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Abstract

We provide a queueing-theoretic framework for job replication schemes based on the principle “repli-
cate a job as soon as the system detects it as a straggler”. This is called job speculation. Recent works
have analyzed replication on arrival, which we refer to as replication. Replication is motivated by its
implementation in Google’s BigTable. However, systems such as Apache Spark and Hadoop MapReduce
implement speculative job execution. The performance and optimization of speculative job execution is
not well understood. To this end, we propose a queueing network model for load balancing where each
server can speculate on the execution time of a job. Specifically, each job is initially assigned to a single
server by a frontend dispatcher. Then, when its execution begins, the server sets a timeout. If the job
completes before the timeout, it leaves the network, otherwise the job is terminated and relaunched or
resumed at another server where it will complete. We provide a necessary and sufficient condition for the
stability of speculative queueing networks with heterogeneous servers, general job sizes and scheduling
disciplines. We find that speculation can increase the stability region of the network when compared
with standard load balancing models and replication schemes. We provide general conditions under which
timeouts increase the size of the stability region and derive a formula for the optimal speculation time,
i.e., the timeout that minimizes the load induced through speculation. We compare speculation with
redundant-d and redundant-to-idle-queue-d rules under an S&X model. For light loaded systems, re-
dundancy schemes provide better response times. However, for moderate to heavy loadings, redundancy
schemes can lose capacity and have markedly worse response times when compared with the proposed
speculative scheme.

1 Introduction

Jobs taking longer than expected to complete, so-called stragglers, severely impact the performance of com-
puter systems. Initial work on MapReduce note that stragglers have a significant impact on performance and
occur for reasons that do not necessarily depend on the magnitude of the job’s computational requirements
but instead on the configuration and runtime of the underlying platform [21]. Causes for straggling jobs
include run-time contention phenomena among CPU cores, processor caches, memory bandwidth, network
bandwidth [48, 3]; bugs and errors in code [21]; unfortunate disk seek times or head locations [33]; or, energy
requirements, power and temperature constraints, and maintenance activities [20]. All of which can cause a
job to straggle significantly beyond its inherent computational requirement.

To mitigate the effect of stragglers on system-wide performance, researchers are currently proposing
redundant, or hedged, requests [5, 20, 33, 45, 41, 4]. In this respect, there are two underlying principles:
either replicate

“replicate a job upon its arrival and use the results from whichever replica responds first”, [20];

or speculate

“replicate a job as soon as the system detects it as a straggler”, [5].

The former is referred to as job replication, and here all redundant replicas are usually canceled as soon
as one completes or starts service. The latter is referred to as job speculation [49], and here long jobs
are usually killed after some time and replicated elsewhere. Clearly, the straggler detection monitor, or
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timeout rule, needs to be smart enough to distinguish between jobs whose intrinsic size is large and jobs
that are taking longer than expected to complete because of some unfortunate runtime phenomenon. There
is increased interest in replication as it is employed by Google’s BigTable, while the speculation principle is
used in Apache Spark and Hadoop MapReduce.1 For instance, it was reported in [41] that speculative tasks
account for 25% of all tasks in Facebook’s Hadoop cluster.

Both principles provide effective mitigation techniques for the straggler problem but which one is prefer-
able is not currently clear. Replication may lead to significant additional resource costs while speculation
may increase latency. One advantage of speculation is that only the long jobs are replicated, though this
may come at the cost of an increased latency because a cloned job is executed after the system detected
it as a straggler. Our objective is to provide the first theoretical framework for speculation in a stochastic
and dynamic setting. We then use this to understand the impact of speculation and how to optimize its
performance.

Recently, a number of theoretical works appeared in the literature for evaluating the performance of
replication-based schemes in a stochastic and dynamic setting; see Section 2 for a review. These consider
systems that replicate on arrival. Speculation, however, has received far less attention.

1.1 Model, Results and Contributions

In this paper, we develop the first theoretical framework for evaluating the delay performance achieved by
the speculation principle in a queueing network. We consider a stochastic system of parallel queues, each
with its own server. Upon arrival, each job is dispatched to a random queue and, when a job’s service is first
initiated, a timeout is set. If the timeout is reached and the job is not completed, then the job is killed and
re-routed to another randomly selected queue where it must be completed.

Our first result, Theorem 1, characterizes the stability region induced by speculation. We show that
speculative queueing networks are stable (positive Harris recurrent2) under the usual stability condition:
that is, the nominal load at each queue is less than one. This result is non-trivial because: i) our network
includes feedback mechanisms with mixture of different job size distributions; ii) we consider a general class of
work-conserving scheduling disciplines and service time distributions; and iii) the stability region found differs
from the one achieved by standard load balancing schemes such as join-the-shortest-queue. It is well known
that under i) and ii) the “usual” stability condition may not be sufficient for positive recurrence [12, 42, 22].

Since timeouts induce a controllable constraint on the processing time of each job, we then consider the
problem of optimal timeout design. First, we note that speculation can increase the system load and thus
decrease the stability region, because part of the job is effectively served twice. Therefore, in Theorem 2,
we derive criteria for speculation to increase the stability region and show that these criteria are satisfied in
realistic scenarios. Then, we investigate optimal design and characterize the timeout that maximizes the size
of the stability region in terms of a non-linear one-dimensional equation given in Theorem 4. This optimal
timeout can be easily solved numerically and in some cases also analytically.

Overall, we use our results to investigate the advantage of speculation by performing two comparisons:

• First, we compare speculative and standard load balancing in the stationary regime; “standard” means
no replication and no speculation, though dynamic information between servers and dispatcher(s) can
be exchanged, as in power-of-d. We establish when it is advantageous to introduce timeouts as means
to improve performance in an existing standard load balancing system. An immediate consequence of
Theorem 1 is that a timeout increases the stability region if and only if the expected remaining time
of the current execution is greater than the conditional expected service time at the second queue. We
find large sets of timeouts having this property for important classes of service time distributions; e.g.,
Pareto, hyper-exponential and bimodal, see Section 5.1. We can then refine this analysis to give the
optimal timeout for a given distribution in Theorem 4.

• Second, we compare speculation and replication in the stationary regime. This comparison is diffi-
cult to perform analytically because a satisfactory characterization of the stability region induced by
replication is currently unknown even when considering homogeneous servers, outside special cases; see

1For instance, Apache Spark applies the attribute spark.speculation while Hadoop MapReduce uses task configuration
mapred.map.tasks.speculative.execution.

2We point the reader unfamiliar with positive Harris recurrence to [15, Section 3]
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[39, 37, 40, 6] and Section 2 for further details. However, we can provide reasoning and scenarios where
speculation will improve response times when compared with replication. In particular, replication is
bad when the shortest replica is stuck in queue, and instead service is completed by serving one or more
larger replicas. The reasoning bears out in numerical simulations. Although replication provides better
average response times in a light-load regime, which is to be expected, a large number of simulations
indicate that speculative load balancing with the optimal timeout yields an increased stability region
and short response times over a wide range of loads.

Our work is the first developing either of the above comparisons. Concisely, in terms of stability we find
that speculative load balancing can be more advantageous than standard load balancing and replication.

1.2 Organization

The remainder of the paper is organized as follows. In Section 2, we review the relevant literature. In
Section 3, we introduce speculative queueing networks. In Section 4, we present our stability theorem. In
Section 5, we address the problem of designing optimal timeouts and compare the stability region achieved
within our approach with standard load balancing and existing replication schemes. In Section 6, we present
a conjecture about the mean waiting time obtained when servers are homogeneous. Finally, Section 7 draws
the conclusions of this work and outlines further research.

2 Literature Review

Over the last decade there has been interest in the performance analysis of policies that dispatch to the
shortest among a set of queues, for instance, power-of-two-choices and join-the-idle-queue; see [43] for a
survey. However, more recently there has been an increased focus on job replication and in the following, we
review existing replication approaches; for further details, we refer the reader to the recent survey [25].

Within replication, multiple replicas of a job are placed at different servers and redundant replicas are
canceled, either when the first replica completes service (cancel-on-completion) or when the first replica ini-
tiates service (cancel-on-start). It is striking that both cancel-on-start and cancel-on-complete redundancy
models are analytically tractable under independent exponentially distributed job sizes. This is first shown
for cancel-on-complete in [26], where the reversibility results of the order-independent queue[9] are applied.
The stationary distribution for cancel-on-start is found in [7], which applies results from [44]. The paper [35]
is the first to analyze the latency and computing cost of the cancel-on-start and cancel-on-finish redundancy
strategies. Subsequent works expand these results and thus our understanding of redundancy models [24].
The stationary distributions found are fully explicit; however, it is often hard to derive tractable formulas
for key performance metrics. For this reason, existing works develop diffusion limits and mean field approx-
imations for these models [14, 32]. Under i.i.d. exponential replica sizes, it is noted that there is neither
loss nor gain of capacity due to redundancy job replication [11]. However, it is also noted in [23] that the
independent exponential distributed job sizes is not a reasonable assumption, as job sizes will be correlated
and slow service tends to result in heavy tailed service times. For this reason, works investigate the impact
of replication under a variety of job size distributions and service disciplines [31]. The results in [39, 6] find
that in general capacity is lost due to increased utilization of redundant jobs, though a full understanding
of the stability region induced by cancel-on-completion schemes is currently unclear; see also [37].

Another similar approach is delayed replication. Here, each job is sent to an arbitrary server and if the
server has not finished service of this job within some fixed time that includes both waiting and service, the
job is replicated elsewhere. From the point of view of a single queue, this approach is somewhat equivalent
to a queueing system with abandonments or reneging [27]. Delayed replication is investigated in [30] for
homogeneous servers and under the assumption of “asymptotic independence”, though the structure of the
resulting stability region is not explicited.

While several recent works investigate replication, studies of speculation are largely empirical and analyze
the performance and dependencies of specific platform implementations [5, 20, 33, 45, 41, 4, 41]. An early
analysis of timeouts in queueing is given by [28], where all jobs initially join a single queue and then jobs
that timeout are sequentially sent along a line of further queues. Some existing theoretical works focus on
static settings with a finite number of jobs and no queueing [2, 46, 1].
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The queueing and stability behavior of job speculation is not well-understood and we investigate its
impact. We investigate stability using the fluid limit approach of Dai [15, 13]. We note that job sizes at
different queues change due to both timeouts and correlations between jobs. In general, such networks can
exhibit non-standard stability behavior; see, for instance, Bramson [12]. Although stability is non-trivial for
these networks, we find that stability still holds when the nominal load is below one. This is important as
the nominal load can be reduced through the use of speculation.

Further, we characterize the optimal timeout for a speculative load-balancing network. Again there are
few works that investigate optimal timeouts, though we note that the paper [47] provide upper and lower
bounds for a constrained utility optimization. This is then approximated for a timeout optimization under
independent task-based service time distributions and in the presence of idle servers. In contrast, we consider
a queueing framework under an S&X model where the optimal timeout minimizes load and thus maximizes
stability. The use of Markov decision processes and optimal stopping theory [38] analysis appears to be
somewhat new to this line of literature. We note the contemporaneous work of [34] consider a discrete time
MDP formulation of optimal replication. This approach (along with associated implications for reinforcement
learning and load balancing) would seem an important area of future investigation.

3 Speculative Queueing Network

We consider a network composed of N queues working in parallel. Queues have an infinite buffer, are work-
conserving and are heterogeneous, in the sense that they process jobs at possibly different rates. Specifically,
queue i processes jobs with rate µi > 0, i = 1, . . . , N , and without loss of generality we assume that∑N
i=1 µi = d. Jobs join the network via an exogenous Poisson process with rate λN and are initially

dispatched to queue i independently with probability p0,i. When a job starts its execution on its designated
queue, say i, a clock is initialized and a timeout, τi, is set. If the timeout is reached and the job has not
completed, then it is killed and re-routed independently to another queue where it is either resumed or
re-executed from scratch. At this second queue, the job is then served until complete and leaves the network
afterwards.

3.1 Dynamics and Assumptions

Let τ := (τ1, . . . , τN ) ∈ Rd+ denote the timeout vector. The n-th job that joins the network has associated
the random variables: ξ(n) ∈ R+, the interarrival time between the n-th and (n − 1)-th jobs; η(n) :=
(η1(n), η2(n)), the service requirements of job n where ηj(n) ∈ R+ represents the service time associated
to its j-th execution if processed at unit rate; `(n) := (`1(n), `2(n)), where `j(n) ∈ {1, . . . , N} denotes the
queue associated to the j-th visit performed by job n; and τ(n) := τ`1(n), the timeout of job n.

On the event
η1(n)

µ`1(n)
≤ τ(n),

job n completes service at `1(n) before the timeout τ(n) is reached and it leaves the network. In this case,
the random variables η2(n) and `2(n) are not used. On the complementary event, job n is re-routed to queue

`2(n) where it receives service for η2(n)
µ`2(n)

time units and leaves the network afterwards.

Within this notation, the primitive sequences driving the dynamics of the stochastic network under
investigation are {ξ(n), n ≥ 1}, {η(n), n ≥ 1} and {`(n), n ≥ 1}, all defined on a common probability space.
We assume that these sequences are i.i.d. and mutually independent. We note however that, for fixed n,
η1(n) and η2(n) may have arbitrary dependency. For simplicity of notation, we will refer to η1(1) and η2(1)
simply as η1 and η2, respectively. Because η1 and η2 may be dependent and have a possibly different
distribution, this allows us to models two different scenarios:

• η1 and η2 are equal in distribution: upon re-routing, the job is killed and then re-started from scratch

• η2 is stochastically smaller than η1: upon re-routing, the job is stopped and then resumed.

The case of identical replicas, i.e., η1 = η2 (ω-per-ω) is permitted but it should be clear that in this case
speculation does not help because the amount of work to be done does not change after re-routing. We
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remark that speculation is motivated by the fact that something can go wrong on the servers’ runtimes, i.e.,
a given job may have different service times if executed on different machines. This rules out the case of
identical replicas. We also require that E[η1(n) + η2(n)] <∞ and that P(η1µi

≤ τi) > 0 for all i, which means
that jobs complete and have a chance of completing before the timeout.

We assume that each ξ(n) is exponentially distributed with mean (λN)−1, so that arrivals occur according
to a Poisson process of rate λN . For all i, j ∈ {1, . . . , N}, let pi,j := P(`2(n) = j | `1(n) = i). We assume
that pi,j = p1,j for all i, i.e., the internal routing probabilities depend on the destination j but not on the
source i. This assumption makes all jobs ‘homogeneous in terms of re-routing’ and is required in the proof of
Theorem 2; without this assumption, the proposed queueing network may be unstable even under the usual
stability condition, as in [12].

Since queues speculate on service times, we refer to the proposed model as a speculative queueing network.

3.2 Scheduling Disciplines

Each queue operates under a work-conserving head-of-the-line scheduling discipline. We recall that a service
discipline is head-of-the-line if within each class at the queue jobs are served in order their arrival [13]. This
includes First-come first-served (FCFS), Head-of-the-line processor-sharing (HLPS) or class-based priority
disciplines. On the other hand, Processor-Sharing (PS) is excluded, though we believe that the results
presented in this paper apply by a separate argument [36, Section 3.3]; due to page constraints, we do not
discuss this. In our framework, the class of a job refers to the queue that the job is at and whether the job
has been timed-out or not; see Section 4.1 for further details. With a class-based priority discipline, jobs
are ranked according to their class. The higher the rank, the higher the priority. Depending on whether the
discipline is preemptive or not, the job in execution may be stopped if a job with higher priority arrives. For
instance, within a given queue, a job that has been re-routed may be given higher (or lower) priority than
job that have currently visited only one queue.

We observe that some scheduling disciplines may process more than one job at a time. In this case,
the clock associated to the execution of each job does not increase linearly over time, but in relation to the
processing capacity devoted to the execution of the job itself.

3.3 Further Notation

We use the convention that products (resp. sums) over empty sets are one (resp. zero). The set of
non-negative real numbers is denoted by R+. The indicator function of A is denoted by IA. We use
| · | to denote set cardinality and ‖ · ‖ to denote the L1 norm. We let p0 := (p0,i : i = 1, ..., N) and
p1 := (p1,i : i = 1, ..., N) denote the routing probability vectors upon job arrival in the network and re-
routing, respectively. Unless specified otherwise, indices i and j will range over {1, . . . , N}. For a, b ∈ R,
(a)+ = max{a, 0}, a ∧ b = min{a, b} and a ∨ b = max{a, b}. For a differentiable function t 7→ f(t), f ′(t)
denotes its derivative in t.

4 Stability

In this section, we first provide a multiclass representation of the speculative queueing network introduced in
previous section and show that this representation belongs to the family of queueing networks investigated
in [15]. This will allow us to use Theorem 4.2 of [15], which provides a criterion to establish the stability
(positive Harris recurrence) of the Markov process, say X, describing the dynamics of the network under
investigation. This criterion is expressed in terms of an associated fluid model, which we define below.

4.1 Multiclass Representation

We now provide a multiclass representation of our queueing network described in Section 3.1 where classes
are used to distinguish between jobs that have timeout or not. The advantage of this is that we can directly
represent jobs within the framework of Dai [15] and Bramson [13]. Thus we can analyze our fluid model as
a fluid limit as expressed within that framework.
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Let us consider the set of classes K := K1 ∪ K2 where K1 := {(k, i) : k ∈ {c, u}, 1 ≤ i ≤ N} and
K2 := {(i, j) : 1 ≤ i, j ≤ N} represent the set of exogenous and endogenous classes, respectively. Further, we
use ‘c’ for jobs that will complete service at their first queue, and ‘u’ for jobs that will receive uncompleted
service at their first queue (and thus will timeout). On the same probability space used to define the
speculative queueing network above, we now construct a queueing network composed of such classes.

Jobs enter the network through class (c, i) ∈ K1 or (u, i) ∈ K1 for i = 1, ..., N . These jobs join queue i
and, after processing at i, a class-(c, i) job leaves the network, while a class-(u, i) job is re-routed and joins
queue j as a class (i, j) ∈ K2 job with probability pi,j .

The inter-arrival times of jobs in class (c, i) ∈ K1 follow a Poisson process that is obtained by thinning
the Poisson process associated to {ξ(n), n ≥ 1} with respect to the Bernoulli process {Bc,in , n ≥ 1} where

Bc,in := I{
`1(n)=i,

η1(n)
µi
≤τi

} .
Under the Poisson thinning (aka splitting) property, the set of service times of class-(c, i) jobs can be
equivalently obtained by sampling independently from the distribution of (η1µi

|η1µi
≤ τi). Similarly, the

interarrival times of jobs in class (u, i) ∈ K1 follow a Poisson process that is obtained by thinning the
Poisson process associated to {ξ(n), n ≥ 1} with respect to the Bernoulli process {Bu,in , n ≥ 1} where

Bu,in := I{
`1(n)=i,

η1(n)
µi

>τi

}

and they have deterministic service times equal to τi.
Under the Poisson thinning property, the set of service times of class-(i, j) jobs can be equivalently

obtained by sampling independently from the distribution of ( η2µj
|η1µi

> τi).

The dynamics (routing decisions, arrival and service times) of the multiclass network above are equivalent
to the dynamics of the speculative queueing network introduced in Section 3. Equivalences of this type are
commonly applied in the analysis of queueing networks; for instance, see Section 2.7 of [16].

4.2 Markov and Fluid Model

We now define a continuous-time Markov process X(t) that describes the dynamics of the multiclass queueing
network described above. Specifically, taken to be right continuous, consider the pair

X(t) := (Q(t), V (t)). (1)

Here, Q(t) = (Q1(t), . . . ,QN (t)) and

Qi(t) = (ki,1, ki,2, ..., ki,Qi(t))

where ki,n ∈ K gives the class of the n-th job in queue i and Qi(t) is the total number of jobs at queue i. This
captures how jobs are lined up in queue i. Also V (t) = (Vk(t) : k ∈ K) with Vk(t) denoting the remaining
service time of the class-k job in execution and with the convention that Vk(t) = 0 if such job does not exist.

The process X = {X(t), t ≥ 0}, living on state space X , is a piecewise deterministic Markov process
(PDMP) and satisfies the strong Markov property; see page 362 in [19]. If X is positive Harris recurrent, we
recall that a unique ergodic stationary distribution π exists and

lim
t→∞

1

t

∫ t

0

Qi(s) ds =

∫
X
qi(x)π(dx) (2)

almost surely, for any initial configuration, where Qi(t) is the queue length of server i at time t and qi(x) is
the queue length of server i for network state x ∈ X .

Now, we define a fluid model for the dynamics of the queueing network under investigation. For t ∈ R+,
let Q(t) = (Qk(t), k ∈ K), T (t) = (T k(t), k ∈ K) and I(t) = (Ii(t), i = 1, . . . , N) and consider the following
conditions

Qc,i(t) = Qc,i(0) + λdp0,iP(η1 ≤ τiµi) t−
(T c,i(t)− V c,i)+

E[η1µi
| η1µi
≤ τi]

≥ 0 (3)

6



Qu,i(t) = Qu,i(0) + λdp0,iP(η1 > τiµi) t−
(Tu,i(t)− V u,i)+

τi
≥ 0 (4)

Qj,i(t) = Qj,i(0)− (T j,i(t)− V j,i)+

E[η2µi
| η1µj

> τj ]
+
pj,i
τj

(Tu,j(t)− V u,j)+ ≥ 0, ∀(j, i) ∈ K2 (5)

T k(t) is nondecreasing and starts from zero, ∀k ∈ K (6)

Ii(t) = t− Tc,i(t)− T̄u,i(t)−
∑
j 6=i

T j,i(t) is nondecreasing (7)

∫ ∞
0

(
Qc,i(t) +Qu,i(t) +

∑
j 6=i

Qj,i(t)

)
dIi(t) = 0 (8)

for all i ∈ {1, . . . , N} where (x)+ = max(x, 0) and V ∈ R|K|+ is interpreted as the remaining service time

vector. These conditions define our fluid solutions. A fluid solution is any solution (Q(·), T (·)) to (3)-(8).
The quantities in (3)-(7) have the following interpretation: at the fluid scale, Qk(t) is the amount of jobs
of class k at time t, T k(t) is the cumulative time dedicated to the processing of class k jobs by time t,
and Ii(t) is the cumulative idle time of queue i by time t. For instance, Equation (4) says that the fluid
amount of class-(u, i) jobs increases with rate λdp0,iP(η1 > τiµi) due to external arrivals and decreases by
(Tu,i(t)−V u,i)

+

τi
as these jobs stay in queue i for τi time units. Similar interpretations are easily obtained for

Qc,i(t) and Qj,i(t). Equation (8) is therefore interpreted as the work-conserving condition.

Remark 1. The set of fluid solutions associated to a speculative queueing network is identical to the set
of fluid solutions associated to its corresponding multiclass queueing network where the routing and service
processes are independent; see Formulas (4.17)-(4.21) in [15].

From the above remark and from Theorem 4.1 of [15], it follows that the fluid model equations are the
limit equations satisfied by a speculative queueing network. We refer the reader to Theorem 4.1 for a formal
statement and proof of this fluid limit argument, from which our stated fluid model follows as a direct
consequence.

We now define stability for the fluid model.

Definition 1. We say that the fluid model is stable if there exists a constant δ > 0 such that for any fluid
solution with ‖Q(0)‖+ ‖U‖+ ‖V ‖ = 1, it holds that Q(t+ δ) = 0 for all t > 0.

The constant δ above may depend on all model parameters but not on the initial state.
The following theorem connects fluid model stability with X(t) being positive Harris recurrent and was

first proved in [15].

Proposition 1 (Dai [15]; Bramson [13]). Assume that (3)-(8) hold. If the fluid model solutions is stable,
then X(t) is positive Harris recurrent.

The proposition follows from Theorem 4.16 of Bramson [13]. In the Appendix, we give a proof that
essentially explains how our model fits within the framework in [13]. We note that there are some aspects
of our model that are non-standard within the usual fluid stability framework: i) jobs are routed according
to their size rather than according to an independent mechanism, and ii) the size of jobs within a queue
can have a different probability distribution (jobs having non-identical distributions within a multi-class
queue can impact stability, see the well-known counter-example of Bramson [12]). However, in our case, it
is possible to segment arrivals into an extended set of job classes as described in Section 4.1. This yields the
required independence properties for routing probabilities for jobs within each class. This deals with part i)
above. For part ii), we note that fluid stability remains sufficient for positive recurrence so long as we have a
Markovian state description and head-of-the-line service within each class. Each of these apply to our model
and therefore what remains is to prove the stability of the fluid model. This result is stated below.
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4.3 Fluid Stability and Positive Harris Recurrence

We now state our main result on stability. Let

ρi := λNp0,iE
[
η1

µi
∧ τi

]
+ λN

N∑
j=1

p0,jp1,iP(η1 > µjτj)E
[
η2

µi

∣∣∣ η1

µj
> τj

]
(9)

be the nominal load of queue i, for all i. This accounts for the work from both speculative and non-speculative
jobs.

The following result shows that the Markov process of interest is stable under the condition that ρi < 1
for all i. Our proof is based on Proposition 1 and on a Lyapunov argument; see the Appendix.

Theorem 1. For all i, assume that ρi < 1. Then, X is positive Harris recurrent.

Within the proposed queueing network, the mean service time of a job depends on the number of visits
currently performed in the network and that the network topology is not feedforward. In these cases, it
is well known that the usual stability condition is in general not sufficient to make the underlying Markov
process positive Harris recurrent. A counterexample with Poisson arrivals, exponentially distributed service
times and two FCFS queues is the reentrant line developed in [12]; see also [42, 22].

We note that the stability condition in Theorem 1 differs from the “usual” condition λNp0,i/µi < 1, which
is the nominal stability condition when no timeout is set (no speculation). It is thus natural to investigate
which approach yields the largest stability region. This is one of the objectives of the following section.

5 Timeout Design

In this section, we rely on Theorem 1 to perform some optimization and understand the advantages of
speculative load balancing. Specifically, since timeouts and routing probabilities are under the control of
the network manager, we investigate whether or not it is possible to design them in a manner such that the
resulting stability region is larger than the stability region achieved by

i) standard load balancing; i.e., no replication and no speculation, though servers and dispatcher(s) can
exchange dynamic control messages as in join-the-shortest-queue;

ii) other replication schemes based on the principle “replicate upon job arrivals”.

Remark 2. We will address the question above when servers are homogeneous, that is µi = 1 for all i. The
heterogeneous case can be handled as well but at the cost of complicating the exposition unnecessarily. For
this reason, we limit this application of Theorem 1 to the homogeneous case only.

Given τ ∈ R+, let us define

ρ(τ) := λE[η1 ∧ τ ] + λP(η1 > τ)E[η2 | η1 > τ ] (10)

and note that ρ(τ) = ρi if the routing probabilities are identical and all timeouts are equal to τ .
The following proposition says that if servers are homogeneous, then it is optimal to choose identical

timeouts and routing probabilities; see the Appendix for a proof.

Proposition 2. If µi = 1 for all i, then

inf
τ∈R+

ρ(τ) = inf max
i
ρi (11)

where ρ(τ) is defined in (10) and the second inf is taken over all stochastic routing vectors p0, p1 ∈ RN+ and
timeout vectors τ ∈ RN+ .

In view of Proposition 2, in the analysis that follows we will require the following assumption, which
implies that the speculative queueing network is symmetric.

Assumption 1 (Symmetric network). For all i, µi = 1, p0,i = p1,i = 1
N and τi = τ , for some τ ∈ R+.

In the following, we first investigate scenarios where timeouts help to increase the stability region with
respect to standard load balancing. Then, we characterize an optimal timeout and provide numerical simu-
lations to compare the performance of speculation with existing replication schemes.

8



5.1 Speculation vs Standard Load Balancing

Under Assumption 1, we investigate when the proposed approach yields an increased stability region with
respect to standard load balancing. In the latter case, it is well known that λE[η1] < 1 is the necessary and
sufficient stability condition for the Markov process that models the dynamics induced by several dispatching
algorithms such as join-the-shortest-queue. Therefore, given Theorem 1, we aim at finding τ ∈ R+ such that

ρ(τ) < λE[η1]. (12)

This problem can be easily addressed at least numerically once probability distributions for the ηi’s are
known. Nonetheless, in this section our aim is to find insights and general conditions ensuring that (12)
holds.

We have the first general condition; see the Appendix for a proof.

Theorem 2. Let Assumption 1 hold. Then, ρ(τ) < λE[η1] if and only if

E[η2 | η1 > τ ] < E[η1 − τ | η1 > τ ]. (13)

The inequality (13) admits a simple interpretation because the RHS term is the expected remaining
service time of the job in progress after age τ and the LHS term is the expected service time of a second
execution if the job would timeout at τ .

We now derive a further condition introducing some structure on the service time random variables ηi,
i = 1, 2. In the following, S, S1, S2 and X are four auxiliary nonnegative random variables each independent
of all else and such that S, S1 and S2 are equal in distribution.

Assumption 2 (The “S&X” model). For i = 1, 2, ηi = SiX.

The service time structure in Assumption 2 was first introduced in [23]: X is interpreted as a job’s
intrinsic size and Si represents the server slowdown incurred by a job’s i-th execution. An important special
case is obtained when X is deterministic, which models systems where the service time variability is only due
to server runtime phenomena. Here, the service times associated to the execution of a job are independent;
a line of papers investigate this case, e.g., [24, 40].

Remark 3. Assumption 2 models the case where jobs are re-executed from scratch after re-routing and rules
out the possibility that they may be resumed. This is a worst case in our respect because speculation (and
our model) allows jobs to be resumed after re-routing, and the stability region obtained by resuming jobs is
clearly increased.

We will also make use of the following assumption.

Assumption 3. For some z ∈ R+,

E [Sx ∧ z] < P (Sx ≤ z) E[S]x, ∀x ∈ support(X). (14)

The following result, proven in the Appendix, provides a sufficient condition for which speculation yields
an increased stability region with respect to standard load balancing.

Theorem 3. Let Assumptions 1 and 2 hold. Then, ρ(z) < λE[η1] for all z ∈ R+ that satisfy Assumption 3.
Furthermore, if X is deterministic, then Assumption 3 is also necessary to have ρ(z) < λE[η1].

Theorem 3 shows that Assumption 3 is almost the requirement for speculation to increase the size of the
stability region and we now briefly discuss it. Towards this purpose, let TS,X be the set of z ∈ R+ such that
(14) holds. Assuming that X = 1, it is not difficult to show that:

1. If S is sm with probability p and sM > sm with probability 1 − p (a bimodal distribution), then
TS,X = (sm, (sM − sm)p); typically, sM � sm and p ≈ 0.99 [8, Section 2.6.4], and therefore TS,X is not
empty in practice.

2. If S follows a nondegenerate hyperexponential distribution, then TS,X = (0,∞);

9
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Figure 1: Speculative vs standard load balancing via L(τ), (15), under a number of S&X models.

3. If S ∼ Pareto(α, sm), where α > 1 and sm respectively denote the shape and scale parameters, then
TS,X = (αsm,∞).

On the other hand, if X = 1 and S follows the “more deterministic” Erlang distribution, then one can show
that TS,X is empty and in this case Theorem 3 implies that speculation loses capacity.

Now, let

L(τ) :=
ρ(τ)

λE[η1]
. (15)

If L(τ) < 1, then L(τ) can be interpreted as the load reduction with respect to standard load balancing when
adopting timeout τ . As in Section 2.6.4 of [8], let us assume that

S =

{
10 w.p. 0.99
103 w.p. 0.01,

(16)

i.e., S follows a bimodal distribution. By increasing the timeout τ , Figure 1 plots L(τ) under a number of
combinations on the distributions of S and X. For the Pareto distribution, we have chosen sm = 1 and
α ∈ {1.1, 1.5}; it is known that α ∈ [1, 1.5] is the most common range [4, 3, 29]. For the hyperexponential
distribution, we have chosen two phases with balanced means, as in [29]. Specifically, the probability and rate
vectors are [0.99, 0.01] and [1, 1/99], respectively. If timeouts are too small, Figure 1 shows that speculation
may loose capacity (L(τ) > 1), and this is to be expected because jobs have almost no chance of completing
before the timeout. If timeouts are large enough, however, they increase the size of the stability region
(L(τ) < 1). We notice that the timeouts that minimize the load can double the size of the stability region
achieved by standard load balancing because within such timeouts L ≈ 0.5. When S has the bimodal
form given in (16), this benefit is obtained whenever τ ∈ [10, 103) (if X = 1), τ ∈ [13, 2 × 103) (if X ∼
Uniform([0,2])), and τ ∈ [13.5,∞) (if X ∼ Exponential(1)). When S is Pareto, we observe that L(τ)
decreases when α decreases for any given τ , i.e., timeouts are particularly helpful when the service time
variability increases. When S is hyperexponential, we also observe that all timeouts reduces the load. This
is in agreement with the statement in point 2) above.

Since the set of τ ’s ensuring that L(τ) < 1 is somewhat large, we conclude that replication by speculation
is robust with respect to small errors in service time distributions and thus that the system manager has
some flexibility when designing a proper timeout rule.

5.2 An Optimal Timeout

Our stability result, Theorem 1, demonstrates that the load, ρ(τ), is the key first order performance indicator
for a speculative network. Theorems 2 and 3 show that timeouts can reduce load and thus increase capacity.
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Now, we investigate the minimizers of the load function τ 7→ ρ(τ), i.e., we characterize the optimal timeout.
We address this problem under the following assumption.

Assumption 4. We assume that η1 has a probability density function f1(t) with a decreasing hazard function,
i.e.,

t 7→ f1(t)∫∞
t
f1(s)ds

(17)

is decreasing. Further, we assume that η̄2(t) := E[η2|η1 > t] is such that

t 7→ 1 + η̄′2(t)

η̄2(t)
(18)

is non-decreasing.

The function (17) is the hazard function of a probability distribution and it is well-known that a decreasing
hazard function is a characteristic of a heavy-tailed probability distribution. A trivial condition for (18) to
be non-decreasing is that η2 is independent of η1. This corresponds to the case where job sizes are fixed but
variability in service occurs due to independent random events at each server. In this case, we note that (17)
states that the complementary CDF of η1 is log-convex. This complements with the findings of [35] where it
is found that independent log-convex distributions service time distributions benefit from cancel-on-complete
replication.

Let us define the optimal timeout as follows.

Definition 2 (Optimal Timeout). The optimal time τ is the smallest time such that

f1(τ)∫∞
τ
f1(s)ds

≤ 1 + η̄′2(τ)

η̄2(τ)
. (19)

If we assume that η2 is independent of η1, then we notice that the optimal timeout rule reduces to the
condition

f1(τ)∫∞
τ
f1(s)ds

=
1

E[η2]
. (20)

Definition 2 provides a practical rule for speculation because it allows one to apply reinforcement learning
or statistical estimation techniques to learn the optimal timeout when the service time distributions are not
known in advance.

The following is our main result on optimal timeout design; see the Appendix for a proof.

Theorem 4. Let Assumptions 1 and 4 hold. Finite optimal timeouts (see Definition 2) exist and minimize
the load ρ(τ) induced on a speculative queueing network. Moreover, if, in addition, the service requirements
η1 and η2 are independent, then any value of τ satisfying (20) minimizes the load.

5.3 Speculation vs Replication

We now compare the performance achieved by Speculative Load Balancing (SLB) with the performance
achieved by strategies that replicate jobs at the time of their arrival in the network. We perform such
comparison within the S&X model in Assumption 2, that is a worst case scenario for speculation in view of
Remark 3.

First, let us consider a setting where each incoming job is replicated to d queues selected uniformly at
random and independently of anything else. Here, redundant replicas are canceled as soon as one either
completes (Cancel-on-Complete) or starts (Cancel-on-Start) service. We refer to the former resp. latter
scheme as CoC-d resp. CoS-d.

It is known that CoS-d is equivalent to the Least-Left-Workload-d (LLW-d) dispatching algorithm. We
recall that LLW-d sends each incoming job to a queue having the shortest remaining workload among d
selected uniformly at random, with ties broken randomly. Since stability for CoS-d is obtained if and only
if λE[η1] < 1, i.e., as in standard load balancing, we have the following remark.
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Remark 4. SLB yields an increased stability region w.r.t. CoS-d whenever the conditions in Theorems 2
and 3 are satisfied.

On the other hand, it is difficult to perform a comparison with CoC-d because a satisfactory character-
ization of the resulting stability region is currently unclear [39, 37, 40]. However, depending on the load
regime, we can argue intuitively as follows:

• Assume the network is lightly loaded, or over-provisioned. Then, the time spent in the system by a job
with CoC-d is min(η1, . . . , ηd), where ηc represents the service time of copy c = 1, . . . , d. This should be
compared to η1 ∧ τ + η2 I{η1>τ}, the time spent by a job in a speculative queueing network within the
same load condition. For any d ≥ 2, it is not difficult to show that3 min(η1, . . . , ηd) ≤ η1∧τ+η2 I{η1>τ},
which means that, in a lightly loaded regime, it is better to replicate upon job arrivals rather than
speculate upon straggler detection. This claim should also be intuitive.

• Assume the network is moderately loaded. Then, within CoC-d it may happen that the first copy that
completes is not the minimum and that the fast copy gets stuck in its queue. For instance, for a given
job n, let us assume that η2(n) ≥ η1(n) and that the copy that completes first when applying CoC-d
is the one of size η2(n). On the event η1(n) ≤ τ , speculation on that job induces a lower load and no
price is paid for the extra copies.

• Assume the network is heavily loaded. When λ increases, the scenario depicted in the moderate load
regime amplifies, potentially leading CoC-d to be unstable. Here, it is not intuitive which approach is
better than the other.

To support the intuition above, we present the results obtained by running a large set of numerical
simulations. In our tests, we assume the service time structure given in Assumption 2. Figure 2 plots the
average response time (time spent in the system) obtained within SLB, CoC-d and CoS-d, for d = 2, 4 by
increasing λE[η1] while keeping E[η1] constant and under a number of S&X models where E[X] = 1 and
the random variable S is given by (16) (bimodal distribution) or follows a Pareto distribution with shape
parameter α ∈ {1.1, 1.5, 2} over the support [1, 103]. For SLB, we have chosen the timeouts τ∗ specified
in the respective subfigures. Each point (∗) in each curve refers to an average of 50 simulations and each
simulation executes 107 jobs. We also assume N = 50 FCFS queues.

The plots in Figure 2 confirm the intuition above. CoC-d provides the best results in light load conditions
(as expected) and it also increases the stability region achieved by CoS-d, that is the stability region of
standard join-the-shortest-queue-like algorithms (λE[η1] < 1). However, in most cases, SLB goes further and
is able to accommodate more traffic than CoC-d. For the most extreme heavy tailed distribution, Pareto
with α = 1.1, CoC-2 eventually provides the best results, though within CoC-d is not clear how to well
choose d a priori.

We now compare SLB with Redundant-to-Idle-Queue-d (RIQ-d), a replication scheme that works as
CoC-d but replicas are only made to those servers which are idle, and if no idle server is found then the
job is sent to a random one of the d selected; see [23]. RIQ-d was introduced to avoid the potential loss of
capacity of CoC-d, though at the same time we observe that it can ban its potential gain. We also notice
that comparing SLB and RIQ-d is not completely fair because the latter scheme is dynamic in the sense that
it needs dispatcher(s) and queues to continuously exchange information about servers’ status. No feedback
mechanisms to dispatcher(s) are assumed in SLB, though they could clearly be integrated to further reduce
delays; we do not discuss this in this paper. Within the same setting described above, Figure 2 plots the
average response time obtained within SLB and RIQ-d, for d = 2, 4 by increasing λE[η1] while keeping E[η1]
constant. RIQ-4 provides slightly better results in light load conditions, which is to be expected because as
λ ↓ 0 it behaves as CoC-4. As the load increases, however, it is less and less likely to find idle queues and
the dynamics of RIQ-d get closer and closer to the dynamics of Random (RND), which sends each job to
a single server selected independently at random. For the latter, the stability condition λE[η1] < 1 applies,
while SLB preserves stability much further.

Finally, we conclude this section with the following remark about the communication overhead induced
by SLB, CoC-d, CoS-d and RIQ-d. SLB requires 1 + P(η1 > τ) < 2 control messages per job in average. On
the other hand, CoC-d and CoS-d require, for each job, d dispatch messages plus d−1 cancellation messages.

3We recall that η1 and η2 are assumed equal in distribution in this section.
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Figure 2: Average response time obtained within Speculative Load Balancing (SLB), Cancel-on-Complete-d
(CoC-d) and Cancel-on-Start-d (CoS-d) under S&X models. The vertical dashed black lines represent the
limits of the stability region of SLB.

6 Response Time for Large Systems

In this section, we consider a symmetric (see Assumption 1) speculative queueing network composed of FCFS
queues. Within these assumptions, let RN,n(τ) be the overall time spent by the n-arriving job in the system
and let

RN (τ) := lim sup
m→∞

1

m

m∑
n=1

E[RN,n] (21)

be the average response time experienced by jobs. In this section, our goal is to investigate RN (τ).
First, we observe that RN (∞) corresponds to the mean response time of an M/GI/1 queue. When τ <∞,

the feedback speculation mechanism significantly complicates the analysis and our aim is to develop an
approximation. We focus on the large system limiting regime where N →∞ and ρ(τ) is constant. Defining

W :=
λ

2
(1 + P(η1 ≥ τ))

M

1− ρ(τ)
(22)

M :=
E[(η1 ∧ τ)2] + E[η̂2

2 ]P(η1 > τ)

1 + P(η1 > τ)
(23)
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Figure 3: Average response time obtained within Speculative Load Balancing (SLB) and Redundant-to-Idle-
Queue-d (RIQ-d) under S&X models. The vertical dashed black lines represent the limits of the stability
region of SLB.

where η̂2 is an auxiliary random variable equal in distribution to η2 | η1 > τ , we claim that the following
conjecture holds true.

Conjecture 1. Provided that ρ(τ) < 1,

lim
N→∞

RN (τ) = (1 + P(η1 > τ))W +
ρ(τ)

λ
. (24)

The underlying justification behind Conjecture 1 lies in postulating that queues become “asymptotically
independent” in the limit N → ∞. In this case, the arrival process at each queue i is the superposition of
an exogenous rate-λ Poisson process and N independent feedback processes each with rate λP(η1 > τ)/N .
Given that the intensity of each of the feeback processes approaches zero as N → ∞, we may assume that
their superposition is “approximately” a Poisson process with rate λP(η1 > τ), provided that N is “large”.
This is justified by the Palm–Khinchine theorem, which ensures that the superposition of several independent
sparse point processes converges weakly to a Poisson process on R+; see [18, Chapter 5.8]. Therefore, we
conjecture that the arrival process at each queue i is the independent superposition of 1) a rate-λ Poisson
process carrying jobs of sizes equal in distribution to η1 and 2) a rate-λP(η1 > τ) Poisson process carrying
jobs of sizes equal in distribution to η2|η1 ≥ τ . This queue can be interpreted as an M/G/1 queue where the
arrival rate is λ+ λP(η1 > τ) and the service times are equal in distribution to H, where

H =

{
η1 ∧ τ w.p. 1

1+P(η1>τ)

η2 | η1 ≥ τ otherwise
(25)

with η1 equal in distribution to η1 but independent of all else. Note that E[H2] = M . Furthermore, the
traffic intensity at this M/G/1 queue is (λ + λP(η1 > τ))E[H] = ρ(τ) and the mean workload observed at
arrival times is W , which follows by applying the Pollaczek-Khinchine formula. Conditioning on η1 ≤ τ , the
mean response time of a job is

W + E[η1 | η1 ≤ τ ], (26)

and conditioning on η1 > τ , the mean response time of a job is

W + τ +W + E[η1 | η1 ≤ τ ], (27)

that is the time spent during the first visit, W + τ , plus the time spent during the second visit, W + E[η1 |
η1 ≤ τ ]. Putting (26) and (27) together, we get

P(η1 ≤ τ)(W + E[η1 | η1 ≤ τ ]) + P(η1 > τ)(2W + τ + E[η2|η1 ≥ τ ]),
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Figure 4: Average response times obtained by simulation and via Conjecture 1; S has the form (16) and
N = 50.

which after some algebra boils down to (24).
Figure 4 plots the average time spent by a job in a speculative queueing network obtained by simulation

(N = 50) and by the conjectured Formula (24). Each point (∗) of each plot refers to an average of 50
simulations and each simulation was based on 107 jobs. As in the plots of Section 5.3, we assume η1 = S1X
and η2 = S2X where S is as in (16). For X, we distinguish the cases X = 1 and X ∼ Exponential(1). It is
remarkable how the approximation is accurate under any load condition.

7 Conclusions

In this paper, we provide a first performance evaluation for job speculation in a queueing network. We
characterize the stability region of a speculative queueing network and find the resulting stability region to
be distinct from a queueing network implementing a standard load balancing scheme. We provide conditions
on job size distributions for speculative load balancing to increase the size of the stability region. Specifically,
in the presence of heavy tailed server slowdown, we find that speculation is a good mechanism to increase
stability and thus throughput. We provide the first characterization of the optimal timeout for a speculative
task. This follows simple implementable formulas (19) and, under independence, (20). Under moderate to
heavy loadings, simulations indicate that speculation can significantly improve performance when compared
with redundancy schemes and standard load-balancing systems. Finally, using the Pollaczek-Khinchine
formula, we postulate on the impact of speculation on response times by providing a numerically accurate
approximation.

The proposed framework opens up important questions:

• It is possible to design schemes that combine the benefits of replication for a light loaded regime, while
maintaining the desirable stability properties of speculation for moderate to high loads.

• The design of the optimal timeout requires the solution of a Markov decision process. Since task
sizes must be statistically estimated, real systems may need to apply reinforcement learning to design
optimal task based replication decisions.

• The analysis in Section 6 forms a conjecture on the mean field limit of a speculative queueing network.
The resolution of this conjecture requires further analysis.
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• We have applied random server assignment to arriving and speculative tasks. However, it may be
preferable to implement join-idle-queue or join-the-shortest-queue-d routing to these tasks. While we
believe that the stability region obtained within such speculative dynamic schemes remains unchanged,
delays are expected to be further reduced.

A natural generalization of our model considers multiple speculation levels. Specifically, timeouts can be
used in second job executions and a job that timeouts in the second visited queue gets routed to a third
queue, and so forth a number of times. We believe that our results generalize to this setting naturally,
though a formal proof for Theorem 1 would require more work.

Although job speculation is widely used in practice, its performance has been understudied relative to
recent works on redundancy. The proposed framework sheds a new light on speculative load balancing and
addresses a number of important questions on the design of job replication in large scale computer systems.
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redundant requests: exact analysis. Queueing Systems, 83(3-4):227–259, 2016.

[27] F. A. Haight. Queueing with reneging. Metrika, 2(1):186–197, 1959.

[28] M. Harchol-Balter. Task assignment with unknown duration. J. ACM, 49(2):260–288, 2002.

[29] M. Harchol-Balter, A. Scheller-Wolf, and A. R. Young. Surprising results on task assignment in server
farms with high-variability workloads. SIGMETRICS ’09, pages 287–298, New York, NY, USA, 2009.
ACM.

[30] T. Hellemans, T. Bodas, and B. Van Houdt. Performance analysis of workload dependent load balancing
policies. SIGMETRICS Perform. Eval. Rev., 47(1):78, Dec. 2019.

[31] T. Hellemans and B. V. Houdt. Performance of redundancy (d) with identical/independent replicas.
ACM Transactions on Modeling and Performance Evaluation of Computing Systems (TOMPECS),
4(2):1–28, 2019.

[32] T. Hellemans and B. Van Houdt. Heavy traffic analysis of the mean response time for load balancing
policies in the mean field regime. arXiv preprint arXiv:2004.00876, 2020.

[33] H. Huang, W. Hung, and K. G. Shin. Fs2: Dynamic data replication in free disk space for improving
disk performance and energy consumption. SIGOPS Oper. Syst. Rev., 39(5):263276, Oct. 2005.

17



[34] G. Joshi and D. Kaushal. Synergy via redundancy: Adaptive replication strategies and fundamental
limits. arXiv preprint arXiv:2012.13608, 2020.

[35] G. Joshi, E. Soljanin, and G. Wornell. Efficient redundancy techniques for latency reduction in cloud
systems. ACM Transactions on Modeling and Performance Evaluation of Computing Systems (TOM-
PECS), 2(2):1–30, 2017.

[36] F. Kelly. Reversibility and Stochastic Networks. Wiley, Chicester, 1979.

[37] G. Mendelson. A lower bound on the stability region of redundancy-d with fifo service discipline.
Operations Research Letters, 49(1):113 – 120, 2021.

[38] G. Peskir and A. Shiryaev. Optimal stopping and free-boundary problems. Springer, 2006.

[39] Y. Raaijmakers and S. Borst. Achievable stability in redundancy systems. Proc. ACM Meas. Anal.
Comput. Syst., 4(3), Nov. 2020.

[40] Y. Raaijmakers, S. Borst, and O. Boxma. Redundancy scheduling with scaled bernoulli service require-
ments. Queueing Systems, 93(1):67–82, Oct 2019.

[41] X. Ren, G. Ananthanarayanan, A. Wierman, and M. Yu. Hopper: Decentralized speculation-aware
cluster scheduling at scale. In Proceedings of the 2015 ACM Conference on Special Interest Group
on Data Communication, SIGCOMM ’15, page 379392, New York, NY, USA, 2015. Association for
Computing Machinery.

[42] T. I. Seidman. ”first come, first served” can be unstable! IEEE Transactions on Automatic Control,
39(10):2166–2171, Oct 1994.

[43] M. van der Boor, S. C. Borst, J. S. van Leeuwaarden, and D. Mukherjee. Scalable load balancing in
networked systems: A survey of recent advances. arXiv preprint arXiv:1806.05444, 2018.

[44] J. Visschers, I. Adan, and G. Weiss. A product form solution to a system with multi-type jobs and
multi-type servers. Queueing Systems, 70(3):269–298, 2012.

[45] A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and S. Shenker. Low latency via redun-
dancy. In Proc. of the Ninth ACM Conference on Emerging Networking Experiments and Technologies,
CoNEXT ’13, pages 283–294, New York, NY, USA, 2013. ACM.

[46] D. Wang, G. Joshi, and G. W. Wornell. Efficient straggler replication in large-scale parallel computing.
ACM Trans. Model. Perform. Eval. Comput. Syst., 4(2), Apr. 2019.

[47] H. Xu and W. C. Lau. Optimization for speculative execution in big data processing clusters. IEEE
Transactions on Parallel and Distributed Systems, 28(2):530–545, 2016.

[48] Y. Xu, M. Bailey, B. Noble, and F. Jahanian. Small is better: Avoiding latency traps in virtualized
data centers. In Proceedings of the 4th Annual Symposium on Cloud Computing, SOCC ’13, New York,
NY, USA, 2013. Association for Computing Machinery.

[49] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica. Improving mapreduce performance
in heterogeneous environments. In Osdi, volume 8, page 7, 2008.

Proof of Proposition 1

The proof below identifies how our model fits within the framework of Bramson [13], under the multi-class
structure given in Section 4.1.
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Proof of Proposition 1. The proof follows from arguments in Bramson [13]. Here we confirm that conditions
stated in [13] apply to our model and we refer the reader to appropriate sections and results in that work.

We note that, typically in the fluid analysis of queueing networks, it is assumed that the arrival, service
and routing processes are independent. This is not true in our case under our first state description in Section
3. However, under the extended class structure in Section 4.1, the state description does have independent
job sizes (within each class). Further it should be noted that notions of positive Harris recurrence and
petite sets remain without these independence assumptions (see the remark following [15, Proposition 2.1]).
First we note that the process is a (Harris) Markov process. In particular, the state descriptor given in
(1) and given by Bramson [13, Section 4.1 & 4.3] remains Markov in our setting, since when we condition
on this state descriptor all future events are function of independent random variables. Second, we assume
head-of-the-line service. These conditions ensure that closed sets are petite; see [13, Proposition 4.8].

Finally, we observe that the conditions of [13, Theorem 4.16] have now been met. Thus as concluded
in the theorem, queueing network stability (positive Harris recurrence) holds whenever the associated fluid
model is stable.

Proof of Theorem 1

In view of Lemma 5.3 in [15], we can restrict to fluid solutions where V = 0. Therefore, we can assume that
for all i

Qc,i(t) = Qc,i(0) + λNp0,iP(η1 ≤ τiµi)t−
T c,i(t)

E[η1µi
| η1µi
≤ τi]

≥ 0 (28)

Qu,i(t) = Qu,i(0) + λNp0,iP(η1 > τiµi)t−
Tu,i(t)

τi
≥ 0 (29)

Qj,i(t) = Qj,i(0)− T j,i(t)

E[η2µi
| η1µj

> τj ]
+ p1,i

Tu,j(t)

τj
≥ 0,∀(j, i) ∈ K2. (30)

For all i, let Gi(t) be such that

Gi(t)
p1,i

µi
= E

[
η1

µi
| η1

µi
≤ τi

]
Qc,i(t) + τiQu,i(t) +

∑
j

E
[
η2

µi
| η1

µj
> τj

] (
p1,iQu,j(t) +Qj,i(t)

)
(31)

and note that Gi(t) is absolutely continuous. The function Gi(t) may be interpreted as a Lyapunov function
on queue i and we note that it does not correspond to the workload in queue i. Substituting (28)-(30) in
(31), after some algebra we obtain

Gi(t)
p1,i

µi
= Gi(0)

p1,i

µi
+ λNp0,iE

[
η1

µi
∧ τi

]
t− T c,i(t)− Tu,i(t)

+
∑
j

E
[
η2

µi
| η1

µj
> τj

]
p1,iλNp0,jP(η1 > τjµj)t− T j,i(t)

=
Gi(0)

µi
−Bi(t) + λNp0,iE

[
η1

µi
∧ τi

]
t+
∑
j

E
[
η2

µi
| η1

µj
> τj

]
p1,iλNp0,jP(η1 > τjµj) t

=
Gi(0)

µi
−Bi(t) + ρi t

where Bi(t) := T c,i(t) + Tu,i(t) +
∑
j 6=i T j,i(t) is interpreted as the cumulative time queue i has been busy

(non-idle) in [0, t]. Now, assuming that t is a point of differentiability for Gi(t)

Ġi(t)
p1,i

µi
= −I{Qi(t)>0} + ρi (32)

where Qi(t) := Qc,i(t) + Qu,i(t) +
∑
j 6=iQj,i(t) is the total number of jobs in queue i at time t. Thus,

whenever Qi(t) > 0,

Ġi(t)
p1,i

µi
= ρi − 1 < 0. (33)
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On the other hand, if Qi(t) = 0, Qs(t) > 0 and s 6= i, then

Gi(t)−Gs(t) =

∑
j 6=i

E
[
η2 |

η1

µj
> τj

]
Qu,j(t)

−Gs(t)
≤

∑
j 6=i

E
[
η2 |

η1

µj
> τj

]
Qu,j(t)

− E
[
η1

p1,s
| η1

µs
≤ τs

]
Qc,s(t)−

τsµs
p1,s

Qu,s(t)

−
∑
j 6=i

E
[
η2 |

η1

µj
> τj

](
Qu,j(t) +

Qj,s(t)

p1,s

)

≤ −E
[
η1

p1,s
| η1

µs
≤ τs

]
Qc,s(t)−

τsµs
p1,s

Qu,s(t)−
∑
j 6=i

E
[
η2 |

η1

µj
> τj

]
Qj,s(t)

p1,s
< 0

where the last inequality follows because Qs(t) > 0. Since s is generic, we obtain

Gi(t) < min
s 6=i

Gs(t) (34)

provided that Qi(t) = 0.
Let G(t) := maxi=1,...,N Gi(t). With (33) holding true when Qi(t) > 0 and (34) holding true when

Qi(t) = 0 and Qs(t) > 0, we can apply Lemma 3.2 of [17], which implies that G(t) is also an absolutely
continuous nonnegative function and such that Ġ(t) < −ε for some ε > 0, provided that t is a point of
differentiability of G,G1, . . . , Gd such that G(t) > 0. Applying Lemma 2.2 of [17], we obtain that G(t) = 0
for all t ≥ δ, for some δ > 0. Finally, we notice that G(t) = 0 implies that the system is empty.

Proof of Proposition 2

We have

1

λ
max

i=1,...,N
ρi = max

i=1,...,N
Np0,iE [η1 ∧ τi] +Np1,i

∑
j

p0,jP(η1 > τj)E [η2 | η1 > τj ]

≥
∑
i

p0,i (E [η1 ∧ τi] + P(η1 > τi)E [η2 | η1 > τi])

≥ min
i

E [η1 ∧ τi] + P(η1 > τi)E [η2 | η1 > τi]

≥ inf
t∈R+

(E [η1 ∧ t] + P(η1 > t)E [η2 | η1 > t]) = inf
t∈R+

ρ(t)

λ

as desired.

Proof of Theorem 2

Given τ ∈ R+, we notice that

ρ(τ)

λ
− E[η1] = E[η1 ∧ τ ] + P(η1 > τ)E[η2 | η1 > τ ]− E[η1]

= τ P(η1 > τ) + P(η1 > τ)E[η2 | η1 > τ ]− E[η1 | η1 > τ ]P(η1 > τ) < 0

if and only if (13) holds.
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Proof of Theorem 3

Using Assumption 2 and that X, S1 and S2 are independent, we obtain

ρ(τ)

λ
= E[(S1X) ∧ τ ] + P(S1X > τ)E[S2X | S1X > τ ]

=
∑
x

E[(S1X) ∧ τ | X = x]P(X = x) + E[S2XI{S1X>τ}]

=
∑
x

E[(S1x) ∧ τ ]P(X = x) +
∑
x

E[S2xI{S1x>τ}|X = x]P(X = x)

=
∑
x

E [S1x ∧ τ ] P(X = x) +
∑
x

E[S2x]P(X = x)P(S1x > τ)

=
∑
x

P(X = x) (E [S1x ∧ τ ] + E[S2x]P(S1x > τ)) .

Since E[η1] = E[X]E[S], we notice that

E[η1]− ρ(τ)

λ
=
∑
x

P(X = x)
(
E[Sx]P(Sx ≤ τ)− E [Sx ∧ τ ]

)
(35)

and within Assumption 3 it is clear that the RHS of (35) is strictly greater than zero when τ = z, for
some z ∈ R+. The final part of the proposition is straightforward.

Optimal Stopping Formulation of Theorem 4

First, we explain how the proof of Theorem 4 can be expressed as an optimal stopping problem; in the
following, stopping time and timeout are used interchangeably. Then, we show how the optimal timeout
can be verified as an application of the one-step-lookahead principle. We also give a proof in continuous
time and with deterministic stopping times. The more general proof (continuous-time stochastic timeouts)
is more involved and, due to space constraints, is included in the appendix.

If we wish to minimize the time spent by a job in the processing phase, then we must minimize

V = min
τ∈T

E
[
η1 ∧ τ + η2I{τ≤η1}

]
(36)

= min
τ∈T

E
[∫ τ

0

F̄1(t)dt+ η̄2(τ)F̄1(τ)

]
(37)

where T is the set of stopping times on R+, the functions f1(t) and F̄1(t) are respectively the pdf and ccdf
of η1, and η̄2(t) := E[η2 | η1 ≥ t]. The minimization (36) is an optimal stopping problem with continuation
cost F̄1(t) and stopping cost η̄2(t)F̄1(t). We note that the objective function above is equal to ρ(τ)/λ where
ρ(τ) is the induced load on the speculative queueing network for timeout τ . Thus, we aim at finding the
stopping time that minimizes the load.

Discrete Time Argument. What follows is a brief informal argument for why the stopping condition (19)
is correct. If we discretize time as T∆ := {0,∆, 2∆, ...} and if we are only allowed to stop on this restricted
set of times (rather than T ), then the optimization for V above is a discrete time Markov decision process.
The Bellman equation for this problem is

V (t) = min
{
p∆(t)[∆ + V (t+ ∆)], η̄2(t)

}
,

where we define p∆(t) := P(η1 ≥ t+ ∆|η1 ≥ t) = 1− f1(t)∆
F̄1(t)

+ o(∆) .

The one-step-look-ahead is known to be optimal for a wide class of optimal stopping rules [10, Section
4.4]. Here, we stop (or timeout) if it is better to stop now than continue one time step and then stop. In
our case, it is easy to see that this corresponds to the condition:

η̄2(t) ≤ p∆(t)[∆ + η̄2(t+ ∆)] .
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The RHS term can be simplified:

p∆(t)[∆ + η̄2(t+ ∆)]

=

(
1− f1(t)∆

F̄1(t)

)
[∆ + ∆η̄′2(t) + η̄2(t)] + o(∆)

= η̄2(t) + ∆

[
1 + η̄′2(t)− f1(t)

F̄1(t)
η̄2(t)

]
+ o(∆) .

Observing the term in square brackets above, we see that up to terms of order o(∆) the one-step look-ahead
rule gives the condition to stop at τ whenever

1 + η̄′2(τ)

η̄2(τ)
≥ f1(τ)

F̄1(τ)
.

This gives the stopping rule stated in (19). For one-step look-ahead to be optimal, we require that this set
is closed, meaning that whenever the stopping condition is satisfied it remains satisfied for all future times.
This is the motivation for Assumption 4.

Continuous Time Argument. If we restrict ourselves to deterministic stopping times, then it is clear that
τ is the optimal stopping time: by conditioning on the value of η1, we have that the objective (36) satisfies

E
[
η1 ∧ τ + η2I{τ≤η1}

]
=

∫ τ

0

F̄1(t)dt+ η̄2(τ)F̄1(τ)

and a stationary point of this optimization satisfies

0 = F̄1(τ) + η̄′2(τ)F̄1(τ)− η̄2(τ)f1(τ)

= F̄1(τ)η̄2(τ)

[
1 + η̄′2(τ)

η̄2(τ)
− f1(τ)

F̄1(τ)

]
.

Thus, under Assumption 4, the optimal stopping time condition is

1 + η̄′2(τ)

η̄2(τ)
=
f1(τ)

F̄1(τ)
.

Proof of Theorem 4

We put together the stochastic discrete time argument with the deterministic continuous time argument
developed above to give a formal proof. Towards this purpose, we must formulate the optimal stopping
problem as a free boundary problem and then solve it for the optimal rule. The theory of free boundary
problems and optimal stopping is given in detail in [38].

A value function must satisfy the following free boundary problem

η̄2(t) ≥ V (t) , (38a)

0 = 1 + V ′(t)− f1(t)

F̄1(t)
V (t) on {V (t) < η̄2(t)} . (38b)

It is show in Section 2.2 of [38] that a solution of (38) defines the value of a policy that stops on the set
S = inf{t : V (t) ≥ η̄2(t)}. Assuming that V (t) < η̄2(t), the o.d.e. (38b) can be solved as follows

0 = 1 + V ′(t)− f1(t)

F̄1(t)
V (t)

=⇒ f1(t)V (t)− F̄1(t)V ′(t) = F̄1(t)

=⇒ d

dt
(−F̄1(t)V (t)) = F̄1(t)
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=⇒ F̄1(t)V (t) = −
∫ t

0

F̄1(s)ds+A

=⇒ V (t) =
A

F̄1(t)
− 1

F̄1(t)

∫ t

0

F̄1(s)ds

where A is a constant which we will specify shortly.
We now investigate times τ ∈ [0,∞] where V (τ) = η̄2(τ). Substituting the above expression for V (t), we

notice that

η̄2(τ) =
A

F̄1(τ)
− 1

F̄1(τ)

∫ τ

0

F̄1(s)ds =⇒ A = η̄2(τ)F̄1(τ) +

∫ τ

0

F̄1(s)ds .

Thus, we see that the solutions to the free boundary problem, for which there exists a time with V (τ) = η̄2(τ),
take the form

Vτ (t) = η̄2(τ)
F̄1(τ)

F̄1(t)
+

∫ τ

t

F̄1(s)ds

= η̄2(τ) +
1

F̄1(t)

∫ τ

t

η̄2(τ)f1(s) + F̄1(s)ds , t ≤ τ . (39)

Here we write Vτ (t) to make the dependence on τ explicit. We now require the minimal solution, setting
t = 0 and differentiating with respect to τ gives

∂τVτ (0) = η̄′2(τ)F̄1(τ)− η̄2(τ)f1(τ) + F̄1(τ)

= η̄2(τ)F̄1(τ)

[
1 + η̄′2(τ)

η̄2(τ)
− f1(τ)

F̄1(τ)

]
.

The term η̄2(t)F̄1(τ) is positive while the term in square brackets is monotone increasing from Assumption
4. Thus, from the term in square brackets above, we see that the condition is that τ∗ is the minimal value
such that the term in square brackets is positive. That is

τ∗ = min

{
τ ≥ 0 :

1 + η̄′2(τ)

η̄2(τ)
≥ f1(τ)

F̄1(τ)

}
.

Thus (39) with τ = τ∗ characterizes the solution up until time τ∗. We note that for time t > τ∗ the solution
must satisfy V (t) = η̄2(t). This can be seen because of the following argument. If V (t) = η̄2(t) did not hold
for all t ≥ τ∗ then we can choose a time t such that V (t) = η̄2(t), but the value function is strictly smaller
immediately after time t; however, then under condition (38b)

V ′(t) = 1− f1(t)

F̄1(t)
V (t) = 1− f1(t)

F̄1(t)
η̄2(t) > η̄′2(t)

where the inequality above holds since

1 + η̄′2(t)

η̄2(t)
>
f1(t)

F̄1(t)

for t > τ∗. Thus we have V ′(t) > η̄′2(t). So we see that this leads to a contradiction since we assumed the
function V (t) decreases below η̄2(t) immediately after time t. This proves that V (t) = η̄2(t) for all t ≥ τ∗.

From this we see that the minimal value function solving the free boundary problem is

V (t) =

{
η̄2(τ∗) + 1

F̄1(t)

∫ τ∗

t
[η̄2(τ∗)f1(s) + F̄1(s)]ds t ≤ τ∗

η̄2(t) t > τ∗

where τ∗ is given above, which implies that the optimal stopping set is S := {t : V (t) = η̄2(t)} = {t : t ≥ τ∗}.
Thus, it is optimal to stop at time τ∗ as required.

Finally, we note that if η2 is independent of η1 then η̄2(t) is a constant, E[η2], and the optimal stopping
condition reduces to the condition (20).
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