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TRAINING DEEP PITCH-CLASS REPRESENTATIONS WITH A
MULTI-LABEL CTC LOSS

Christof Weiß, Geoffroy Peeters
LTCI, Télécom Paris, Institut Polytechnique de Paris, France

ABSTRACT

Despite the success of end-to-end approaches, chroma (or
pitch-class) features remain a useful mid-level represen-
tation of music audio recordings due to their direct in-
terpretability. Since traditional chroma variants obtained
with signal processing suffer from timbral artifacts such
as overtones or vibrato, they do not directly reflect the
pitch classes notated in the score. For this reason, train-
ing a chroma representation using deep learning (“deep
chroma”) has become an interesting strategy. Existing
approaches involve the use of supervised learning with
strongly aligned labels for which, however, only few
datasets are available. Recently, the Connectionist Tempo-
ral Classification (CTC) loss, initially proposed for speech,
has been adopted to learn monophonic (single-label) pitch-
class features using weakly aligned labels based on corre-
sponding score–audio segment pairs. To exploit this strat-
egy for the polyphonic case, we propose the use of a multi-
label variant of this CTC loss, the MCTC, and formal-
ize this loss for the pitch-class scenario. Our experiments
demonstrate that the weakly aligned approach achieves al-
most equivalent pitch-class estimates than training with
strongly aligned annotations. We then study the sensitivity
of our approach to segment duration and mismatch. Fi-
nally, we compare the learned features with other pitch-
class representations and demonstrate their use for chord
and local key recognition on classical music datasets.

1. INTRODUCTION AND RELATED WORK

The Pitch Class Profile (PCP) or chroma is one of the most
frequently used audio feature in Music Information Re-
trieval (MIR). Chroma features are typical for MIR for
several reasons: First, they were developed specifically for
music [1] as opposed to other features which were inher-
ited from speech processing (such as MFCCs). Second,
despite the success of end-to-end-systems, PCP or chroma
features are still used today due to their semantic mid-level
nature, being musically interpretable as energy distribution
over the twelve chromatic pitch classes in an audio sig-
nal (see Figure 1). Because of this, PCPs directly relate to
musical harmony, therefore being used for chord and key

© C. Weiß and G. Peeters. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution:
C. Weiß and G. Peeters, “Training Deep Pitch-Class Representations With
a Multi-Label CTC Loss”, in Proc. of the 22nd Int. Society for Music In-
formation Retrieval Conf., Online, 2021.

Figure 1. Training a CNN with weakly aligned targets
(schematic). Song No. 23 from Schubert’s Winterreise
sung by R. Trekel. (a) Waveform. (b) Pitch-class estimates.
(c) Non-aligned Targets derived from the score. (d) Score.

estimation or audio matching (cover song retrieval) tasks.
Chroma features based on signal processing. Early

approaches [2,3] to chroma are based on signal processing
and map a time–frequency representation such as the Short
Time Fourier Transform (STFT) [2] or the Constant-Q-
Transform (CQT) [3] to the twelve pitch classes. However,
due to timbral characteristics such as overtones (which
correspond to different pitch classes), transient note on-
sets, or vibrato, these chroma features do not directly re-
flect the pitch classes notated in the score, thus limiting
their interpretability. This motivated sophisticated while
still hand-crafted features, which aim at reducing the in-
fluence of timbre [4–6], at making this influence equal for
all instruments [7], or at equalizing loudness variation and
transient components [8]. To study the effect of these im-
provements for chord recognition, Cho et al. [9] present an
in-depth comparison, concluding that suitable chroma fea-
tures largely redeem the benefits of complex chord models.

Pitch-class representations based on deep learning.
Recently, deep learning of pitch-class features from data
has become a promising direction. Yet, prior works on
“deep chroma” have a concrete application task in mind



and do not directly evaluate the obtained pitch-class rep-
resentations: Humphrey et al. [10] trained a Convolu-
tional Neural Network (CNN) to estimate a Tonnetz rep-
resentation and use this representation to estimate chords.
Later works [11,12] extend this to end-to-end (CQT-based)
chord recognition. In a similar fashion, more recent ap-
proaches [13, 14] train pitch-class extractors using annota-
tions derived from chord labels. While this led to promis-
ing results for chord recognition and other tasks [15], Ko-
rzeniowski et al. [13] showed that the learned represen-
tations strongly focus on chord-like structures and do not
actually represent the pitch classes notated in the score,
thus limiting their interpretability and generalization ca-
pability. As an alternative, Wu et al. [16] estimate pitch
classes by training with audio and annotations synthesized
from MIDI files (which are available in large quantity).
The trained features are used for chord recognition with
good results, improved in a follow-up work [17]. While
this strategy is interesting , systems trained on synthetic
data show limited generalization to real audio.

Training with aligned scores. To overcome this prob-
lem, large amounts of real audio recordings with pitch-
class annotations are needed. Annotation can be done with
MIDI-fied instruments [18], which led to several transcrip-
tion datasets such as MAPS [19], SMD [20], or MAE-
STRO [21]—all limited to the piano. For other instru-
ments, there are only few pitch-annotated datasets such
as Bach10 [22], TRIOS [23], or PHENICX-Anechoic [24]
(all ≤10 pieces), which often involve multi-track record-
ings to simplify annotation. As an alternative, symbolic
scores can be used to semi-automatically generate pitch-
class annotations. While such scores are considered only
“weak labels” for popular music [25], the correspondence
between score and audio is clearly higher for professional
recordings of classical music. For exploiting such score–
audio pairs (as done for the MusicNet dataset [26]), au-
tomated music synchronization technology such as [27] is
required in order to generate a so-called strong alignment.
While this training strategy leads to effective pitch-class
representations [28], the necessary synchronization consi-
tutes a costly and challenging pre-processing step.

Motivation of our work. To simplify and improve this
procedure, synchronisation between audio and labels can
be done either within the network using attention mod-
els [29] or transformers [30], or within the loss com-
putation using the Connectionist Temporal Classification
(CTC) loss [31] for sequence-to-sequence training. CTC
was successfully applied by Zalkow et al. [32] to train
a monophonic deep-chroma representation from weakly
aligned data, which they use for cross-modal retrieval.
Yet, since CTC applies to single-label outputs, only mono-
phonic pitch-class representations can be trained this way.

Proposal and paper organization. To overcome this
limitation, we propose to use a multi-label variant of CTC
(denoted MCTC), recently introduced for handwritten text
and optical music recognition [33]. Based on our previous
work on MCTC for multi-pitch estimation [34], we apply
this loss to train a polyphonic pitch-class representations

from score–audio pairs of general correspondence (weak
alignment) without the need for pre-computing strong
alignments. Using MCTC, we train a network to detect
the framewise activity of pitch classes as indicated by the
score (multi-pitch-class estimation, see Figure 1).

Our main contributions are as follows: First, we re-
formalize the MCTC loss to be applicable for PCP. Sec-
ond, we use this loss to train a musically-motivated CNN
inspired by [28] for extracting pitch-class representations.
Using several public datasets, we perform experiments to
analyze their efficacy and robustness against input modi-
fications. Third, we propose a set of performance mea-
sures to directly evaluate the PCP quality without a side-
task. Fourth, we demonstrate the potential of our MCTC-
based features for visualization and for two downstream
tasks: local key and chord estimation. We compare our
features to several baselines including features trained with
strongly aligned scores. All results indicate that MCTC is
a promising tool for training efficient pitch-class represen-
tations with weakly aligned score–audio pairs.

2. MCTC LOSS FOR PITCH CLASS ESTIMATION

In the following, we describe and formalize the MCTC loss
for training deep pitch-class features, closely following the
descriptions in [33, 34] for comparability.

CTC. We consider a Neural Network (NN) which maps
an input sequence x:=(x1, . . . ,xU ) to an output sequence
y:=(y1, . . . ,yT ) with U possibly larger than T due to ad-
ditional context frames. The CTC loss, initially proposed
for speech recognition [31], allows to map the output se-
quence y to a target sequence (or label) l of length S≪T ,
l :=(l1, . . . , lS). l consists of characters ls ∈ L where L
is an alphabet. A path π is a possible alignment between
the two sequences y and l. To compute the probability of
l given x, p(l|x), we need to consider all possible (valid)
paths π between y and l. CTC requires an extra character
blank (or “–”), which stands for either no symbol being
active or a repetition of the previously active symbol. This
results in an extended alphabet L′ = L ∪ {blank}. We
then define a mapping function B : L′T → LS≤T , which
transforms a path π = (π1 . . . πt . . . πT ) ∈ L′T to a la-
bel l = (l1, . . . , lS) ∈ LS by removing repeated and then
blank symbols. 1 Given a target sequence l, the inverse of
B or pre-image B−1(l) provides the set of all valid paths
π that collapse to l. In practice, yt is the output of a NN
at time t with a softmax activation giving the likelihood of
each character k ∈ L′ at time t. The probability of a given
path π is the product of the relevant probabilities over time:∏T

t=1 y
t
πt . The probability of observing the label l is the

sum over all its valid paths π ∈ B−1(l):

p(l|x) =
∑

π∈B−1(l)

T∏
t=1

ytπt (1)

CTC allows to compute this efficiently using dynamic pro-
gramming and was used for MIR tasks such as lyrics align-
ment [35] or monophonic pitch-class representations [32].

1 For example, if T =5 and L={a, . . . , z}, B(a− ab−) = B(aa−
ab) = B(−a− ab) = aab.



Multi-label CTC (MCTC). The CTC loss is a useful
tool for single-label problems. However, polyphonic pitch-
class estimation is a multi-label problem, where an input
x needs to be mapped to several (non-mutually exclusive)
target labels yk. An extension of the CTC loss to the multi-
label case has been proposed by Wigington et al. [33] for
handwritten text recognition (letters with accents) and ap-
plied to multi-pitch estimation in our previous work [34].

In the case of PCP, any combination of pitch-classes is
allowed to be simultaneously active (see Figure 1). Mod-
eling all combinations as individual symbols would be
possible in theory but leads to a large network output
(212 = 4096), thereby not accounting for the high inter-
dependency of similar combinations, and is therefore not
adequate for the problem. Following [34], we thus con-
sider the 12 pitch classes qi ∈ {C,C♯ . . . , B} as different
categories Ci, i ∈ {1, . . . , 12}, each of which comprises
the same set of components: 0 (absence of this pitch-class),
1 (presence) together with the blank symbol. This leads to
the alphabet {blank, 0, 1}. A character k is then the union
(a tuple) of components from different categories, i. e. in
our case, a multi-hot target vector denoting pitch-class ac-
tivities k ∈ {0, 1}12 denoting the co-occurrence of several
pitch classes. The label l is a sequence of characters with
vocabulary L (all binary pitch-class vectors). It can be
decomposed into component-level label sequences li with
vocabulary Li. In the same spirit, at the path-level, we can
define a character-level path π with vocabulary L′ and a
component-level path πi with vocabulary L′

i. We now de-
scribe the realization of these sets for different multi-label
variants of CTC proposed in [33].

Separable CTC Loss (SCTC). Assuming that pitch-
classes occur independently of each other (which is of
course a wrong assumption since e. g., the pitch classes of a
chord are tied together), there is a trivial approach in which
each category Ci is considered by an individual CTC loss.
The individual losses are then multiplied:

p(l|x) =
12∏
i=1

∑
πi∈B−1(li)

T∏
t=1

yti,πt
i
. (2)

For applying SCTC to pitch classes, Ci = L′
i =

{blank, 0, 1} and Li={0, 1}, resulting in |C|=12 distinct
categories. The input to the loss, which is the output of the
network, is a tensor yti∈{1...12},ki∈{blank,0,1} ∈ [0, 1]12×3

with softmax activation along the second dimension. It
represents the probability of observing blank, not observ-
ing pitch-class qi, or observing qi at time t. Treating
each pitch class as an independent sequence of components
∈ {blank, 0, 1} makes their alignment difficult (no explicit
modelling of pitch-class co-occurence). We thus do not ex-
pect SCTC to work well in accordance with [33, 34].

MCTC Loss Without Epsilon (MCTC:NE). For cor-
rectly modelling the joint occurrence of pitch classes, we
introduce the MCTC loss in its simplest form, the “no ep-
silon” variant MCTC:NE (details in the following). In this
case, we have an individual blanki symbol for each cat-
egory so that Ci = L′

i = {blanki, 0, 1}. Then, the set of
all possible characters is L′ = L′

1×L′
2× . . .×L′

12. The

Table 1. CNN architecture. Depending on the loss used,
we choose Q ∈ {1, 2, 3} and P ∈ {0, 1} appropriately.

Layer Kernel size Output shape # Parameters

Layer norm. (T+74, 216, 6) 2592
Conv2D, MaxPool 15× 15 (T+74, 216, 20) 27020
Conv2D, MaxPool 3× 3 (T+74, 72, 20) 3620
Conv2D 75× 1 (T, 72, 10) 15010
Conv2D 1× 1 (T, 72, 1) 11
Conv2D 1× 61 (T, 12+P,Q) Q(62+73·P )

Total 48253
+Q(62+73·P )

overall blank character is the combination of the blank
components: blankMCTC = (blank1, . . . , blank12). We
compute the probability ytk of a character k at time t as the
product of all its component probabilities ytk =

∏12
i=1 y

t
i,ki

:

p(l|x) =
∑

π∈B−1(l)

T∏
t=1

12∏
i=1

yti,πt
i
. (3)

In practice, we do this only for the characters k within the
training batch. The input to the loss is a yt ∈ [0, 1]12×3

with softmax activation over the second dimension.
MCTC Loss With Epsilon (MCTC:WE). In the pre-

vious variant, the network has to simultaneously predict
blank for all components individually in order to predict
the blankMCTC character. As proposed in [33], there
is a more elegant way of dealing with repetitions of the
complete character (pitch-class vector): using an extra
category. We therefore define the new category C1 =
{blank, not blank}. The remaining categories C2 . . . C13

correspond to the 12 pitch classes, as before. To ignore
these categories when computing the blankMCTC proba-
bility, we introduce for them an additional ε symbol. This
leads to L′

i = {0, 1, ε} for C2 . . . C13. Please note that
ε does not correspond to a network output but is only
defined for mathematical convenience. In this scenario,
the blankMCTC character is defined as blankMCTC =
(blank, ε, . . . , ε) and all other characters are of the form
k = (not blank, 0/1, . . . , 0/1). Using this variant, it is
also possible to explicitly model silence using the character
k=(not blank, 0, . . . , 0). We therefore compute

ytk =

{
yt1,blank k = blankMCTC

yt1,not blank ·
∏13

i=2 y
t
i,ki

otherwise.
(4)

In this variant, blankMCTC can be used to repeat the whole
character. Its probability is computed ignoring the other
categories’ probabilities (ε). Here, the input to the loss is
a tensor yt ∈ [0, 1]13×2 with softmax activation along the
second dimension, 2 where the first category corresponds
to blank and the other 12 categories to the pitch classes.

3. DEEP-LEARNING METHOD

To investigate the benefit of MCTC for training, we do nei-
ther use complex architectures such as CRNNs [36] or U-
Nets [37] nor data augmentation strategies [38] but instead

2 A 73×2 tensor with sigmoid activation is equivalent; softmax allows
for using the numerically stable logsoftmax implementation of Pytorch.



Table 2. Overview of the datasets used in this work.
ID Name Instrum. Annot. Strategy hh:mm

Mae MAESTRO [21] v3.0.0 Piano MIDI piano 198:39
B10 Bach10 [22] Violin, wind Multitrack 0:06
Tri TRIOS [23] Chamber m. Multitrack 0:03
PhA PHENICX-Anechoic [24] Orchestra Multitrack 0:10
MuN MusicNet [26] Chamber m. Aligned scores 34:08
SWD Schubert Winterreise [41] Piano, voice Aligned scores 10:50

use a simple 5-layer CNN (Table 1). Inspired by [32, 39],
we use a Harmonic Constant-Q Transform (HCQT) as
input representations, with five harmonics and one sub-
harmonic (six input channels). The audio sample rate is
22050 Hz, the CQT has a hopsize of 512 samples (roughly
43.07 Hz), and three bins per semitone over six octaves
(3 · 6 · 12 = 216 bins). We use the librosa implementa-
tion of the CQT, which includes tuning estimation. 3 The
input is a HQCT tensor x of shape (T +74, 216, 6) (with
74 context frames, U = T +74) processed with log com-
pression (γ=10) and layer normalization [40].

To simulate the weakly aligned target label sequences
l := (l1, . . . , lS), we use strongly aligned target vectors
(y1, . . . ,yT ) and remove repeated vectors (see Figure 1c).

Following [28], we use a musically motivated architec-
ture where the first layer performs pre-filtering using small
rectangular kernels, followed by binning to the 72 pitches
and temporal reduction (removing context frames). Next,
we merge the channels with 1×1 convolutions. The final
convolution reduces the 72 pitches to 12 pitch classes using
a kernel of length 61. The exact output size depends on the
loss used and is parameterized by P and Q: For our base-
line (strongly aligned targets), we use the same architecture
with binary cross entropy (BCE), then P = 0, Q = 1 and
sigmoid activation for the output (see Table 1). For SCTC
and MCTC:NE, we use P = 0, Q = 3 and softmax acti-
vation over the last dimension. For MCTC:WE, we need
a further output dimension for the blankMCTC, thus using
P =1 and Q=2. Resulting from this, our network has
roughly 48k parameters, slightly varying according to the
loss used. We use LeakyReLU activations, max pooling,
stochastic gradient descent with momentum (as in [38]),
and learning rate scheduling. For strongly aligned training,
we use mini-batches of size 25 and length T=1 or U=75.
For MCTC, we use only one example (x, l) per batch but
of a considerably higher length (default T =500 frames). 4

4. DATASETS

For our experiments, we consider several datasets
(Table 2) representing the annotation strategies introduced
in Section 1. As a MIDI-piano dataset, we consider a
subset (1/6) of MAESTRO (Mae). Moreover, we include
the multi-pitch datasets Bach10 (B10), TRIOS (Tri), and
PHENICX-Anechoic (PhA), whose pitch annotations are
reduced to the pitch-class level. Furthermore, we use
two datasets based on aligned scores: MusicNet (MuN),
which comprises pitch annotations for 330 chamber music

3 https://librosa.org/.
4 Code: https://github.com/christofw/pitchclass_mctc/.

Table 3. Comparison of MCTC variants, trained on the
dataset SWD in a performance (or version) split.

Model/Loss P R F CS AP

All-Zero 0 0 0 0.486 0.211
CQT-Chroma 0.512 0.681 0.579 0.701 0.594

CNN – SCTC 0.850 0.048 0.090 0.520 0.416
CNN – MCTC:NE 0.747 0.775 0.758 0.802 0.798
CNN – MCTC:WE 0.762 0.853 0.802 0.830 0.851

CNN – Strong alignment 0.850 0.790 0.818 0.860 0.886

recordings, and the Schubert Winterreise Dataset (SWD),
which comprises several performances, scores, and anno-
tations of Franz Schubert’s song cycle Winterreise. For
SWD, we use MIDI files and measure annotations together
with a synchronization algorithm [27] to generate pitch-
class annotations. 5 For MCTC-based training, we do not
need these strongly aligned pitch-class annotations but re-
duce the pre-aligned targets to a sequence of non-repeating
vectors (see Figure 1c). For baseline experiments and for
evaluation, we use the strongly aligned targets.

5. EXPERIMENTS

In the following, we present several experiments to assess
the effectiveness of MCTC for pitch class estimation.

5.1 Evaluation Measures

All models output frame-wise probabilities ŷtk (frame rate
43.07 Hz) for the activity of the twelve pitch classes. To
directly measure the similarity between targets yt and pre-
dictions ŷt without a threshold (continuous-valued), we
took inspiration from other music transcription tasks by
using their Cosine Similarity (CS) and their Average Preci-
sion (AP) 6 as in [38]. We also binarize ŷt using a thresh-
old of 0.5 (motivated by the sigmoid/softmax outputs) to
compute precision (P), recall (R), and F-measure (F).

5.2 Comparing MCTC Variants

First, we run a number of experiments to compare the dif-
ferent variants of MCTC (Table 3). To test generalization
to new acoustic conditions, we consider a “version split” of
the SWD [42,43] with seven performances used for training
and validation and two (HU33, SC06) for testing. To assess
the effectiveness of MCTC, we consider several baselines:

All-zero: Since the majority of pitch classes are inac-
tive more often than active, we compute our evaluation
measures for an all-zero output. We obtain a cosine simi-
larity of CS=0.486 and an average precision of AP=0.211.

CQT-Chroma: Next, we evaluate a CQT-based chroma
as implemented in librosa (1 bin per semitone), followed
by max-normalization and thresholding. This already leads
to CS=0.701 and AP=0.594 as well as F=0.579.

CNN – Strong alignment: This is our central baseline,
relying on the supervised training with pre-aligned annota-

5 https://zenodo.org/record/5139893/.
6 Average precision corresponds to the area under the precision–recall

curve—a concept similar to Receiver-Operator-Characteristics (ROC).
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Figure 2. Pitch-class estimation results for different dura-
tions of MCTC training segments.
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Figure 3. Estimation results for weakly corresponding tar-
get segments (until three times the input length).

tions and BCE loss. For this approach, we obtain F=0.818,
CS=0.860 and AP=0.886, which are promising results.

Now, we train our CNN described in Section 3 with
the different MCTC losses, feeding segments of length
T = 500 frames (roughly 12 sec) plus context to the net-
work, together with the unaligned pitch activity vectors
of the segment as targets l. Similar to [33, 34], SCTC
leads to poor performance—in our case with a very low
recall and CS=0.520, only slightly above the all-zero base-
line, which means that the network mostly predicts zero.
For MCTC:NE, the results are better with CS=0.802 and
AP=0.798. As in [33, 34], the MCTC:WE variant with
an explicit blankMCTC produces the best results with
F=0.802, CS=0.830, and AP=0.851. Though all results
with MCTC:WE are below the strongly aligned baseline,
the gap between the two approaches is small. We thus con-
sider the MCTC:WE as a promising tool, which only re-
quires weakly aligned data for training (and allows to scale
up data more easily). For the following experiments, we
only use the MCTC:WE variant (from now on: MCTC).
Training time (per epoch) is longer for MCTC (by a factor
of roughly 20) compared to strongly aligned training while
convergence was faster with MCTC.

5.3 Sensitivity of MCTC-based Training

To investigate the behavior of MCTC-based training, we
conduct two further systematic experiments.

Sensitivity to segment duration. First, we test the
influence of the input segment length T (previously 500
frames or 12 sec). Since boundaries of input and target
segments are musically corresponding, we expect shorter
segments to result in a simpler alignment task for the loss,
but longer segments to give more freedom for alignment.
The results in Figure 2 confirms this assumption—a seg-
ment length of 10 sec is beneficial compared to 5 sec, and

Figure 4. Results for the cross-dataset experiment.

the training behavior is quite stable until 30 sec length. For
longer segments, the scores slowly drop. However, even a
segment of 3 minutes length leads to a meaningful model,
still outperforming the CQT baseline in Table 3. This en-
couraging result suggests that long score–audio segments
of general correspondence can be used with MCTC, i. e.
for classical music, short pieces or sections of long ones.

Sensitivity to segment mismatch. Next, we investi-
gate the sensitivity of training when the boundaries of in-
put x and target l segment are not perfectly corresponding
(Figure 3). To this end, we use a target segment that cor-
responds to a longer input segment while the actual input
segment is kept at a constant length of T =500 frames. For
a factor of 1.1 (target length 550 frames), performance only
slightly decreases. In absolute time, this means that the tar-
get has one second more “pitch class information” than the
network’s input. This scenario can be handled successfully
by MCTC, which means that “even more weakly” aligned
pairs are possible. For longer targets, performance drops—
though training does not break down until a target context
of three times the input segment length. We conclude that
MCTC allows for quite some imprecision in the correspon-
dence of the segment boundaries (up to one second).

5.4 Cross-Datasets Evaluation

Next, we test our MCTC training procedure on all datasets
described in Section 4, covering various instrumentations
and annotation strategies. Figure 4 shows the correspond-
ing results. For the first four datasets (SWD, B10, Tri,
PhA), we train on MuN and Mae. For SWD, these cross-
dataset results are slightly worse than the results reported
for cross-validation in Table 3. Evaluating on MuN (train-
ing on all others) leads to slighly worse CS; evaluating
on Mae works better. For the larger datasets (SWD, MuN,
Mae), strongly aligned training is superior to MCTC-based
training. For the smaller transcription datasets (B10, Tri,
PhA), the MCTC-based strategy obtains slightly better re-
sults. However, all differences are small. This is encourag-
ing since with MCTC, larger training datasets can be easily
achieved so that using larger networks is promising. In pre-
liminary experiments with a larger CNN (more channels,
600k parameters), we already observed improved results.

5.5 Application: Visualization

As said, we aim at training a transcription-like representa-
tions capturing the pitch classes as indicated by the score.
To illustrate this, we provide a visual example without



Figure 5. Example pitch-class features for an excerpt of
Schubert’s Winterreise (Song No. 23 sung by R. Trekel).
(a) Pitch-class annotations from aligned score. (b) CNN’s
pitch-class predictions trained with strongly aligned targets
and (c) trained with MCTC. (d) CQT chroma features.

thresholding the outputs (Figure 5). Both strongly and
weakly (MCTC) aligned training (on other tracks of SWD)
lead to visualizations (Figure 5b+c) close to the score-
based one (a), with the strongly aligned representation (co-
sine similarity 0.948 with the score) marginally “cleaner”
than the MCTC one (CS=0.930). In contrast, the CQT
chroma (Figure 5d) is less clear (CS=0.714) and exhibits
the typical artifacts: First, a singer vibrato (e. g., for C♯ at
10 sec); second, overtones (e. g., B as overtone of E at 9
sec), and third, transient piano onsets (e. g., at 8 sec). All
of these artifacts are suppressed by the trained CNNs.

5.6 Application: Chord and Local Key Estimation

Finally, we test the usefulness of our learned features for
two harmony analysis tasks: chord recognition (for the 24
major and minor chords) [9] and local key estimation [42]
using the respective annotations of SWD [41]. Having a
score-like and interpretable feature at hand, we opt for a
traditional system based on simple templates (thus allow-
ing for defining chord or key templates only through music
theory knowledge) and a Hidden Markov Model (HMM)
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Figure 6. Chord (upper) and local key (lower) estimation
results on SWD using different pitch-class features.

for context-sensitive smoothing (with uniform, diagonal-
enhanced transition matrix, see [9]). This system does not
require any pretraining. For both tasks, we compute the
HMMs emission probabilities using the cosine similarity
between PCP and templates. We downsample all pitch-
class features to roughly 10 Hz.

Chord recognition. For this task, we set the HMM self-
transition probability to ai,i = 0.1 (i. e. ai,j ̸=i = 0.9/23
for all other transitions) and use binary chord templates
(1 at the triad’s pitch classes, 0 otherwise). The results
in Figure 6 (upper plot) are promising for such a simple
system: The learned features (CNN–MCTC and CNN–
Strong) outperform the CQT-based chroma and show a
promising improvement towards score-based pitch classes
(which are the targets yt of our CNN training). Also,
MCTC-based results are close to strongly aligned ones.

Local key estimation. For this task, we use log com-
pression and median filtering (filter length 10 seconds)
for pre-processing the PCPs, together with a higher self-
transition probability ai,i = 0.5. The key templates are
simply based on music-theory (1 for scale pitch classes, 2
for the tonic triad, 0 otherwise). Again, learned features
(CNN-MCTC and CNN-Strong) outperform CQT, now al-
most closing the gap towards the score-based features, and
MCTC-based results are close to strongly aligned ones.

While these results do not reach the state of the art for
both tasks (e. g. [14, 42]), they are promising for a purely
hand-crafted system. Most remarkably, this strategy allows
for an “objective” analysis since the systems’ parameters
are specified in an explicit, musically motivated way.

6. CONCLUSION

In this paper, we presented a novel strategy for train-
ing pitch-class representations with weakly aligned score–
audio pairs. To this end, we adapted a multi-label CTC
loss, which led to a successful training close to the train-
ing with strongly aligned scores. Though being computa-
tionally more expensive, MCTC-based feature learning is a
very promising direction since weakly aligned annotations
for long segments of music can be created with much less
effort, thus enabling an easier scalability to larger datasets,
which allows for training more complex networks.



7. ACKNOWLEDGEMENTS

C. W. is funded by a research fellowship of the German
Research Foundation (DFG WE 6611/1-1). We thank Cur-
tis Wigington for advice on implementation and Meinard
Müller and Frank Zalkow for fruitful discussions.

8. REFERENCES

[1] M. A. Bartsch and G. H. Wakefield, “To catch a chorus:
Using chroma-based representations for audio thumb-
nailing,” in Proc. IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics (WASPAA),
New Paltz, USA, 2001, pp. 15–18.

[2] T. Fujishima, “Realtime chord recognition of musical
sound: A system using common lisp music,” in Proc.
Int. Computer Music Conf. (ICMC), Beijing, China,
1999, pp. 464–467.

[3] G. H. Wakefield, “Mathematical representation of joint
time-chroma distributions,” in Proc. SPIE Conf. on
Advanced Signal Processing Algorithms, Architecture
and Implementations, Denver, USA, 1999, pp. 637–
645.

[4] E. Gómez, “Tonal description of music audio signals,”
PhD Thesis, Universitat Pompeu Fabra, Barcelona,
Spain, 2006.

[5] K. Lee, “Automatic chord recognition from audio using
enhanced pitch class profile,” in Proc. Int. Computer
Music Conf. (ICMC), New Orleans, USA, 2006, pp.
306–311.

[6] M. Mauch and S. Dixon, “Approximate note transcrip-
tion for the improved identification of difficult chords,”
in Proc. Int. Soc. for Music Information Retrieval Conf.
(ISMIR), Utrecht, The Netherlands, 2010, pp. 135–
140.

[7] M. Müller, S. Ewert, and S. Kreuzer, “Making chroma
features more robust to timbre changes,” in Proc. of
IEEE Int. Conf. on Acoustics, Speech, and Signal Pro-
cessing (ICASSP), Taipei, Taiwan, 2009, pp. 1869–
1872.

[8] M. Müller, F. Kurth, and M. Clausen, “Chroma-based
statistical audio features for audio matching,” in Proc.
IEEE Workshop on Applications of Signal Processing
(WASPAA), New Paltz, USA, 2005, pp. 275–278.

[9] T. Cho and J. P. Bello, “On the relative importance of
individual components of chord recognition systems,”
IEEE/ACM Trans. Audio, Speech, and Language Pro-
cessing, vol. 22, no. 2, pp. 477–492, 2014.

[10] E. J. Humphrey, T. Cho, and J. P. Bello, “Learn-
ing a robust tonnetz-space transform for automatic
chord recognition,” in Proc. IEEE Int. Conf. on Acous-
tics, Speech, and Signal Processing (ICASSP), Kyoto,
Japan, 2012, pp. 453–456.

[11] E. J. Humphrey and J. P. Bello, “Rethinking automatic
chord recognition with convolutional neural networks,”
in Proc. IEEE Int. Conf. on Machine Learning and Ap-
plications (ICMLA), Boca Raton, USA, 2012, pp. 357–
362.

[12] ——, “From music audio to chord tablature: Teach-
ing deep convolutional networks to play guitar,” in
Proc. IEEE Int. Conf. on Acoustics, Speech and Signal
Processing (ICASSP), Florence, Italy, 2014, pp. 6974–
6978.

[13] F. Korzeniowski and G. Widmer, “Feature learning
for chord recognition: The deep chroma extractor,” in
Proc. Int. Soc. for Music Information Retrieval Conf.
(ISMIR), New York City, USA, 2016, pp. 37–43.

[14] B. McFee and J. P. Bello, “Structured training for large-
vocabulary chord recognition,” in Proc. Int. Soc. for
Music Information Retrieval Conf. (ISMIR), Suzhou,
China, 2017, pp. 188–194.

[15] G. Doras, F. Yesiler, J. Serrà, E. Gómez, and
G. Peeters, “Combining musical features for cover de-
tection,” in Proc. Int. Soc. for Music Information Re-
trieval Conf. (ISMIR), Montréal, Canada, 2020, pp.
279–286.

[16] Y. Wu and W. Li, “Automatic audio chord recogni-
tion with MIDI-trained deep feature and BLSTM-CRF
sequence decoding model,” IEEE/ACM Trans. Audio,
Speech & Language Processing, vol. 27, no. 2, pp.
355–366, 2019.

[17] Y. Wu, T. Carsault, and K. Yoshii, “Automatic chord
estimation based on a frame-wise convolutional recur-
rent neural network with non-aligned annotations,” in
Proc. European Signal Processing Conf. (EUSIPCO),
A Coruña, Spain, 2019, pp. 1–5.

[18] L. Su and Y. Yang, “Escaping from the abyss of man-
ual annotation: New methodology of building poly-
phonic datasets for automatic music transcription,” in
Proc. 11th Int. Symposium on Computer Music Multi-
disciplinary Research (CMMR), ser. Lecture Notes in
Computer Science, Plymouth, UK, 2015, pp. 309–321.

[19] V. Emiya, R. Badeau, and B. David, “Multipitch esti-
mation of piano sounds using a new probabilistic spec-
tral smoothness principle,” IEEE Trans. Audio, Speech,
and Language Processing, vol. 18, no. 6, pp. 1643–
1654, 2010.

[20] M. Müller, V. Konz, W. Bogler, and V. Arifi-Müller,
“Saarland music data (SMD),” in Demos and Late
Breaking News of the Int. Soc. for Music Information
Retrieval Conf. (ISMIR), Miami, USA, 2011.

[21] C. Hawthorne, A. Stasyuk, A. Roberts, I. Simon, C. A.
Huang, S. Dieleman, E. Elsen, J. H. Engel, and D. Eck,
“Enabling factorized piano music modeling and gener-
ation with the MAESTRO dataset,” in Proc. Int. Conf.



on Learning Representations (ICLR), New Orleans,
USA, 2019.

[22] Z. Duan, B. Pardo, and C. Zhang, “Multiple fundamen-
tal frequency estimation by modeling spectral peaks
and non-peak regions,” IEEE Trans. Audio, Speech &
Language Processing, vol. 18, no. 8, pp. 2121–2133,
2010.

[23] J. Fritsch and M. D. Plumbley, “Score informed audio
source separation using constrained nonnegative ma-
trix factorization and score synthesis,” in Proc. IEEE
Int. Conf. on Acoustics, Speech, and Signal Processing
(ICASSP), Vancouver, Canada, 2013, pp. 888–891.

[24] M. Miron, J. Carabias-Orti, J. Bosch, E. Gómez, and
J. Janer, “Score-informed source separation for mul-
tichannel orchestral recordings,” Journal of Electrical
and Computer Engineering, vol. 2016, 2016.

[25] E. Benetos, S. Dixon, Z. Duan, and S. Ewert, “Auto-
matic music transcription: An overview,” IEEE Signal
Processing Magazine, vol. 36, no. 1, pp. 20–30, 2019.

[26] J. Thickstun, Z. Harchaoui, and S. M. Kakade, “Learn-
ing features of music from scratch,” in Proc. Int. Conf.
on Learning Representations (ICLR), Toulon, France,
2017.

[27] S. Ewert, M. Müller, and P. Grosche, “High resolution
audio synchronization using chroma onset features,” in
Proc. of IEEE Int. Conf. on Acoustics, Speech, and Sig-
nal Processing (ICASSP), Taipei, Taiwan, 2009, pp.
1869–1872.

[28] C. Weiß, J. Zeitler, T. Zunner, F. Schuberth, and
M. Müller, “Learning pitch-class representations from
score–audio pairs of classical music,” in Proc. Int. Soc.
for Music Information Retrieval Conf. (ISMIR), On-
line, 2021.

[29] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine
translation by jointly learning to align and translate,” in
Proc. Int. Conf. on Learning Representations (ICLR),
San Diego, USA, 2015.

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin,
“Attention is all you need,” in Advances in Neural
Information Processing Systems 30: Annual Conf.
on Neural Information Processing Systems (NeurIPS),
Long Beach, USA, 2017.

[31] A. Graves, S. Fernández, F. J. Gomez, and J. Schmid-
huber, “Connectionist temporal classification: La-
belling unsegmented sequence data with recurrent neu-
ral networks,” in Proc. Int. Conf. on Machine Learning
(ICML), Pittsburgh, USA, 2006, pp. 369–376.

[32] F. Zalkow and M. Müller, “Using weakly aligned
score–audio pairs to train deep chroma models for
cross-modal music retrieval,” in Proc. of the Int. Soc.
for Music Information Retrieval Conf. (ISMIR), Mon-
tréal, Canada, 2020, pp. 184–191.

[33] C. Wigington, B. L. Price, and S. Cohen, “Multi-
label connectionist temporal classification,” in Proc.
Int. Conf. on Document Analysis and Recognition (IC-
DAR), Sydney, Australia, 2019, pp. 979–986.

[34] C. Weiß and G. Peeters, “Learning multi-pitch esti-
mation from weakly aligned score–audio pairs using a
multi-label CTC loss,” in Proc. IEEE Workshop on Ap-
plications of Signal Processing to Audio and Acoustics
(WASPAA), New Paltz, USA, 2021.

[35] D. Stoller, S. Durand, and S. Ewert, “End-to-end
lyrics alignment for polyphonic music using an audio-
to-character recognition model,” in Proc. IEEE Int.
Conf. on Acoustics, Speech, and Signal Processing
(ICASSP), Brighton, UK, 2019, pp. 181–185.

[36] C. Hawthorne, E. Elsen, J. Song, A. Roberts, I. Si-
mon, C. Raffel, J. H. Engel, S. Oore, and D. Eck, “On-
sets and frames: Dual-objective piano transcription,” in
Proc. Int. Soc. for Music Information Retrieval Conf.,
(ISMIR), Paris, France, 2018, pp. 50–57.

[37] J. Abeßer and M. Müller, “Jazz bass transcription using
a U-net architecture,” Electronics, vol. 10, no. 6, pp.
670:1–11, 2021.

[38] J. Thickstun, Z. Harchaoui, D. P. Foster, and S. M.
Kakade, “Invariances and data augmentation for su-
pervised music transcription,” in Proc. IEEE Int. Conf.
on Acoustics, Speech and Signal Processing (ICASSP),
Calgary, Canada, 2018, pp. 2241–2245.

[39] R. M. Bittner, B. McFee, J. Salamon, P. Li, and J. P.
Bello, “Deep salience representations for F0 tracking
in polyphonic music,” in Proc. Int. Soc. for Music
Information Retrieval Conf. (ISMIR), Suzhou, China,
2017, pp. 63–70.

[40] L. J. Ba, J. R. Kiros, and G. E. Hinton, “Layer normal-
ization,” CoRR, vol. abs/1607.06450, 2016.

[41] C. Weiß, F. Zalkow, V. Arifi-Müller, M. Müller,
H. V. Koops, A. Volk, and H. G. Grohganz,
“Schubert Winterreise dataset: A multimodal scenario
for music analysis,” ACM Journal on Computing
and Cultural Heritage (JOCCH), vol. 14, no. 2,
pp. 25:1–18, 2021. [Online]. Available: https:
//doi.org/10.5281/zenodo.5139893

[42] H. Schreiber, C. Weiß, and M. Müller, “Local key esti-
mation in classical music recordings: A cross-version
study on Schubert’s Winterreise,” in Proc. IEEE Int.
Conf. on Acoustics, Speech, and Signal Processing
(ICASSP), Barcelona, Spain, 2020, pp. 501–505.

[43] C. Weiß, H. Schreiber, and M. Müller, “Local key esti-
mation in music recordings: A case study across songs,
versions, and annotators,” IEEE/ACM Trans. Audio,
Speech & Language Processing, vol. 28, pp. 2919–
2932, 2020.


