclude that in half of the random trials learning in the rule-based and constant conditions was more effective than the similarity-based and variable conditions (respectively).
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  Figure2shows the average number of blocks which were required for participants to meet the learning criterion as a function of the experimental conditions, taken separately (FigureA) and combined (FigureB). Visually, the rule-based order appears more beneficial than the similaritybased order, and the constant condition appears more beneficial than the variable condition. Note that not all participants were taken into account in Figure2, since 20 of them did not meet the learning criterion (see Appendix A for details).To determine which condition led to the fastest learning while accounting for "unsuccessful participants" (i.e., individuals who did not meet the learning criterion), we used two survival analysis techniques: the Kaplan-Meier survival curves and the Cox proportional-hazards model.Kaplan-Meier survival curves. We used the Kaplan-Meier estimator[START_REF] Kaplan | Nonparametric estimation from incomplete observations[END_REF] to estimate the expected duration of time until the successful completion of the learning phase, considering data from participants who did not complete the task as censored. Figure3shows the survival probability as a function of block number for each type of order, taken separately (FigureA) and combined (FigureB). The survival probability estimates how likely partici-
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  Figure 9B-C-D shows the average distance of participants' generalization patterns to two specific strategies (the Filling pattern rule-based strategy and the similarity-based strategy), as a function of the type of order within each manipulation (within-category in Figure B, betweencategory in Figure C, and across-blocks in Figure D). While distances to the similarity-based strategy were similar across types of order within the same manipulation, distances to the Filling pattern rule-based strategy largely varied. More specifically, generalization patterns of participants in the rule-based order were significantly closer to the Filling pattern rule-based strategy than participant in the similarity-based strategy (p = .045). The same applies to participants in the interleaved study as compared to those in the blocked study (p = .004). An alternative analysis leading to the same conclusion can be found in Appendix C.
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Table 1

 1 Number of participants assigned to each of the 8 conditions of the experiment.

		Rule-based		Similarity-based
		Constant Variable Constant Variable
	Blocked	22	25	26	25
	Interleaved 25	21	24	21
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Appendix A Analysis of the number of unsuccessful participants

The term "unsuccessful participants" refers to those individuals who did not meet the learning criterion, either because they dropped out or because they exceeded the maximal amount of blocks allowed to the experiment (200 learning blocks). Table A1 shows the number of successful and unsuccessful participants per types of order, taken both separately and combined. A Fisher's exact test of independence at 0.05 level was run to determine whether the number of individuals who did not reach the learning criterion was related to the type of order. The Fisher's exact test was preferred to the chi-square test because of its accuracy with small samples. None of the tests were significant (p = .461 for rule-based vs. similarity-based, p = .325 for blocked vs. interleaved, p = 0.624 for constant vs. variable, and p = .088 for the omnibus test run on the table showing all conditions). We conclude that the type of order in which stimuli were encountered did not alter participants' chance of reaching the learning criterion.

Appendix B Analysis of the percentage of correct responses during learning

Because we were interested in analyzing the learning curves of participants who learned the studied categories, unsuccessful participants (amounting to twenty) were excluded from the analysis. Figure B1 shows the average percentage of correct responses among participants within a same type of order taken separately ( 

Appendix C Alternative analysis of generalization patterns on transfer stimuli

The aim of this analysis is to determine whether participants in different conditions classify new items using different strategies. We focus on two main strategies: a rule-based strategy that uses Filling pattern as main rule and a similarity-based strategy (see Figure 8). A learner adopting the Filling pattern rule-based strategy would more often classify items T 1 and T 2 into category A and items T 4 , T 5 and T 6 into category B, than a learner adopting the similarity-based strategy. Therefore, these two strategies can be distinguished by projecting generalization patterns on the one-dimensional space generated by vector v = (1, 1, 0, -1, -1, -1, 0). The more the projections are on the right side of this one-dimensional space, the more the Filling pattern rule-based strategy was used. Figure C1 shows the projection value of participants' generalization patterns on the one-dimensional space generated by vector v as a function of the conditions within each order manipulation. A two-sided Wilcoxon-Mann-Whitney test was conducted to assess the difference between projection values of participants in different conditions. Projections from participants in the rule-based order were significantly higher than those from participants in the similaritybased order (p = .043). Similarly, projections from participants in the interleaved order were significantly higher than those from participants in the blocked order (p = .010). No significant difference was found between projections from participants with different across-blocks orders (p = .919). We conclude that participants in the rule-based and interleaved orders showed generalization patterns that where more consistent with the Filling pattern rule-based strategy than participants in the similarity-based and blocked orders, respectively.