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Abstract

This study investigates how different types of presentation order influence
category learning and generalization, by simultaneously manipulating within-
category (rule-based vs. similarity-based), between-category (blocked vs. inter-
leaved), and across-blocks (constant vs. variable) orders. This research offers a
unique and novel approach through both an individual and concurrent analysis
of the studied factors (with the investigation of across-blocks manipulations be-
ing unprecedented). Both within-category and across-blocks manipulations were
found to affect learning, with rule-based and constant orders being more benefi-
cial than similarity-based and variable orders, respectively. Moreover, a significant
interaction was found between within-category and across-blocks manipulations.
Regarding the classification of novel stimuli, learners in the rule-based and inter-
leaved orders showed generalization patterns that were more consistent with a
rule-based strategy, as compared to learners in the similarity-based and blocked
orders, respectively.

Keywords: presentation order, category learning and generalization, rule-based
vs. similarity-based orders, interleaved vs. blocked study, variable vs. constant
across-blocks manipulations

Introduction

What is the best way to memorize lists of vocabulary in another language? Would you
study words category by category (for instance, red - blue - yellow - etc., then dog - cat - canary -
etc.) to reinforce associations within categories, or would you rather alternate words from different
categories (for instance, black - dog - yellow - canary - white - cat - etc.) because you think the two
categories can better benefit each other when intertwined? Also, how would you arrange words
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within a category? Would you first learn words that are phonetically similar (for instance, cat -
bat - etc.) or words that are related by a given structure (for instance, warm vs. cold colors) to
induce sub-groups, or would you rather study them in random order to facilitate more personal
associations from the learner? We believe that these alternative sequences and their combination
inevitably produce different outcomes.

A few studies have shown that presentation order influences learning speed and retention
in a variety of domains such as memory (Bloom & Shuell, 1981; Farrell, 2008), eyewitness identi-
fication (Wells, 2014), serial recall (Miller & Roodenrys, 2012), risk perception (Helsdingen et al.,
2011; Kwan et al., 2012), and categorization (Jones & Sieck, 2003; Mack & Palmeri, 2015; Mcdaniel
et al., 2013; Sandhofer & Doumas, 2008; Zeithamova & Maddox, 2009; Zotov et al., 2011). In catego-
rization for instance, considerable effort has been directed toward the study of between-category
orders (Carvalho & Goldstone, 2014a,b, 2015a, 2021; Goldstone, 1996; Kornell & Bjork, 2008; Kor-
nell et al., 2010; Kost et al., 2015; Noh et al., 2016; Rohrer, 2009, 2012; Sana et al., 2016; Yan et al.,
2017; Zulkiply & Burt, 2012; Zulkiply et al., 2012).

More specifically, between-category orders have been thoroughly examined by manipu-
lating interleaving (in which categories are presented alternatively, i.e. a Category-1 member fol-
lowed by a Category-2 member) vs. blocking (in which members of a single category are presented
in a row on successive trials, i.e. a Category-1 member followed by other Category-1 members). In
addition to a spacing effect (Carpenter et al., 2012; Carpenter & Mueller, 2013; Cepeda et al., 2008;
Hintzman et al.,, 1975), interleaving stimuli of different categories has been shown to highlight the
differences between these stimuli, thus facilitating learning and transfer (Birnbaum et al., 2013;
Kang & Pashler, 2012; Kornell & Bjork, 2008; Wahlheim et al., 2012; Yan et al., 2017; Zulkiply et al.,
2012). However, there has also been evidence in favor of blocking members of a same category
(Carpenter & Mueller, 2013; Carvalho & Albuquerque, 2012; Carvalho & Goldstone, 2011; de Zilva
& Mitchell, 2012; Rawson et al., 2014).

A lesser number of studies have focused on within-category order effects on category
learning (Elio & Anderson, 1981, 1984). Originally explored in word recall (Bower et al., 1969) and
old-new recognition tasks (Medin & Bettger, 1994), the manipulation of order within members
of a same category has moderately been extended to categorization tasks after the original work
of Elio (Corcoran et al., 2011; Mathy & Feldman, 2009, 2016; Stewart et al., 2002). An example of
within-category manipulation is the similarity-based order in which stimuli of a same category
are arranged in order to maximize the similarity between contiguous examples. This typical ma-
nipulation has recently been contrasted with a rule-based order in which stimuli obeying a rule
precede the exceptions to the rule. For instance, Mathy and Feldman (Mathy & Feldman, 2016)
have found that participants following a “rule plus exceptions” structure show a greater number
of generalization patterns consistent with rule-based retrieval than participants in the similarity-
based condition. The study of rule-based vs. similarity-based order is particularly relevant since
these order manipulations match two extreme ways of learning: an inductive process based on
abstraction and an elementary process based on associative mechanisms (Sloman, 1996). The rule-
based order is supposed to help participants abstract the logical rule describing the stimuli, while
the similarity-based order uses temporal proximity to strengthen the memory traces of contiguous
items.

The rationale for the present study is to investigate the effect of presentation orders on
memorization and subsequent categorization. While all above-mentioned studies have manipu-
lated a single factor (either between-category or within-category orders), the present study si-



multaneously manipulates between-category orders (blocked vs. interleaved), within-category or-
ders (rule-based vs. similarity-based), and across-blocks orders (constant vs. variable). Effectively,
because we used generic types of within-category presentation orders (rule-based vs. similarity-
based), the order in which stimuli are presented can still vary once this type of order is chosen. For
instance, if we presented a series of faces to be categorized by grouping them by gender or by hair
color, we could still apply within-order variations between blocks. A first example of manipulation
would consist of varying the order of the faces (within categories) from one block to another. This
is what we call across-block variability in our design. Manipulations across-blocks were thought
to be particularly important because they have not been addressed by previous studies. For in-
stance, we know that repeating the same sequences using a Hebb-repetition learning procedure
increases memorization (French et al., 2011; O’Shea & Clegg, 2006). We therefore hypothesized
that maintaining a constant presentation order across blocks could facilitate grouping processes,
in comparison to variable orders.

We expected an interaction between within-category orders (rule-based vs. similarity-
based) and across-blocks orders (constant vs. variable) because grouping processes should greater
benefit the extraction of rules (which in the conception adopted in the present study are more hi-
erarchical by nature than similarity relations). We finally hypothesized a full interaction between
our three factors. For instance, we expected a maximal beneficial effect using a rule-based presen-
tation order for which the categories would be blocked and using constant orders across blocks.
This combined condition should let participants more easily extract rules and exceptions by focus-
ing on stimuli of one category and by grouping them. On a more theoretical level, the presence or
absence of interactions should be informative for current categorization models, which in the fu-
ture could be adapted to account for differential effects of presentation orders. Any type of model
(for instance, rule-based) should be able to account for the conditions that can favor the formation
of a particular type of representation (such as a rule). On a more practical level, our findings could
have a huge impact on how to organize learning (for instance in the classroom), train experts (for
medical image classification), or improve machine learning algorithms.

Because we tested new factors and combinations of factors, we decided to use the widely
employed 5-4 category structure from Medin and Schaffer (Medin & Schaffer, 1978) to generate the
stimuli and categories, and to study the strategies engaged by participants. A detailed description
of the 5-4 category set can be found in Categories. This structure has been analyzed in numerous
studies and has influenced research in category learning for more than a quarter century (Blair
& Homa, 2003; Cohen & Nosofsky, 2003; Johansen & Kruschke, 2005; Johansen & Palmeri, 2003;
Lafond et al., 2007; Lamberts, 2000; Minda & Smith, 2002; Rehder & Hoffman, 2005; Smith & Minda,
2000; Zaki et al., 2003; Nosofsky et al., 1992, 1994; Palmeri & Nosofsky, 1995; Medin & Smith, 1981;
Medin et al., 1984; Anderson & Betz, 2001). Moreover, the artificial structure of this category set
allows for the presence of stimuli without a category label. The advantage is that on these stimuli
different classification strategies lead to distinctive response patterns, allowing us to study the
mental representation of the categories (see details in Transfer phase). For these reasons, the 5-4
category set appeared to be a fruitful starting point for our investigation. This study intends to
evaluate how different presentation orders impact the speed at which categories are learned, as
well as the nature of learning.



Figure 1

Categories and stimulus items of the categorization task. At the top, the 5-4 category set of Medin
and Schaffer (Medin & Schaffer, 1978), represented here in a Hasse Diagram forming a hypercube.
Members of category A are represented by black dots, members of category B are represented by
white dots, and transfer items are represented by empty vertices. At the bottom, illustration of the
stimulus items that varied along four Boolean dimensions (Color, Shape, Size and Filling pattern).

Method
Participants

One hundred and eighty-nine participants contributed to this study. Among them, one
hundred and thirty were sophomore or junior students from University Cote d’Azur who received
course credits in exchange for their participation. The remaining fifty-nine participants were re-
cruited on campus on a voluntary basis. We used G*Power (Faul et al., 2007) to estimate the power
of detecting a small-medium effect size (f = 0.2) for the interaction between the three types of
order manipulation (2 X 2 x 2 = 8 between-subject groups) with a three-way ANCOVA model,
considering 189 participants, 1 co-variate (i.e., the block number), and @ = 0.05. The power
achieved was 78%. Note that the data-set corresponding to the first one hundred and thirty par-
ticipants has already been used in (Mezzadri et al., 2022) for testing categorization models. The
experimental procedure was approved by the local ethics committee (CERNI #2020-74) of Univer-
sité Cote d’Azur and the experiment was performed in accordance with relevant guidelines and
regulations. Informed consent was obtained from all participants prior to participation.

Categories

Each participant was administrated a single 5-4 category set (Medin & Schaffer, 1978).
This structure is composed of 16 stimuli, varying on four different binary-valued dimensions (see
Figure 1, on the top). In this category set, 5 stimuli belong to category A, 4 belong to category B,
and the remaining 7 are transfer stimuli. These categories are more structured than random (i.e.,
a clear rule-plus-exceptions pattern emerges) and are linearly separable. The 5 + 4 = 9 stimuli
characterized by a category label were presented in both the learning and transfer phases, whereas
the 7 transfer stimuli were presented in the transfer phase exclusively.



Stimuli

Stimuli varied along four Boolean dimensions (Color, Shape, Size, and Filling pattern). The
colors were either blue or red; shapes were either square or circle; sizes were either small or big,
and filling patterns were either plain or striped. The combination of these options formed 2* = 16
items (see Figure 1, on the bottom). Color distinguished the objects at the front of the hypercube
from those at the back, Shape distinguished the objects in the left cube from those in the right cube,
Size distinguished the right and left objects within the cubes, and Filling pattern distinguished the
objects at the top of the hypercube from those at the bottom. Each dimension was instantiated by
the same physical features and the same category structure was applied to these features across
participants.

Phases

A learning phase in which participants were instructed to learn the classification of 9 learn-
ing stimuli was followed by a transfer phase in which participants were tested upon presentation
of 7 novel stimuli (plus the 9 stimuli previously acquired). In the learning phase, both feedback and
no-feedback training were used. In particular, two blocks of feedback training (in which the order
of the stimuli was manipulated) were followed by one block of no-feedback training (in which
stimuli were randomly presented). This pattern was repeated until the end of the learning phase.
The use of random blocks with no-feedback allowed us to assess learning with neither order ma-
nipulation nor feedback interfering with the measure of performance. The unbalanced ratio of
two blocks of feedback training followed by one block of no-feedback training aimed at increasing
the influence of our manipulation, with the idea that the random block could still interfere with
the learning process. Participants had to correctly classify stimuli in three no-feedback blocks of
5+ 4 = 9 stimuli (not necessarily consecutive) to complete the learning phase. The choice of
three is arbitrary, but appeared to be a good trade-off between maximizing the memorization of
the categories and minimizing the duration of the task (a fundamental point considering that the
task was conducted online). Participants were given 200 blocks at the most to reach the learning
criterion. Once participants met the learning criterion, the transfer phase was initiated. Partic-
ipants were informed that they successfully completed the learning phase and that the transfer
phase was about to start. The transfer phase was composed of 5 blocks of 16 stimuli (the 5+4 =9
learning stimuli and the 7 novel stimuli).

Ordering of stimuli

The experiment was characterized by a full factorial design. Three factors were used, each
one having two levels: a within-category order manipulation (Rule-based vs. Similarity-based), a
between-category order manipulation (Blocked vs. Interleaved), and a manipulation of order across
blocks (Variable vs. Constant). The combination of these factors formed eight conditions (e.g.,
“Rule-based + Interleaved + Constant”, etc.). For simplicity purposes, each condition is denoted
using the first letter of each type of order. For instance, condition “Rule-based + Interleaved +
Constant” is denoted R+I+C. The number of participants assigned to each condition is given in
Table 1. As mentioned above, order was only manipulated in the no-feedback blocks of the learning
phase.



Within-category order manipulation. In the rule-based order, stimuli were ordered
following a “principal rule plus exceptions” structure, meaning that examples obeying the principal
rule were presented strictly before the exceptions. The specific “principal rule plus exceptions”
structure of our experiment was the following: all striped items belong to category A except for
the small red square, while all plain items belong to category B except for the big red circle (see
Figure 1). Therefore, items Ay, Aa, A3, As were strictly presented before item A4, and items
By, Ba, By were strictly presented before item Bj3. The items belonging to the principal rule
(whether belonging to categories A or B) were randomly selected. Presenting stimuli belonging
to the dominant rule in a random order was thought to favor an abstraction process, given that
other sequences would have increased the risk of temporarily inducing less informative rules,
thus delaying learning. Note that instead of using a principal rule based on Filling pattern (plain
vs. striped stimuli), we could have used a principal rule based on Shape (circles vs. squares). Indeed,
both rules minimize the number of exceptions.

In the similarity-based order, members within a category were presented in a way that
maximized the similarity between adjacent learning stimuli. The first stimulus was randomly
chosen while subsequent stimuli were (randomly) chosen among those that were the most similar
to the immediately previous item. Similarity between two items x and y was computed by counting
the number of common features they shared:
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where x; and y; are the feature values of stimuli x and y on dimension i. For instance, the small
plain blue circle and the small striped red square have one single feature in common (small), thus
their similarity is 1.

Between-category order manipulation. In the blocked study, categories were strictly
blocked (AAAABBBB or BBBBAAAA), while in the interleaved study categories were strictly
alternated (ABABABAB). Because of the regularity of both patterns, the introduction of random
blocks during learning was necessary. Indeed because of these repetitive patterns, participants
could have guessed the correct classification without paying attention to the stimuli. The ratio
between blocked (or interleaved) blocks and random blocks is 1:3, as for the feedback/no-feedback
blocks. Therefore, a random block with no-feedback always follows two blocks in which categories
are blocked (or interleaved) and feedback is provided. Note that in random blocks feedback was
never provided, whereas in blocked/interleaved blocks feedback was always provided.

Across-blocks order manipulation. In the constant manipulation across blocks, the
same sequence of stimuli (but obeying the constraints of the between- and within-category or-
ders) was presented in all blocks, while in the variable manipulation across blocks the sequence
of stimuli varied from one block to another (again, obeying the constraints of the between- and
within-category orders).

Procedure

The categorization task was computer-driven and was conducted online. Participants re-
ceived instructions before the task began. Stimuli were presented one at a time for 3 s on the center
of the computer screen. Category A was associated with the up key, while category B was asso-
ciated with the down key. Participants had to classify the stimulus in one of the two categories (A



Table 1

Number of participants assigned to each of the 8 conditions of the experiment.

Rule-based Similarity-based

Constant Variable Constant Variable
Blocked 22 25 26 25
Interleaved 25 21 24 21

and B) using these two response keys. Once the key pressed, a feedback indicating the correctness
of participants’ classification appeared for 1 s at the bottom of the screen (this was the case only
in blocks where feedback was provided). If no key was pressed, the text ’too late’ appeared for 1
s at the bottom of the screen. In order to encourage learning, the percentage of correct responses
in a block was displayed for 1 s at the end of each random block.

Results
Learning phase

Two of our main questions of interest are i) whether the speed at which the concept is
learned is affected by the types of order, and ii) whether there are interactions between these types
of order. To answer the first question, we analyzed the time needed by participants to complete
the learning phase (in Analysis of the learning times), whereas to answer the second question,
we performed an analysis of the interactions using a three-way ANCOVA (in Analysis of the
interactions between the types of order). Two additional analyses can be found in Appendix A and
B. The first looks at the number of individuals who did not reach the learning criterion, whereas
the second analyzes the percentage of correct responses given by participants over the course of
the learning phase. Data from 2 participants who pressed no key on more than 15% of the trials
were excluded from the analyses.

Analysis of the learning times

Figure 2 shows the average number of blocks which were required for participants to meet
the learning criterion as a function of the experimental conditions, taken separately (Figure A) and
combined (Figure B). Visually, the rule-based order appears more beneficial than the similarity-
based order, and the constant condition appears more beneficial than the variable condition. Note
that not all participants were taken into account in Figure 2, since 20 of them did not meet the
learning criterion (see Appendix A for details).

To determine which condition led to the fastest learning while accounting for “unsuccess-
ful participants” (i.e., individuals who did not meet the learning criterion), we used two survival
analysis techniques: the Kaplan-Meier survival curves and the Cox proportional-hazards model.

Kaplan—-Meier survival curves. We used the Kaplan-Meier estimator (Kaplan & Meier,
1958) to estimate the expected duration of time until the successful completion of the learning
phase, considering data from participants who did not complete the task as censored. Figure 3
shows the survival probability as a function of block number for each type of order, taken sepa-
rately (Figure A) and combined (Figure B). The survival probability estimates how likely partici-



A Within—category Between-category Across-blocks
60~ 60~ 60~

9 . s L
e e I 2
840 —_ 8 40- 840 I
5 5 5
k-] k-] k-]
] ] ]
2 2 2
€ 20- € 20- € 20-
5 5 5
-4 z -4
0- 0- 0-
Rule-based Sim.-based blocked interleaved constant variable
B Within—-category Between-category Across-blocks
M Rule-based Bl socked B constant
W sim-based B nterteaved B variabe

Condition

-
20-
0-
+BH +14+ R++V S+B+C S+B+V S+H+C SH+V

Average number of blocks taken by participants to meet the learning criterion as a function of the
experimental conditions, taken separately (Figure A) and combined (Figure B). In Figure B, color dis-
tinguishes the within-category order (light blue for rule-based and dark blue for similarity-based),
contrast of borders distinguishes the between-category order (black for blocked and gray for inter-
leaved), and opacity of the colors distinguishes the across-blocks order (semi-transparent for constant
and opaque for variable). Error bars show =1SE. Note that only the participants that reached the
learning criterion were taken into account.

1

Number of blocks
N
]

Figure 2

pants assigned to a given condition are to continue the task (i.e., to not meet the learning criterion).
A log-rank test was performed to evaluate the difference between survival curves. The log-rank
test was significant at 0.05 level for the within-category and across-blocks orders (for rule-based
vs. similarity-based p = .049, and for constant vs. variable p = .0076). This shows that learning
was faster in the rule-based and constant orders as compared to the similarity-based and variable
orders, respectively.

Cox proportional-hazards model. Similarly to the Kaplan-Meier estimator, the Cox
model (Cox, 1972) allows us to consider failures to complete the task as censored data, avoiding to
remove unsuccessful participants. This model is particularly advantageous because of its ability
to simultaneously account for multiple variables. Therefore, we use it to simultaneously analyze
the influence of the three types of order (within-category, between-category, across-blocks orders)
on survival probability. Figure 4A shows the result of the Cox model as a function of our three
variables (within-category, between-category, across-blocks orders). The graphs show that the
similarity-based order, the interleaved study, and the variable manipulation across-blocks reduced
participants’ hazard ratio as compared to their respective reference condition (i.e., rule-based order,
blocked study, and constant manipulation across-blocks). This means that these types of order
were found to reduce participants’ speed to meet the learning criterion. However, only the impact
of across-blocks manipulations was found significant (p = .06 for within-category orders, p =
.132 for between-category orders, and p = .009 for across-blocks orders). Figure 4B shows the
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Kaplan-Meier survival curves as a function of block number for each type of order, taken separately
(Figure A) and combined (Figure B). Transparent areas represent the 95% confidence intervals. p-values
of the log-rang test assessing the difference between survival curves are showed on the bottom-left side
of each graph of Figure A.
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Results of the application of the Cox model as a function of the types of order, taken separately (Figure
A) and combined (Figure B). Hazard ratios and their 95% confidence intervals are showed in the middle.
Statistical significance of the Wald test is showed on the right.

result of the Cox model as a function of the conditions. Hazard ratio of conditions S+B+V and
S+I+V were found to be significantly smaller than the hazard ratio of the reference condition
R+B+C (p = .007 and p = .003, respectively), meaning that participants in conditions S+B+V
and S+I+V were statistically slower than participants in condition R+B+C in reaching the learning
criterion. We can therefore anticipate on the conclusion of the present study (based on all analyses)
that the combination S+V was the most detrimental.

Analysis of the interactions between the types of order

The previous survival analysis techniques allowed us to basically look at main effects.
We now aim at searching for interactions between the three types of order manipulation during
learning. To do so, we performed a three-way ANCOVA (2 x 2 x 2 with interactions) with within-
category order (rule-based vs. similarity-based), between-category order (blocked vs. interleaved),
and across-blocks manipulation (constant vs. variable) as between-subject factors. The number of
correct responses per block was the dependent variable and block number was the only co-variate.
A probit transformation was applied to the dependent variable in order to meet the assumption
of normality. To ensure an equal contribution from each participant, we completed participants’
responses until block 72. Since 80% of the participants ended the learning phase before block 72,
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Estimated marginal means (EMMs) for the interaction between within-category and across-blocks
orders, with Bonferroni adjustment for multiple testing correction.

this choice allowed us to ensure an equal number of observations for each participant, while lim-
iting the number of observations that were removed or added. Note that we applied the three-way
ANCOVA multiple times by varying the block number until which the responses where completed
(i-e., block number 48, 51, and 57 corresponding to the 65%, 70%, and 75% quantile). The results
were qualitatively the same each time. To complete the data set of participants who ended the
experiment before block 72, we iterated their last random block until block 72. We thought it
was reasonable to think that participants would have continued to perform in a similar way after
ending or abandoning the learning phase. Eighteen observations were found to be multivariate
outliers and were excluded from the analysis. Only the interaction between within-category and
across-blocks orders was found significant (F(1,4461) = 41.52,p < .0001,775 = .009). To further
investigate this interaction, we conducted an analysis of simple main effects, applying Bonferroni
adjustment (Dunn, 1961) for multiple testing correction. The simple main effect of within-category
order was significant in both the constant (p < .019) and variable (p < .0001) across-blocks group,
while the simple main effect of across-blocks order was only significant in the similarity-based
within-category group (p < .0001). These effects can be visualized in Figure 5. To complete the
analysis, we performed a chi-squared test to assess the difference in performance between the
three-way ANCOVA with and without interactions. The difference was significant (p < .0001)
and the three-way ANCOVA with interactions was the best fitting model.

Transfer phase

Our next aim was to determine whether the types of order affected i) performance on
learning stimuli and ii) generalization patterns on transfer stimuli during the transfer phase. Be-
cause we were interested in studying performance and generalization patterns in participants who
learned the studied categories, participants who did not meet the learning criterion (amounting to
twenty) were excluded from the following analyses. Data from 8 participants who pressed no key
on more than 15% of the trials were additionally excluded from the analyses.
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Analysis of performance on learned stimuli

Figure 6 shows the percentage of correct responses for the learning stimuli presented
during transfer, as a function of the types of order (taken separately). The percentage of cor-
rect responses was first computed for each participant and then averaged across participants. A
two-sided Wilcoxon-Mann-Whitney test was performed to assess the difference in performance
between the two conditions within each type of manipulation. None of the tests were found signif-
icant (p = .703 for rule-based vs. similarity-based, p = .370 for blocked vs. interleaved, p = .057
for constant vs. variable), showing that performance on learning stimuli was not influenced by
the type of order. Although no significant effect was found, one can note that the p-value for
constant vs. variable is close to 0.05 and that the direction of the effect (i.e., participants in the
constant condition learned better) is coherent with the one that was found in the learning phase
(i.e., participants in the constant condition learned faster).

Analysis of generalization patterns on transfer stimuli

Figure 7 shows the average classification of the transfer items over the course of the trans-
fer phase as a function of type of order (taken separately). Quantity p(A) is the observed propor-
tion that each transfer item was classified into category A during transfer. To determine whether
participants in different conditions applied different strategies for the classification of novel stim-
uli, we computed the distance of the observed generalization patterns to four specific strategies
(distances were computed using the L1 metric and were normalized).

The following strategies were considered: a rule-based strategy that uses Filling pattern
(plain vs. striped stimuli) as main rule, a rule-based strategy that uses Shape (circles vs. squares)
as main rule, a similarity-based strategy, and a random strategy. Participants adopting a rule-
based strategy would classify new stimuli on the basis of the main rule (Filling pattern or Shape,
depending on the chosen main rule), whereas participants adopting a similarity-based strategy
would classify new stimuli on the basis of their similarity to the closest stored items. In the random
strategy, novel stimuli would be randomly classified (50% of chance to classify them into category
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Figure 8

Putative classification of the transfer items (11, 1, T3, Ty, T5, T4, I7) as a function of the applied
strategy (rule-based strategy using Filling pattern, rule-based strategy using Shape, similarity-based
strategy, and random strategy). Quantity p(A) is the putative probability for a chosen strategy to
classify into category A each of the stimuli labeled under the abscissa.

A). The rule-based strategy that uses Shape as main rule was included because Shape (as Filling
pattern) allows participants to minimize the number of exceptions when used as the diagnostic
dimension (see Ordering of stimuli). Putative classification of the transfer stimuli for each of the
above-mentioned strategies is shown in Figure 8.

Figure 9A shows the average distance of the observed generalization patterns to the
above-mentioned strategies. The closest strategies to the observed generalization patterns are
the similarity-based strategy and the Filling pattern rule-based strategy, followed by the random
strategy, and finally by the Shape rule-based strategy. A two-sided Wilcoxon-Mann-Whitney test
was performed to assess the difference in distribution between the different strategies. We found
a significant difference between Shape rule-based strategy and random strategy (p < .0001), and
between random strategy and Filling rule-based strategy (p < .0001), but not between Filling
rule-based strategy and similarity-based strategy (p = .458). Since the Shape rule-based strategy
and the random strategy were the farthest to the observed patterns, they were excluded from the
following analyses.

Figure 9B-C-D shows the average distance of participants’ generalization patterns to two
specific strategies (the Filling pattern rule-based strategy and the similarity-based strategy), as a
function of the type of order within each manipulation (within-category in Figure B, between-
category in Figure C, and across-blocks in Figure D). While distances to the similarity-based strat-
egy were similar across types of order within the same manipulation, distances to the Filling pat-
tern rule-based strategy largely varied. More specifically, generalization patterns of participants
in the rule-based order were significantly closer to the Filling pattern rule-based strategy than
participant in the similarity-based strategy (p = .045). The same applies to participants in the
interleaved study as compared to those in the blocked study (p = .004). An alternative analysis
leading to the same conclusion can be found in Appendix C.
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Average distance of participants’ generalization patterns on novel stimuli to specific strategies (rule-
based strategy using Filling pattern, rule-based strategy using Shape, similarity-based strategy, and
random strategy), for all participants (Figure A) and for each type of order within the same manipu-
lation (Figure B-C-D). Distances were first computed for each participant before being averaged. The
L1 norm was used and distances were normalized prior to averaging. Asterisks show the significance
of the two-sided Wilcoxon-Mann-Whitney test.

Discussion

Previous studies on category learning have shown that the sequence in which stimuli
are encountered can profoundly influence learning speed and category formation (Carvalho &
Goldstone, 2021; Kang & Pashler, 2012; Mathy & Feldman, 2016). However, the totality of these
studies have only focused on a subset of types of presentation orders (either within-category or
between-category manipulations), separately, ignoring potential interactions between different
types of manipulations. Here, we manipulated within-category, between-category, and across-
blocks order manipulations within a single task to study their separate and combined impact on
learning speed and generalization patterns. The main question of interest is whether these types of
order manipulation i) influence how fast categories are learned, ii) interact with one another during
learning, and iii) affect classification of novel stimuli. We here used a single category structure,
namely the ‘5-4°, to which we applied our combined manipulations of presentations orders. Our
result most probably reflects the nature of this specific category structure. We have no doubt that
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other effects could apply to other structures. The question here is simply whether presentation
orders can potentially modify learning and category representations. If yes, future research should
attempt to generalize our observations to other cases.

To address the first point, we analyzed how long participants took to reach the learning
criterion as a function of the conditions within each order manipulation. Both the Kaplan-Meier
and Cox survival analyses showed that the pace at which categories are learned is influenced
by both within-category and across-blocks orders (with the across-blocks manipulation being the
main predictor of participants’ learning speed). More specifically, the rule-based (within-category)
and constant (across-blocks) order manipulations were found to lead to faster learning than the
similarity-based (within-category) and variable (across-blocks) order manipulations, respectively.
Moreover, participants in the condition combining similarity-based within-category order and
variable across-blocks order have been found to be the slowest at learning the categories.

However, these findings alone do not allow us to determine which condition is the most
beneficial. A further analysis of performance on learned stimuli during transfer was more adequate
to reach this goal. Indeed, conditions that lead learners to more rapidly reach the learning criterion
are not always the ones that lead to better learning (Soderstrom & Bjork, 2015). No significant effect
of order manipulation was found on participants’ performance on learned stimuli during transfer.
Moreover, the only effect close to significant that showed better learning in the constant condition
(as compared to the variable one) went in the same direction as the effect found in the learning
phase (i.e., faster learning in the constant condition). We can thus conclude that the rule-based and
constant conditions are more beneficial to learning, since performance (on learned stimuli) during
transfer was statistically the same for every type of order, but participants in these conditions were
exposed to a fewer number of trials.

Following the interpretation of Mathy and Feldman (Mathy & Feldman, 2009), the benefit
of the rule-based order over the similarity-based order might be imputed to the illusory proximity
of stimuli that the similarity-based order might induce in participants’ mind. The similarity-based
order promotes a structure that is not fully informative about the categories, which might tem-
porarily mislead participants. This is especially true for the 5-4 category set that is often considered
‘rule-based’ in itself because of its use of discrete features. By contrast, the rule-based order first
presents the most informative information, which could yield superior learning. The superiority
of the constant across-blocks presentation over the variable one might be attributed to the limited
amount of information carried by the constant order. Limiting the variability of the sequences
might have helped participants focus on diagnostic information, enhancing the probability to ei-
ther induct the simplest rule or memorize the category membership of the items. Another expla-
nation is that memory can benefit from the repetition of the same sequences (French et al., 2011;
O’Shea & Clegg, 2006), in particular to group items. A grouping process could have benefited the
formation of rules.

To determine whether different types of order interact with one another during learn-
ing, we performed statistical analyses with and without interactions. Data were best explained
by the model with interactions, that lead to one significant interaction between within-category
and across-blocks orders. In particular, the similarity-based order (in comparison to the rule-based
order) was detrimental for participants in both the constant and variable conditions (with the vari-
able condition being the most detrimental), whereas the variable condition (in comparison to the
constant condition) was only detrimental for participants in the similarity-based order. Therefore,
the condition combining similarity-based within-category order with variable across-blocks order
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was the most detrimental for learning.

Our last analysis aimed at determining the influence of order manipulation on the classifi-
cation of novel stimuli by analyzing how close are the observed patterns to some main strategies.
The rule-based strategy that uses Filling pattern as the main rule as well as the similarity-based
strategy were found to be the closest to participants’ generalization patterns. Moreover, distance
to the Filling pattern rule-based strategy was significantly higher for participants in the similarity-
based order (as compared to those in the rule-based order) and for participants in the blocked order
(as compared to those in the interleaved order). By contrast, across-blocks manipulations were
not found to alter category transfer. These results show that both within-category and between-
category orders affect how learning is transferred to novel stimuli, with the Filling pattern rule-
based strategy being preferred more often in the rule-based and interleaved conditions than in the
similarity-based and blocked conditions, respectively.

This difference in preference between rule-based and similarity-based learners might be
attributed to the logic upon which the rule-based order is grounded. Presenting items following
a “main rule (Filling pattern) plus exceptions” structure might have facilitated participants to in-
fer the simplest rule, encouraging them to classify new items using the same inferred strategy.
Conversely, the difference in preference between blocked and interleaved learners might find an
explanation in the Sequential Attention Theory (Carvalho & Goldstone, 2015b). Alternating stim-
uli from different categories (interleaved study) leads to an attentional focus on properties that
discriminate the categories, which might have promoted a rule-based transfer of the knowledge.
By contrast, when stimuli from the same category are presented sequentially (blocked study), the
encoding of the similarities among items of the same category is stronger, which might have pro-
moted the use of a similarity-based strategy. In addition, the structure of the 5-4 category set (in
particular the fact that the within-category similarity exceeds the between-category similarity)
might also have played a role.

An additional contribution of the present study is the promotion of underemployed sta-
tistical tools. A common practice in psychology is to remove participants who did not fulfill the
objective of the task (Mathy & Feldman, 2016; Meagher et al., 2017, 2018). Nevertheless, unsuccess-
ful participants can carry useful information. In the present study, we made use of two survival
analysis techniques (the Kaplan-Meier survival curves and the Cox model) that allow us to account
for individuals who did not complete the task. We advise the use of similar statistical tools when
the conditions allow them.

Study limitations

Although Medin and Shaffer’s 5-4 category set has multiple benefits (see Introduction), it
has the disadvantage of presenting a clear “rule plus exceptions” structure and of being distant
from real-world categories. Moreover, the absence of transfer stimuli with a category label did not
allow us to generalize the benefit of the rule-based and constant orders to novel stimuli. However,
because it has been thoroughly scrutinized in the past, this structure seemed the best option as first
investigation of new experimental factors. Another limitation of this category structure is that
it allows the co-existence of two different main rules that minimizes the number of exceptions
(Filling pattern and Shape). Stimuli in the rule-based order were ordered following the “Filling
pattern rule plus exceptions” structure. However, the dimension Shape could have equivalently
been used instead of the dimension Filling pattern. In the same spirit, dimensions could have been
instantiated by different features. For instance, Color could have distinguished the right and left
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objects within the cubes, Shape the objects at the front of the hypercube from those at the back,
Size the objects at the top of the hypercube from those at the bottom, and Filling pattern the objects
in the left cube from those in the right cube. We felt that multiplying our sample to consider all
above-mentioned variations would have been too costly.
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Appendix A
Analysis of the number of unsuccessful participants

The term “unsuccessful participants” refers to those individuals who did not meet the learning
criterion, either because they dropped out or because they exceeded the maximal amount of blocks
allowed to the experiment (200 learning blocks). Table A1 shows the number of successful and
unsuccessful participants per types of order, taken both separately and combined. A Fisher’s exact
test of independence at 0.05 level was run to determine whether the number of individuals who
did not reach the learning criterion was related to the type of order. The Fisher’s exact test was
preferred to the chi-square test because of its accuracy with small samples. None of the tests were
significant (p = .461 for rule-based vs. similarity-based, p = .325 for blocked vs. interleaved,
p = 0.624 for constant vs. variable, and p = .088 for the omnibus test run on the table showing all
conditions). We conclude that the type of order in which stimuli were encountered did not alter
participants’ chance of reaching the learning criterion.

Appendix B
Analysis of the percentage of correct responses during learning
Because we were interested in analyzing the learning curves of participants who learned the stud-
ied categories, unsuccessful participants (amounting to twenty) were excluded from the analysis.
Figure B1 shows the average percentage of correct responses among participants within a same
type of order taken separately (Figure A) and combined (Figure B), as a function of block number
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Table A1

Number of successful and unsuccessful participants split per type of order, taken both separately and
combined.

Type of order Successful  Unsuccessful

Within-category orders

Rule-based 84 7

Similarity-based 85 11
Between-category orders

Blocked 89

Interleaved 80 11
Across-blocks orders

Constant 88 8

Variable 81 10
Conditions

R+B+C 21 0

R+B+V 22 2

R+I+C 21 4

R+I+V 20 1

S+B+C 26 0

S+B+V 20 5

S+I+C 20 4

S+I1+V 19 2

over the course of the learning phase. Only participants’ performance during random blocks is
represented in the graph. Because it was reasonable to think that successful participants would
have continued to correctly classify stimuli after reaching the learning criterion, their responses
were completed with the highest performance (i.e., 100% of correct responses) until block number
72. Because 80% of the participants ended the learning phase before block 72, this choice appeared
to be a good trade-off between minimizing the number of observations that were both removed and
added. In Figure B1A, learning was more efficient in the rule-based, blocked, and constant orders
than in the similarity-based, interleaved, and variable orders, respectively. To assess the difference
between the learning curves, we performed a two-sided Wilcoxon-Mann-Whitney test at each
block with Benjamini-Hochberg adjustment (Benjamini & Hochberg, 1995) for multiple testing
corrections. In the within-category and across-blocks manipulations, half of the test were signif-
icant (11/24 rejected tests for the within-category and 12/24 rejected tests for the across-blocks),
whereas in the between-category order none of the tests were significant. We can conclude that
in half of the random trials learning in the rule-based and constant conditions was more effective
than the similarity-based and variable conditions (respectively).
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Figure B1

Average percentage of correct responses among participants within a same type of order taken sep-
arately (Figure A) and combined (Figure B), as a function of block number over the course of the
learning phase. In Figure A, only performance across random blocks are plotted. Asterisks indicate
the blocks on which the Wilcoxon-Mann-Whitney test with the Benjamini-Hochberg correction was
rejected. Error bars show £1SE. In Figure B, color distinguishes the within-category order (blue for
rule-based and gray for similarity-based), line-type distinguishes the between-category order (solid
line for blocked and dashed line for interleaved), and shape distinguishes the across-blocks order (dots
for constant and crossed squares for variable). To increase smoothness of the curves, performance at
each random block are obtained by averaging performance from the two preceding random blocks,
the current random block, and the two following random blocks. To make the plot more readable, only
performance every three random blocks are plotted.
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Figure C1

Projection value of the observed generalization patterns, as a function of different conditions within
each order manipulation. Generalization patterns were projected on the one-dimensional space gener-
ated by vectorv = (1,1,0, —1, —1, —1,0), which distinguishes the Filling pattern rule-based strategy
from the similarity-based strategy. Error bars show £1SE. Asterisks show the significance of the two-
sided Wilcoxon-Mann-Whitney test.

Appendix C
Alternative analysis of generalization patterns on transfer stimuli

The aim of this analysis is to determine whether participants in different conditions classify new
items using different strategies. We focus on two main strategies: a rule-based strategy that uses
Filling pattern as main rule and a similarity-based strategy (see Figure 8). A learner adopting the
Filling pattern rule-based strategy would more often classify items 77 and 75 into category A
and items Ty, T5 and Tg into category B, than a learner adopting the similarity-based strategy.
Therefore, these two strategies can be distinguished by projecting generalization patterns on the
one-dimensional space generated by vector v = (1,1,0, —1, —1, —1,0). The more the projections
are on the right side of this one-dimensional space, the more the Filling pattern rule-based strat-
egy was used. Figure C1 shows the projection value of participants’ generalization patterns on
the one-dimensional space generated by vector v as a function of the conditions within each order
manipulation. A two-sided Wilcoxon-Mann-Whitney test was conducted to assess the difference
between projection values of participants in different conditions. Projections from participants
in the rule-based order were significantly higher than those from participants in the similarity-
based order (p = .043). Similarly, projections from participants in the interleaved order were
significantly higher than those from participants in the blocked order (p = .010). No significant
difference was found between projections from participants with different across-blocks orders
(p = .919). We conclude that participants in the rule-based and interleaved orders showed gen-
eralization patterns that where more consistent with the Filling pattern rule-based strategy than
participants in the similarity-based and blocked orders, respectively.
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