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Abstract

This study investigates how different types of presentation orders influence category

learning and generalization. We used a full factorial design (within-category,

between-category, and across-blocks manipulations), each factor having two levels

(rule-based vs. similarity-based, blocked vs. interleaved, and constant vs. variable orders,

respectively). This research offers a unique and novel approach through both an individual

and concurrent analysis of the studied factors. Moreover, the investigation of across-blocks

manipulations is unprecedented. Using survival analysis techniques as well as

non-parametric tests, we found that learning was impacted by both within-category and

across-blocks manipulations (with across-blocks manipulation being the main predictor).

More specifically, the rule-based and constant orders were found more beneficial than the

similarity-based and variable orders, respectively. Also, within-category and

between-category orders were found to affect generalization patterns. More precisely,

participants in the rule-based order more often showed generalization patterns consistent

with a rule-based strategy than participants in the similarity-based order. Likewise,

participants in the interleaved order more often showed generalization patterns consistent

with a rule-based strategy than participants in the blocked order. We conclude that

combining a similarity-based order with a variable across-blocks manipulation delays

learning, whereas combining a rule-based order with a constant across-blocks manipulation

benefits learning. Furthermore, combining a rule-based order with an interleaved order

favors the use of a rule-based strategy during category generalization.

Keywords: Presentation order, Category learning, Category generalization,

Rule-based vs. similarity-based orders, Interleaved vs. blocked study, Variable vs. constant

across-blocks manipulations
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Investigating interactions between types of order in categorization

Introduction

What is the best way to memorize lists of vocabulary in another language? Would

you study words category by category (for instance, red - blue - green - yellow - etc.) or

would you alternate words from different categories (for instance, red - dog - hoody - blue -

cat - shoes - etc.)? Also, how would you arrange words within a category? Would you first

learn words that are phonetically similar (for instance, my - buy - cry - high - etc.), or

words that are related by a given structure (for instance, warm vs. cold colors), or would

you rather study them in random order? We believe that these alternative sequences and

their combination inevitably produce different outcomes.

A few studies have shown that presentation order influences learning speed and

retention in a variety of domains such as memory (Bloom & Shuell, 1981; Farrell, 2008),

eyewitness identification (Wells, 2014), serial recall (Miller & Roodenrys, 2012), risk

perception (Helsdingen et al., 2011; Kwan et al., 2012), and categorization (Jones & Sieck,

2003; Mack & Palmeri, 2015; Mcdaniel et al., 2013; Sandhofer & Doumas, 2008;

Zeithamova & Maddox, 2009; Zotov et al., 2011). In categorization for instance,

considerable effort has been directed toward the study of between-category orders

(Carvalho & Goldstone, 2014a, 2014b, 2015a, 2021; Goldstone, 1996; Kornell & Bjork,

2008; Kornell et al., 2010; Kost et al., 2015; Noh et al., 2016; Rohrer, 2009, 2012; Sana

et al., 2016; Yan et al., 2017; Zulkiply & Burt, 2012; Zulkiply et al., 2012).

More specifically, between-category orders have been thoroughly examined by

manipulating interleaving (in which categories are presented alternatively, i.e. a Category-1

member followed by a Category-2 member) vs. blocking (in which members of a single

category are presented in a row on successive trials, i.e. a Category-1 member followed by

other Category-1 members). In addition to a spacing effect (S. Carpenter & Mueller, 2013;

S. K. Carpenter et al., 2012; Cepeda et al., 2008; Hintzman et al., 1975), interleaving

stimuli of different categories has been shown to highlight the differences between these
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stimuli, thus facilitating learning and transfer (Birnbaum et al., 2013; Kang & Pashler,

2012; Kornell & Bjork, 2008; Wahlheim et al., 2012; Yan et al., 2017; Zulkiply et al., 2012).

However, there has also been evidence in favor of blocking members of a same category

(S. Carpenter & Mueller, 2013; Carvalho & Albuquerque, 2012; Carvalho & Goldstone,

2011; de Zilva & Mitchell, 2012; Rawson et al., 2014).

A lesser number of studies have focused on within-category order effects on category

learning (Elio & Anderson, 1981; Elio & Anderson, 1984). Originally explored in word

recall (Bower et al., 1969) and old-new recognition tasks (Medin & Bettger, 1994), the

manipulation of order within members of a same category has moderately been extended to

categorization tasks after the original work of Elio (Corcoran et al., 2011; Mathy &

Feldman, 2009, 2016; Stewart et al., 2002). An example of within-category manipulation is

the similarity-based order in which stimuli of a same category are arranged in order to

maximize the similarity between contiguous examples. This typical manipulation has

recently been contrasted with a rule-based order in which stimuli obeying a rule precede

the exceptions to the rule. For instance, Mathy and Feldman (2016) have found that

participants following a “rule plus exceptions” structure show a greater number of

generalization patterns consistent with rule-based retrieval than participants in the

similarity-based condition.

The study of rule-based vs. similarity-based order is particularly relevant since these

order manipulations match two extreme ways of learning: an inductive process based on

abstraction and an elementary process based on associative mechanisms (Sloman, 1996).

The rule-based order is supposed to help participants abstract the logical rule describing

the stimuli, while the similarity-based order uses temporal proximity to strengthen the

memory traces of contiguous items.

All the above-mentioned studies have manipulated a single factor (either

between-category or within-category order). We believe that studying the interactions

between these factors is crucial. For instance, participants in the rule-based order might
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benefit from blocking members of a same category, while participants in the

similarity-based order might benefit from interleaving members of different categories. We

here address this question, investigating how different types of order interact.

The present study simultaneously manipulated between-category orders (blocked

vs. interleaved), within-category orders (rule-based vs. similarity-based), and across-blocks

manipulations (constant vs. variable). Manipulations across-blocks were thought to be

particularly important because they have not been addressed by previous studies. Our goal

was to use the well-studied 5-4 category structure of Medin and Schaffer (1978) to examine

the way these different order manipulations interact. This structure has been analyzed in

numerous studies (Cohen & Nosofsky, 2003; Johansen & Kruschke, 2005; Johansen &

Palmeri, 2003; Lafond et al., 2007; Lamberts, 2000; Minda & Smith, 2002; Rehder &

Hoffman, 2005; Smith & Minda, 2000; Zaki et al., 2003) and it appeared to be a fruitful

baseline for our investigation. This study intends to evaluate how different presentation

orders impact the speed at which categories are learned as well as the nature of learning.

Method

Participants

One hundred and eighty-nine 18-75-year-old participants contributed to this study.

One hundred and thirty participants were sophomore or junior students from University

Côte d’Azur (France) who received course credits in exchange for their participation. The

remaining fifty-nine participants were recruited on Campus on a voluntary basis. Note that

the data-set corresponding to the first one hundred and thirty participants has already

been used in (Mezzadri, Laloë-Verdelhan, et al., 2021; Mezzadri, Reynaud-Bouret, et al.,

2021) for testing categorization models.



6

Categories

Each participant was administrated a single 5-4 category set (see Figure 1, on the

top), composed of 24 = 16 items. In this category set, 5 items belong to category A, 4

items belong to category B, and the remaining 7 items are transfer stimuli.

Stimuli

Stimuli varied along four Boolean dimensions (Color, Shape, Size, and Filling

pattern). The colors were either blue or red; shapes were either square or circle; sizes were

either small or big, and filling patterns were either plain or striped. The combination of

these options formed 24 = 16 items (see Figure 1, on the bottom). Color distinguished the

objects at the front of the hypercube from those at the back, Shape distinguished the

objects in the left cube from those in the right cube, Size distinguished the right and left

objects within the cubes, and Filling pattern distinguished the objects at the top of the

hypercube from those at the bottom. Each dimension was instantiated by the same

physical features and the same category structure was applied to these features across

participants. In sum, the task given to participants was unique.

Phases

A learning phase in which participants were instructed to learn the classification of

9 learning items was followed by a transfer phase in which participants were tested upon

the presentation of 7 novel stimuli. During learning, two blocks of supervised learning (in

which the order of the stimuli was manipulated and feedback was provided) were followed

by one block of unsupervised learning (in which stimuli were randomly presented with no

feedback). This pattern was repeated until the end of the learning phase. The use of

unsupervised random blocks allowed us to assess learning with neither order manipulation

nor feedback interfering with the measure of performance. Moreover in a previous work

(Mezzadri, Laloë-Verdelhan, et al., 2021), the introduction of unsupervised blocks allowed
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us to evaluate learning models on the whole learning process instead of exclusively

evaluating them on the last learning blocks. The unbalanced ratio of two supervised blocks

followed by one unsupervised block aimed at increasing the influence of our manipulation,

with the idea that the random block could still interfere with the learning process.

Participants had to correctly classify stimuli in three unsupervised blocks of 9 stimuli (not

necessarily consecutive) to complete the learning phase. Once participants met the learning

criterion, the transfer phase was initiated. The transfer phase was composed of 5 blocks of

16 stimuli.

Ordering of stimuli

The experiment was characterized by a full factorial design. Three factors were

used, each one having two levels: within-category order manipulation (Rule-based

vs. Similarity-based), between-category order manipulation (Blocked vs. Interleaved), and

manipulation of order across blocks (Variable vs. Constant). The combination of these

factors formed eight conditions (e.g., “Rule-based + Interleaved + Constant”, etc.). For

simplicity purposes, each condition is denoted using the first letter of each type of order.

For instance, condition “Rule-based + Interleaved + Constant” is denoted R+I+C. The

number of participants assigned to each condition is given in Table 1. As mentioned above,

the order was only manipulated in the supervised blocks of the learning phase.

Within-category order manipulation. In the rule-based order, stimuli were

ordered following a “principal rule plus exceptions” structure, meaning that examples

obeying the principal rule were presented strictly before the exceptions. The specific

“principal rule plus exceptions” structure of our experiment was the following: all striped

items belong to category A except for the small red square, while all plain items belong to

category B except for the big red circle (see Figure 1). Therefore, items A1, A2, A3, A5

were strictly presented before item A4, and items B1, B2, B4 were strictly presented before

item B3. The items belonging to the principal rule (whether belonging to categories A or
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B) were randomly selected. Presenting stimuli belonging to the dominant rule in random

order was thought to favor an abstraction process, given that other sequences would have

increased the risk of temporarily inducing less informative rules, thus delaying learning.

Note that instead of using a principal rule based on Filling pattern (plain vs. striped

stimuli), we could have used a principal rule based on Shape (circles vs. squares). Indeed,

both rules minimize the number of exceptions.

In the similarity-based order, members within a category were presented in a way

that maximized the similarity between adjacent learning stimuli. The first stimulus was

randomly chosen while subsequent stimuli were (randomly) chosen among those that were

the most similar to the immediately previous item. The similarity between two items x and

y was computed by counting the number of common features they shared:

sxy =
4∑

i=1
1{xi=yi},

where xi and yi are the feature values of stimuli x and y on dimension i. For instance, the

small plain blue circle and the small striped red square have one single feature in common

(small), thus their similarity is 1.

Between-category order manipulation. In the blocked study, categories were

strictly blocked (AAAABBBB or BBBBAAAA), while in the interleaved study categories

were strictly alternated (ABABABAB). Because of the regularity of both patterns, the

introduction of random blocks during learning was necessary. Indeed, following these

repetitive patterns participants could have guessed the correct classification without paying

attention to the stimuli.

Across-blocks order manipulation. In the constant manipulation across

blocks, the same sequence of stimuli (but obeying the constraints of the between- and

within-category orders) was presented in all blocks, while in the variable manipulation

across blocks the sequence of stimuli varied from one block to another (again, obeying the

constraints of the between- and within-category orders).
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Procedure

The categorization task was computer-driven and was conducted online.

Participants received instructions before the task began. Stimuli were presented one at a

time for 3 s on the center of the computer screen. Category A was associated with the up

key, while category B was associated with the down key. Participants had to classify the

stimulus in one of the two categories (A and B) using these two response keys. Once the

key was pressed during the supervised blocks (exclusively), feedback indicating the

correctness of participants’ classification appeared for 1 s at the bottom of the screen. If no

key was pressed, the text ’too late’ appeared for 1 s at the bottom of the screen. In order

to encourage learning, the percentage of correct responses in a block was displayed for 1 s

at the end of each random block.

Transparency and openness

All data, analysis code, and study materials are available in the Open Science

Framework at https://osf.io/w29ts/?view_only=c28b965cc9a74c54b56d7adb87417ff1.

Data were analyzed using R, version 3.6.3 (“Holding the Windsock”, 2020) and the package

ggplot2, version 3.3.3 (Wickham, 2020). This study’s design and its analysis were not

preregistered.

Results

Learning phase

Because we conducted survival analysis (which accounts for individuals who did not

complete the task), none of the participants were removed from the study. An exception to

that is the Wilcoxon-Mann-Whitney test that was performed to assess participants’

learning time and correct responses. Further details about this test and the number of

removed participants will be given in sections “Learning times analysis” and “Correct

responses analysis”.

https://osf.io/w29ts/?view_only=c28b965cc9a74c54b56d7adb87417ff1
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Our analysis is threefold: number of unsuccessful participants (i.e., individuals who

did not reach the learning criterion), time (in terms of number of blocks) needed by

participants to complete the learning phase, and participants’ proportion of correct

responses. All three measures were assessed across conditions, both taken separately

(rule-based vs. similarity-based, blocked vs. interleaved, and constant vs. variable) and

combined (R + B + C vs. R + B + V vs. R + I + C vs. R + I + V vs. S + B + C vs. S +

B + V vs. S + I + C vs. S + I + V).

Unsuccessful participants analysis

The term “unsuccessful participants” refers to those individuals who did not meet

the learning criterion, either because they dropped out or because they exceeded the

maximum amount of blocks allowed to the experiment (200 learning blocks). Table 2 shows

the number of successful and unsuccessful participants per type of order taken both

separately and combined. A Fisher’s exact test of independence at 0.05 level was run to

determine whether the number of individuals who did not reach the learning criterion was

related to the type of order. The Fisher’s exact test was preferred to the chi-square test

because of its accuracy with small samples. None of the tests were significant (p-value

= 0.81 for rule-based vs. similarity-based, p-value = 0.64 for blocked vs. interleaved,

p-value = 0.64 for constant vs. variable, and p-value = 0.21 on the table with all

conditions). This means that the type of order in which stimuli were encountered did not

alter participants’ chance of reaching the learning criterion.

Learning times analysis

Three analyses were conducted to determine which condition led to the fastest

learning. All three analyses compared the time (in terms of the number of blocks) at which

participants reached the learning criterion.

Wilcoxon-Mann-Whitney test. In this analysis, the 20 participants who did

not meet the learning criterion were removed. Figure 2 shows the average number of blocks
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which were required for participants to meet the learning criterion as a function of the

experimental conditions taken separately (Figure A) and combined (Figure B). A two-sided

Wilcoxon-Mann-Whitney was run to compare the observed learning times. The use of a

non-parametric test was preferred to parametric tests such as z- and Student’s t-tests to

avoid making assumptions about the underlying distribution. The

Wilcoxon-Mann-Whitney test was significant at 0.05 level for within-category and

across-blocks orders (p-value = 0.027 for rule-based vs. similarity-based, p-value = 0.44 for

blocked vs. interleaved, and p-value = 0.02 for constant vs. variable), showing faster

learning in both rule-based and constant orders as compared to similarity-based and

variable orders, respectively. A statistical analysis of the learning time of participants in

each condition will be given in paragraph “Cox proportional-hazards model”.

Kaplan–Meier survival curves. The Kaplan-Meier estimator (Kaplan & Meier,

1958) is a survival analysis technique allowing researchers to estimate the expected

duration of time until an event of interest occurs (our event of interest is the exact moment

of the successful completion of the learning phase). Because this technique takes into

account participants who did not meet the learning criterion, all individuals were included

in the analysis. Figure 3 shows the survival probability for each type of order taken

separately (Figure A) and combined (Figure B) as a function of block number. The

survival probability shows how participants assigned to a given condition are likely to

continue the task, and consequently not meet the learning criterion. A log-rank test was

performed to evaluate the difference between survival curves. The log-rank test was

significant at 0.05 level for the within-category and across-blocks orders (for rule-based

vs. similarity-based p-value = 0.049, and for constant vs. variable p-value = 0.0076). This

shows that learning was faster in the rule-based and constant orders as compared to the

similarity-based and variable orders, respectively. The analysis of the combination of the

studied types of order is performed in the next paragraph by means of the Cox model.
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Cox proportional-hazards model. Similar to the Kaplan-Meier estimator, the

Cox model (Cox, 1972) is a survival analysis technique. Again, all participants were

included in the analysis. The Cox model is particularly advantageous because of its ability

to simultaneously account for multiple variables. Figure 4A shows the result of the Cox

model as a function of three variables (within-category, between-category, across-blocks

orders). The graph shows that the similarity-based order, the interleaved study, and the

variable manipulation across-blocks reduced participants’ hazard ratio as compared to their

respective reference conditions (i.e., rule-based order, blocked study, and constant

manipulation across-blocks). This means that these types of order were found to reduce

participants’ speed to meet the learning criterion. However, only the impact of

across-blocks manipulations was found significant (p-value = 0.06 for within-category

orders, p-value = 0.132 for between-category orders, and p-value = 0.009 for across-blocks

orders).

Figure 4B shows the result of the Cox model as a function of the conditions. The

hazard ratio of conditions S+B+V and S+I+V were found to be smaller than the hazard

ratio of the reference condition R+B+C (p-values = 0.007 and = 0.003, respectively),

meaning that participants in conditions S+B+V and S+I+V were statistically slower than

participants in condition R+B+C in reaching the learning criterion. We can therefore

anticipate that the combination R+C was the most beneficial, or vice versa, that the

combination S+V was the most detrimental.

Correct responses analysis

Because we were interested in analyzing the learning curves of participants who

learned the studied categories, unsuccessful participants (amounting to twenty) were

removed from the analysis. Figure 5 shows the average percentage of correct responses

among participants within the same type of order taken separately (Figure A) and

combined (Figure B), as a function of block number over the course of the learning phase.
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Only participants’ performance during random blocks is represented in the graph. Because

it was reasonable to think that successful participants would have continued to correctly

classify stimuli after reaching the learning criterion, their responses were completed with

the highest performance (i.e., 100% of correct responses) until block number 200. As can

be seen in Figure 5A, learning was more efficient in the rule-based, blocked, and constant

orders than in the similarity-based, interleaved, and variable orders, respectively. To assess

the difference between the learning curves, we performed a two-sided

Wilcoxon-Mann-Whitney test at each block and we corrected the result using the

Benjamini-Hochberg procedure (Benjamini & Hochberg, 1995) to take the plurality of tests

into account. The test was performed until the block number after which the average

percentage of correct responses (in the studied types of order) was higher than 95% (i.e.,

block number 78 for the within-category orders, block number 75 for both the

between-category and across-blocks orders). In the within-category orders, 14 over 26 tests

were rejected, whereas in the between-category orders none of the 25 tests were rejected. In

the across-blocks order, 12 over 25 tests were rejected. Therefore, the difference between

learning curves was significant for both within-category and across-blocks orders. As can

be seen in Figure 5B, learning was the less efficient in condition S+I+V followed by

condition S+B+V.

Transfer phase

Because we were interested in studying generalization patterns in participants who

learned and remembered the studied categories, participants who did not meet the learning

criterion (amounting to twenty) as well as participants who incorrectly classified more than

25% of learning items during transfer (amounting to forty) were removed from the analysis.

Figure 6 shows the average classification of the transfer items over the course of the

transfer phase, as a function of the type of order taken separately (Figure A) and combined

(Figure B). Quantity p(A) is the observed proportion that each transfer item was classified
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into category A during transfer. A two-sided Wilcoxon-Mann-Whitney test was performed

to assess the difference in generalization patterns item-by-item. Regarding the

within-category order, the test was significant for item T6 (p-value = 0.02). Participants in

the rule-based order classified item T6 into category A less often than participants in the

similarity-based order. Regarding the between-category orders, the test was significant for

item T5 (p-value = 0.046). However, considering the number of tests that were run

(amounting to seven tests per condition), a p-value equal to either 0.02 or 0.046 cannot be

considered statistically significant. No difference in generalization patterns was found in

participants assigned to across-blocks manipulations.

To further analyze classification patterns, we investigated whether participants in

different types of order (taken both separately and combined) applied different strategies to

classify new items. Three main strategies were considered: a rule-based strategy that uses

Filling pattern (plain vs. striped stimuli) as the main rule, a rule-based strategy that uses

Shape (circles vs. squares) as the main rule, and a similarity-based strategy. As mentioned

in Section “Ordering of stimuli”, Shape as Filling pattern allows participants to minimize

the number of exceptions when used as the diagnostic dimension. Participants adopting a

rule-based strategy would classify new stimuli on the basis of the main rule (Filling pattern

or Shape, depending on the chosen main rule), whereas participants adopting a

similarity-based strategy would classify new stimuli on the basis of their similarity to the

closest stored items.

Figure 7A shows the putative classification of the transfer items as a function of the

applied strategy. For instance, participants adopting a rule-based strategy with Filling

pattern as the main rule would more often classify items T1 and T2 into category A and

items T4, T5 and T6 into category B than participants adopting a similarity-based strategy.

Therefore, participants who adopted a rule-based strategy with Filling pattern as the main

rule could be discriminated from participants who adopted a similarity-based strategy by

projecting participants’ generalization patterns on Axis 1 = (1,1,0,-1,-1,-1,0). Following
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similar reasoning, participants who adopted a rule-based strategy with Filling pattern as

the main rule could be discriminated from participants who adopted a rule-based strategy

with Shape as the main rule by projecting participants’ generalization patterns on Axis 2 =

(1,1,0,0,-1,-1,0). Likewise, participants who adopted a rule-based strategy with Shape as

the main rule could be discriminated from participants who adopted a similarity-based

strategy by projecting participants’ generalization patterns on Axis 3 = (1,1,0,1,-1,-1,0).

Figure 7B shows the nature of the adopted strategy depending on the position of

participants’ generalization patterns on Axis 1, Axis 2, and Axis 3. For instance, the more

participants are on the right side of Axis 1, the more they used a rule-based strategy with

Filling pattern as the main rule instead of a similarity-based strategy. Likewise, the more

participants are on the right side of Axis 3, the more they used a similarity-based strategy

instead of a rule-based strategy with Shape as the main rule.

Figure 8 shows the distribution of participants’ generalization patterns on Axis 1,

Axis 2, and Axis 3 as a function of the type of order taken separately (Figure A) and

combined (Figure B). To facilitate readability, density functions of each type of order taken

separately and combined were added. As can be seen in Figure 8A, projections on all three

axes of the generalization patterns of participants in the rule-based order were higher than

those of participants in the similarity-based order. Similarly, projections on all three axes of

the generalization patterns of participants in the interleaved order were higher than those

of participants in the blocked order. No striking difference was however found between

participants with different across-blocks manipulations. A Wilcoxon-Mann-Whitney test

was conducted to assess the significance of the difference between distributions of different

types of order (see Table 3). The difference in generalization patterns between participants

in the rule-based and similarity-based orders was significant on Axis 1 (p-value = 0.031),

meaning that participants in the rule-based order showed more often than participants in

the similarity-based order generalization patterns that were more consistent with a

rule-based strategy with Filling pattern as the main rule than a similarity-based strategy.
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Regarding participants with different between-category orders, the test was significant on

all three axes (p-value = 0.034 on Axis 1, p-value = 0.020 on Axis 2, and p-value = 0.032

on Axis 3). This means that participants in the interleaved order showed more often than

participants in the blocked order generalization patterns that were more consistent with a

rule-based strategy with Filling pattern as the main rule than the studied alternative

strategies. Also, participants in the interleaved order adopted more often than participants

in the blocked order generalization patterns that were more consistent with a

similarity-based strategy than a rule-based strategy with Shape as the main rule.

In Figure 8B, we can notice that the projections on all three axes of the

generalization patterns of participants in conditions R+I+C and R+I+V were the highest.

The Wilcoxon-Mann-Whitney test was significant in all of the axis (p-value = 0.0032 on

Axis 1, p-value = 0.0034 on Axis 2, and p-value = 0.013 on Axis 3, see Table 3). This

shows that participants in conditions R+I+C and R+I+V adopted more often than

participants in other conditions generalization patterns that were more consistent with a

rule-based strategy with Filling pattern as the main rule than alternative strategies. Also,

between a rule-based strategy with Shape as the main rule and a similarity-based strategy,

participants in conditions R+I+C and R+I+V adopted more often the latter as compared

to participants in other conditions.

Discussion

Previous studies on category learning have shown that the sequence in which stimuli

are encountered can profoundly influence learning speed and category formation (Carvalho

& Goldstone, 2021; Kang & Pashler, 2012; Mathy & Feldman, 2016). However, the totality

of these studies has only focused on a specific type of order manipulation (either

within-category or between-category), ignoring potential interactions between different

types of presentation order. Here, we manipulated within-category, between-category, and

across-blocks manipulation orders within a single task.
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Our analysis of the learning phase focused on three aspects: i) number of

unsuccessful participants, ii) block number at which participants met the learning

criterion, and iii) learning progression. The analysis performed on the number of

unsuccessful participants was not significant, thus not showing an impact of the

presentation order on the ratio of individuals who did not reach the learning criterion.

The analysis of the learning speed showed that both within-category and

across-blocks manipulations influenced the pace at which categories were learned (with the

across-blocks manipulation being the main predictor of participants’ learning speed). More

specifically, the rule-based order was found more beneficial than the similarity-based order,

and a constant presentation across blocks was found more beneficial than a variable

presentation across blocks. Regarding combined types of order, participants in S+B+V

and S+I+V required a higher number of blocks than participants in R+B+C to reach the

learning criterion. Therefore, combination R+C was the most beneficial, while combination

S+V was the most detrimental.

The analysis of the exact moment at which participants met the learning criterion

was complemented by the analysis of participants’ learning progression across the learning

phase. The analysis of the learning curves showed again that the rule-based order and a

constant presentation across-blocks yielded superior learning to that of similarity-based

order and to that of variable presentation across-blocks, respectively. Therefore,

within-category and across-blocks manipulations affected participants’ performance during

learning both individually and combined.

Following the interpretation of Mathy and Feldman (2009), the benefit of the

rule-based order over the similarity-based order might be imputed to the illusory proximity

of stimuli that the similarity-based order might induce in participants’ minds. The

similarity-based order promotes a structure that is not fully instructive about the

categories and thus might temporarily mislead participants, in particular for the 5-4

category set often considered ‘rule-based’ in itself because of its use of discrete features. By
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contrast, the rule-based order first presents the most informative information, which could

yield superior learning.

The superiority of the constant across-blocks presentation over the variable

across-blocks presentation might be attributed to the limited amount of information

carried by the constant order. Limiting the variability of the sequences might have helped

participants focus on diagnostic information, enhancing the probability to either induct the

simplest rule or memorize the category membership of the items. Moreover, combining a

constant across-block manipulation with a rule-based order might have concurrently

promoted the induction of the main rule, thus benefiting learning.

Our analysis of the transfer phase was exclusively focused on participants’

classification of the transfer items. We found that within-category and between-category

orders had an impact on generalization patterns. More specifically, participants in the

rule-based order more often showed generalization patterns consistent with a rule-based

strategy with Filling pattern as the main rule than participants in the similarity-based

order. Likewise, participants in the interleaved order more often showed generalization

patterns consistent with a rule-based strategy with Filling pattern as the main rule than

participants in the blocked order. These results show an overall preference for a rule-based

strategy with Filling pattern as the main rule in participants assigned to both rule-based

and interleaved orders. By contrast, across-blocks manipulations were not found to alter

category transfer.

Finally, we found that participants in conditions R+I+C and R+I+V more often

adopted a classification logic consistent with a rule-based strategy with Filling pattern as

the main rule than participants in other conditions. This shows that the association of the

rule-based order with the interleaved order promoted the use of a rule-based strategy based

on Filling pattern.

The preference of participants in the rule-based order for a rule-based strategy with

Filling pattern as the main rule might be attributed to the logic upon which the rule-based



19

order is grounded. Presenting items following a “main rule (Filling pattern) plus

exceptions” structure might have facilitated participants to infer the simplest rule,

encouraging them to classify new items using the same inferred strategy.

The preference of participants in the interleaved order for a rule-based strategy with

Filling pattern as the main rule might find an explanation on the Sequential Attention

Theory (Carvalho & Goldstone, 2015b). Alternating the presentation of stimuli of different

categories might have helped to focus participants’ attention toward the differences between

items, promoting the detection of the main rule. Since half of the participants in the

interleaved order were concurrently assigned to a rule-based order, it is not surprising that

the most favored main rule was the one based on Filling pattern (plain vs. striped stimuli).

An additional contribution of the present study is the promotion of underemployed

statistical tools. A common practice in psychology is to remove participants who did not

fulfill the objective of the task (Mathy & Feldman, 2016; Meagher et al., 2017; Meagher

et al., 2018). Nevertheless, unsuccessful participants can carry useful information. In the

present study, we made use of two survival analysis techniques (the Kaplan-Meier survival

curves and the Cox model) that allow researchers to account for individuals who quit the

task. We advise the use of similar statistical tools when the conditions allow them.

Study limitations

One limitation of the present study is the use of Medin and Shaffer’s 5-4 category

set. These artificial categories are advantageous since they have been thoroughly

scrutinized in the past, but they have the disadvantage to be distant from real-world

categories. Also, the 5-4 category set has a clear “rule plus exceptions” structure and its

ratio between learning and transfer items is particularly high (nine over seven). For these

reasons, the present method should be reproduced with different categories and stimuli.

Our idea is that we could not use a new structure as a benchmark while adopting both new

experimental factors and new statistical tools.
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A second limitation is due to a choice regarding the design of the experiment.

Stimuli in the rule-based order were ordered following the “Filling pattern rule plus

exceptions” structure. However, the dimension Shape could have equivalently been used

instead of the dimension Filling pattern. Indeed, both dimensions minimize the number of

exceptions (two in both scenarios) when a “dimension plus exceptions” structure is

adopted. Also, dimensions could have been instantiated by different features. For instance,

Color could have distinguished the right and left objects within the cubes, Shape the

objects at the front of the hypercube from those at the back, Size the objects at the top of

the hypercube from those at the bottom, and Filling pattern the objects in the left cube

from those in the right cube. We felt that multiplying our sample to consider all the

above-mentioned variations would have been too costly.
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Table 1

The number of participants assigned to each of the 8 conditions of the experiment.

Rule-based Similarity-based

Constant Variable Constant Variable

Blocked 22 25 26 25

Interleaved 25 21 24 21
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Table 2

The number of successful and unsuccessful participants split per type of order taken both separately

and combined.

Type of order Successful Unsuccessful

Within-category orders

Rule-based 84 9

Similarity-based 85 11

Between-category orders

Blocked 89 9

Interleaved 80 11

Across-blocks orders

Constant 88 9

Variable 81 11

Conditions

R + B + C 21 1

R + B + V 22 3

R + I + C 21 4

R + I + V 20 1

S + B + C 26 0

S + B + V 20 5

S + I + C 20 4

S + I + V 19 2
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Table 3

Results of the Wilcoxon-Mann-Whitney test on the projections of participants generalization

patterns on Axis 1, Axis 2, and Axis 3 as a function of the type of order, taken both separately

and combined.

Type of test Axis p-value

Within-category orders

Rule-based > Similarity-based 1 0.031∗

Rule-based > Similarity-based 2 0.052

Rule-based > Similarity-based 3 0.150

Between-category orders

Interleaved > Blocked 1 0.034∗

Interleaved > Blocked 2 0.020∗

Interleaved > Blocked 3 0.032∗

Across-blocks orders

Constant = Variable 1 0.870

Constant = Variable 2 0.830

Constant = Variable 3 0.500

Conditions

R + I + C/V > others 1 0.003∗∗

R + I + C/V > others 2 0.003∗∗

R + I + C/V > others 3 0.013∗
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Figure 1

Categories and stimulus items of our categorization task. At the top, the 5-4 category set of Medin

and Schaffer (1978), represented here in a Hasse Diagram forming a hypercube. Members of

category A are represented by black dots, members of category B are represented by white dots,

and transfer items are represented by empty vertices. At the bottom, illustration of the stimulus

items that varied along four Boolean dimensions (Color, Shape, Size, and Filling pattern).
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Figure 2

The average number of blocks taken by participants to meet the learning criterion as a function of

the experimental conditions, taken separately (Figure A) and combined (Figure B). In Figure B,

color distinguishes the within-category order (light blue for rule-based and dark blue for

similarity-based), the contrast of borders distinguishes the between-category order (black for

blocked and gray for interleaved), and opacity of the colors distinguishes the across-blocks order

(semi-transparent for constant and opaque for variable). Asterisks show the significance of the

Wilcoxon-Mann-Whitney test in Figure A. Error bars show ±1SE.
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Figure 3

Kaplan-Meier survival curves for each type of order, taken separately (Figure A) and combined

(Figure B) as a function of block number. Transparent areas represent the 95% confidence

intervals. p-values of the log-rang test assessing the difference between survival curves are shown

on the bottom-left side of each graph of Figure A.
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Figure 4

Results of the application of the Cox model as a function of the types of order, taken separately

(Figure A) and combined (Figure B). Hazard ratios and their 95% confidence intervals are showed

for each type of order (taken both separately and combined) in the middle. Statistical significance

of the Wald test is shown for each type of order (taken both separately and combined) on the right

side.
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Figure 5

The average percentage of correct responses among participants within the same type of order,

taken separately (Figure A) and combined (Figure B) as a function of block number over the

course of the learning phase. In Figure A, only performance across random blocks is plotted.

Asterisks indicate the blocks on which the Wilcoxon-Mann-Whitney test with the

Benjamini-Hochberg correction was rejected. In Figure B, color distinguishes the within-category

order (blue for rule-based and gray for similarity-based), line-type distinguishes the

between-category order (solid line for blocked and dashed line for interleaved), and shape

distinguishes the across-blocks order (dots for constant and crossed squares for variable). To

increase the smoothness of the curves, performance at each random block is obtained by averaging

the performance from the two preceding random blocks, the current random block, and the two

following random blocks. To make the plot more readable, only performance every three random

blocks are plotted.
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Figure 6

The average classification of the transfer items (T1, T2, T3, T4, T5, T6, T7) during the transfer

phase (amounting to five blocks), as a function of types of order taken separately (Figure A) and

combined (Figure B). Quantity p(A) is the observed proportion that each of the stimuli labeled

under the abscissa was classified into category A during the transfer phase. Quantity p(A) was

first computed for each participant before being averaged across participants. The average

classification of the nine learning items is not included. Asterisks indicate the items on which the

Wilcoxon-Mann-Whitney test was found significant. Error bars show ±1SE.
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Figure 7

Putative classification of the transfer items (T1, T2, T3, T4, T5, T6, T7) as a function of the

applied strategy (rule-based strategy using Filling pattern, rule-based strategy using Shape, and

similarity-based strategy). Quantity p(A) is the putative probability for a chosen strategy to

classify into category A each of the stimuli labeled under the abscissa. On the bottom (Figure B),

nature of the adopted strategy depending on the position of participants’ generalization patterns on

Axis 1, Axis 2, and Axis 3. Coordinates of Axis 1, Axis 2, and Axis 3 are (1,1,0,-1,-1,-1,0),

(1,1,0,0,-1,-1,0), and (1,1,0,1,-1,-1,0), respectively.
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Figure 8

Distributions and density functions of the projections on Axis 1, Axis 2, and Axis 3 of

participants’ generalization patterns as a function of type of order taken separately (Figure A) and

combined (Figure B). Coordinates of Axis 1, Axis 2, and Axis 3 are (1,1,0,-1,-1,-1,0),

(1,1,0,0,-1,-1,0), and (1,1,0,1,-1,-1,0), respectively.
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