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Abstract: The PDE system introduced in Maity et al. (2019) describes the interaction of surface
water waves with a floating solid, and takes into account the viscosity µ of the fluid. In this
work, we study the Cummins type integro-differential equation for unbounded domains, that
arises when the system is linearized around equilibrium conditions. A proof of the input-output
stability of the system is given, thanks to a diffusive representation of the generalized fractional
operator

√
1 + µ s. Moreover, relying on Matignon (1996) stability result for fractional systems,

explicit solutions are established both in the frequency and the time domains, leading to an
explicit knowledge of the decay rate of the solution. Finally, numerical evidence is provided of
the transition between different decay rates as a function of the viscosity µ.
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1. INTRODUCTION

In this work we consider the return to the equilibrium
problem of a model describing the vertical motion of a
solid floating at the free surface of a viscous fluid with
finite depth and flat bottom. This problem concerns a
particular configuration of the system coupling the free
surface motion of a fluid and a floating strucuture. More
precisely, it consists of releasing a partially submerged
solid body in a fluid initially at rest and letting it evolve
towards its equilibrium position. The return to equilibrium
problem (also called decay test) consists in describing the
large time behavior of the oscillation amplitude of the
solid. The interest of this problem is that it can easily be
used experimentally and is useful to determine important
characteristics of floating objects, from an engineering
point of view.

For inviscid fluids filling an unbounded domain, the motion
of the solid is often described in the literature by a linear
integro-differential equation, known as the Cummins equa-
tion, which has been obtained empirically by Cummins
(1962). In his paper the Cummins equation for vertical
displacements of a floating structure reads as

(M + a∞) ḧS(t) = c hS(t) +K ∗ ḣS(t), (1)

where hS(t) denotes the displacement of the structure
from the equilibrium position, M denotes the mass of
the structure, a∞ denotes the added mass at infinite

� This first and the third authors have been supported by the
European Union’s Horizon 2020 research and innovation programme
under the Marie Sklodowska-Curie grant agreement No 765579.

frequency, c is the hydrostatic stiffness, and K(t) denotes
the radiation force impulse response function. An equation
with similar characteristics but including non-linear effects
has been developed in Lannes (2017).

As far as we know, the only work using a viscous model
for the fluid is Maity et al. (2019), where an equation of
Cummins type is obtained, even in cases in which the
fluid could be bounded by vertical walls; here, we are
interested in describing the model of Cummins type in an
unbounded viscous domain. More precisely, we study the
correct version of this model for vertical displacements of
a floating structure, which now reads:

(
1 +

(b− a)3

12

)
ḧS(t) = − (b− a)2

2
F ∗ ḣS(t)

− µ(b− a) ḣS(t)− (b− a)hS(t), (2)

where µ is the viscosity coefficient of the fluid, (b−a) is the
width of the interval I = [a, b] obtained by projecting the
floating object (supposed symmetric around the axis x =
1
2 (a+ b)) on the flat horizontal bottom, and E = R \ [a, b]
denotes the viscous fluid domain. Moreover, F is the causal

distribution with Laplace transform F̂ (s) =
√
1 + µ s.

The novelties brought in by this work are:

• the correct form of an equation of Cummins type for
an unbounded viscous domain,

• the proof of stability of the system, and its asymptotic
behaviour at infinity, using a diffusive representation,
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∗∗ ISAE-SUPAERO, Université de Toulouse, 31055 Toulouse Cedex 4,

France (e-mail: denis.matignon@isae-supaero.fr)

Abstract: The PDE system introduced in Maity et al. (2019) describes the interaction of surface
water waves with a floating solid, and takes into account the viscosity µ of the fluid. In this
work, we study the Cummins type integro-differential equation for unbounded domains, that
arises when the system is linearized around equilibrium conditions. A proof of the input-output
stability of the system is given, thanks to a diffusive representation of the generalized fractional
operator

√
1 + µ s. Moreover, relying on Matignon (1996) stability result for fractional systems,

explicit solutions are established both in the frequency and the time domains, leading to an
explicit knowledge of the decay rate of the solution. Finally, numerical evidence is provided of
the transition between different decay rates as a function of the viscosity µ.

Keywords: Fluid-Structure Interaction, Fractional Differential Equations, Asymptotic
behaviour.

1. INTRODUCTION

In this work we consider the return to the equilibrium
problem of a model describing the vertical motion of a
solid floating at the free surface of a viscous fluid with
finite depth and flat bottom. This problem concerns a
particular configuration of the system coupling the free
surface motion of a fluid and a floating strucuture. More
precisely, it consists of releasing a partially submerged
solid body in a fluid initially at rest and letting it evolve
towards its equilibrium position. The return to equilibrium
problem (also called decay test) consists in describing the
large time behavior of the oscillation amplitude of the
solid. The interest of this problem is that it can easily be
used experimentally and is useful to determine important
characteristics of floating objects, from an engineering
point of view.

For inviscid fluids filling an unbounded domain, the motion
of the solid is often described in the literature by a linear
integro-differential equation, known as the Cummins equa-
tion, which has been obtained empirically by Cummins
(1962). In his paper the Cummins equation for vertical
displacements of a floating structure reads as
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− µ(b− a) ḣS(t)− (b− a)hS(t), (2)

where µ is the viscosity coefficient of the fluid, (b−a) is the
width of the interval I = [a, b] obtained by projecting the
floating object (supposed symmetric around the axis x =
1
2 (a+ b)) on the flat horizontal bottom, and E = R \ [a, b]
denotes the viscous fluid domain. Moreover, F is the causal

distribution with Laplace transform F̂ (s) =
√
1 + µ s.

The novelties brought in by this work are:

• the correct form of an equation of Cummins type for
an unbounded viscous domain,

• the proof of stability of the system, and its asymptotic
behaviour at infinity, using a diffusive representation,

Asymptotic behaviour of a system
modelling rigid structures floating in a

viscous fluid �

Gastón Vergara-Hermosilla ∗ Denis Matignon ∗∗

Marius Tucsnak ∗
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1. INTRODUCTION

In this work we consider the return to the equilibrium
problem of a model describing the vertical motion of a
solid floating at the free surface of a viscous fluid with
finite depth and flat bottom. This problem concerns a
particular configuration of the system coupling the free
surface motion of a fluid and a floating strucuture. More
precisely, it consists of releasing a partially submerged
solid body in a fluid initially at rest and letting it evolve
towards its equilibrium position. The return to equilibrium
problem (also called decay test) consists in describing the
large time behavior of the oscillation amplitude of the
solid. The interest of this problem is that it can easily be
used experimentally and is useful to determine important
characteristics of floating objects, from an engineering
point of view.

For inviscid fluids filling an unbounded domain, the motion
of the solid is often described in the literature by a linear
integro-differential equation, known as the Cummins equa-
tion, which has been obtained empirically by Cummins
(1962). In his paper the Cummins equation for vertical
displacements of a floating structure reads as

(M + a∞) ḧS(t) = c hS(t) +K ∗ ḣS(t), (1)

where hS(t) denotes the displacement of the structure
from the equilibrium position, M denotes the mass of
the structure, a∞ denotes the added mass at infinite
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frequency, c is the hydrostatic stiffness, and K(t) denotes
the radiation force impulse response function. An equation
with similar characteristics but including non-linear effects
has been developed in Lannes (2017).

As far as we know, the only work using a viscous model
for the fluid is Maity et al. (2019), where an equation of
Cummins type is obtained, even in cases in which the
fluid could be bounded by vertical walls; here, we are
interested in describing the model of Cummins type in an
unbounded viscous domain. More precisely, we study the
correct version of this model for vertical displacements of
a floating structure, which now reads:

(
1 +

(b− a)3

12

)
ḧS(t) = − (b− a)2

2
F ∗ ḣS(t)

− µ(b− a) ḣS(t)− (b− a)hS(t), (2)

where µ is the viscosity coefficient of the fluid, (b−a) is the
width of the interval I = [a, b] obtained by projecting the
floating object (supposed symmetric around the axis x =
1
2 (a+ b)) on the flat horizontal bottom, and E = R \ [a, b]
denotes the viscous fluid domain. Moreover, F is the causal

distribution with Laplace transform F̂ (s) =
√
1 + µ s.

The novelties brought in by this work are:

• the correct form of an equation of Cummins type for
an unbounded viscous domain,

• the proof of stability of the system, and its asymptotic
behaviour at infinity, using a diffusive representation,
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F ∗ ḣS(t)
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• an explicit form of the solutions of the system in the
time domain, and the large time behaviour of these,
recovering another stability proof,

• numerical evidence of the transition between the
differents decay rates of the system as a function of
the viscosity coefficient µ of the fluid.

This work is a companion paper to Vergara-Hermosilla
et al. (2020), where this system with force as input, and
distance from the solid to the sea bottom as output was
first recast as a linear well-posed system and second proved
to be input-to-output stable.

The outline of the paper is as follows: in § 2, the physical
model and its linearization around a steady state are
recalled; in § 3, an equivalent diffusive representation of
the system is provided, which helps prove stability and
even compute refined asymptotics in some cases; in § 4,
the analytical solution of the system is provided thanks to
Mittag-Leffler special functions, the asymptotic behaviour
are provided in full generality, helping to recover the
previous stability property; finally a conclusion is drawn
and future works are investigated in § 5.

2. RECALLS ON THE LINEARIZED PHYSICAL
MODEL

In this Section the floating solid is supposed, without loss
of generality, to have mass M = 1 and it is constrained
to move only in the vertical direction. Given t > 0, we
denote by h(t, x) the height of the free surface of the fluid,
by q(t, x) the flux of viscous fluid in the direction x and
by hS(t) the distance from the bottom of the rigid body
to the bottom of the fluid, supposed to be horizontal, as
described in Fig. 1.

Fig. 1. Graphical sketch of the model. The function h(t, x)
denote the height of the free surface of the fluid, q(t, x)
denote the flux of viscous fluid, hS(t) is the function
which describes the distance from the bottom of the
rigid body to the bottom of the fluid and p(t, x) is a
pressure term.

We consider the model introduced in Maity et al. (2019),
with the particularity that the fluid is supposed to be
infinite in the horizontal direction, denoting I := [a, b] the
projection on the fluid bottom of the solid domain and
setting E := R \ [a, b]. Then, following Maity et al. (2019),
we have

h = hS +
1

b− a
,

and for simplicity, we assume that

h = 1, g = 1, p =
1

b− a
.

Hence, linearizing around the trajectory (hS , h, q, p) =
(hS , h, 0, p) we obtain the equations

∂h

∂t
+

∂q

∂x
= 0, (x ∈ E), (3)

∂q

∂t
+

∂h

∂x
− µ

∂2q

∂x2
= 0, (x ∈ E), (4)

h(t, a−)−µ
∂q

∂x
(t, a−) = p(t, a+)+hS(t)−µ

∂q

∂x
(t, a+), (5)

h(t, b+)−µ
∂q

∂x
(t, b+) = p(t, b−)+hS(t)−µ

∂q

∂x
(t, b−), (6)

ḣS(t) +
∂q

∂x
= 0 (x ∈ I), (7)

∂q

∂t
+

∂p

∂x
= 0 (x ∈ I), (8)

ḧS(t) =

∫ b

a

p(t, x)dx (t > 0), (9)

where p is a Lagrange multiplier, similar to a pressure term
(which is obtained in the Hamiltonian modelling process),

Remark 1. In particular, for initial data satisfying

q0(x) = −q0(a+ b− x), h0(x) = h0(a+ b− x) (x ∈ E),
(10)

we have

q(t, a) = −q(t, b), h(t, a) = h(t, b) (t � 0).

To this aim, if we first write the pressure term p in system
(3)-(9) as p = p1 + p2, where p1 and p2 solve

∂2p1
∂x2

= ḧS , p1(t, a) = p1(t, b) = 0, (11)

∂2p2
∂x2

= 0, p2(t, a) = pa(t), p2(t, b) = pb(t), (12)

respectively, with

pa(t) := h
(
t, a−

)
− µ

∂q

∂x

(
t, a−

)
− hsol(t)− µḣsol(t), (13)

pb(t) := h
(
t, b+

)
− µ

∂q

∂x

(
t, b+

)
− hsol(t)− µḣsol(t), (14)

then, by solving equations (11) and (12), it follows that

p1(t, x) = ḧS

(
x2

2
− b+ a

2
x+

ab

2

)
, (15)

and

p2(t, x) = pa(t) + (pb(t)− pa(t))
x− a

l
, (16)

where l := b− a. Substituting these values of p1 and p2 in
(9), we obtain(

1 +
l3

12

)
ḧS(t) = pa(t)l + (pb(t)− pa(t))

l

2

=
l

2
(pa(t) + pb(t)) .

Considering the values of pa and pb from (13) and (14)
respectively, the equation above can be rewritten as(

1 +
l3

12

)
ḧS(t) = −l

(
hS(t) + µḣS(t)

)

+
l

2

(
h
(
t, a−

)
− µ

∂q

∂x

(
t, a−

)
+ h

(
t, b+

)
− µ

∂q

∂x

(
t, b+

))
.

(17)

We first express h (t, a−)− µ ∂q
∂x (t, a

−) in terms of hS and

ḣS . To this end, for x ∈ I, we first note that

q(t, b)− q(t, a) = −lḣS(t). (18)

Moreover, using Remark 1 we obtain

h(t, a−) = h(t, b+), −q(t, a−) = q(t, b+), (19)

thus

q(t, a) =
l

2
ḣS , q(t, b) = − l

2
ḣS . (20)

For t ≥ 0, we set qa(t) := q(t, a) and qb(t) := q(t, b).
Since (7) implies that q is a linear function of x on I, for
every t ≥ 0 and x ∈ I,

ḣS(t) = −qb(t)− qa(t)

b− a
(t ≥ 0). (21)

From equations (21) and (3) it follows that for x ∈ (−∞, a]
we have

∂2q

∂t2
− ∂2q

∂x2
− µ

∂3q

∂t∂x2
= 0,

q(t, x) → 0 as x → −∞, q(t, a) =
b− a

2
ḣS(t),

q(0, x) =
∂q

∂t
(0, x) = 0.

(22)

For f ∈ L1[0,∞], let f̂ the Laplace transform of f .
Applying the Laplace transform to both sides of (22), we
obtain

s2q̂ − (1 + sµ)
∂2q̂

∂x2
= 0,

q̂(s, x) → 0 as x → −∞, q̂(s, a) =
b− a

2
ĥS , �(s) > 0.

(23)
Hence we can conclude that

q̂(s, x) =
b− a

2
e

−sa√
1+sµ e

sx√
1+sµ ĥS(s), (24)

and

ĥ
(
s, a−

)
− µ

∂q̂

∂x

(
s, a−

)
= − l

2

(
1

s
+ µ

)
s√

1 + sµ
̂̇
hS(s)

= − l

2
(
√
1 + µs)

̂̇
hS(s).

(25)
In a similar way, we obtain

ĥ
(
s, b+

)
− µ

∂q̂

∂x

(
s, b+

)
= − l

2

(√
1 + µs

) ̂̇
hS(s). (26)

By considering Remark 1 and the inverse of Laplace
transform of eqs. (25) and (26), we obtain the following
result:

Proposition 2. The vertical movement of a floating object,
in an unbounded viscous fluid that is initially at rest, is
described by the following integro-differential equation

(
1 +

l3

12

)
ḧS(t) = − l2

2

∫ t

0

F (σ)ḣS(t− σ)dσ

− l
(
hS(t) + µḣS(t)

)
. (27)

with initial conditions

hS(0) = h0, ḣS(0) = 0,

and where F is the causal distribution, such that F̂ (s) =√
1 + µs in �(s) > −1/µ.

3. DIFFUSIVE REPRESENTATION, STABILITY
PROOF AND ASYMPTOTIC BEHAVIOUR

The main idea of this section is to get rid of the F
term. First since its Laplace transform is not bounded in
any right-half plane, it does not correspond to a causal
function, but rather a causal distribution: indeed, when
µ → ∞, the term

√
s appears, which is related to the

fractional derivative of order 1/2, see e.g. Matignon (2009)
and references therein. On the contrary, 1/

√
s is bounded

and corresponds to the fractional integration of order 1/2,
this is the reason why we shall be interested rather in

Ĝ(s) :=
F̂ (s)− 1

s
=

µ

1 +
√
1 + µs

, for�(s) > −1/µ .

(28)
This extra transfer function is of so-called diffusive type,
and enjoys nice properties, see e.g. Matignon and Prieur
(2005): it is a completely monotone function, i.e. G(t) :=∫∞
0

g(ξ) exp(−ξ t) dξ for some appropriate positive and
real-valued weight function g to be computed, or equiva-
lently Ĝ(s) :=

∫∞
0

g(ξ) (s+ξ)−1 dξ, for �(s) > 0. Following
e.g. Matignon (1998b), we can compute g explicitely as:

g(ξ) := lim
ε→0+

1

2iπ
(Ĝ(−ξ − iε)− (Ĝ(−ξ + iε)) , (29)

=
1

π

√
µξ − 1

µξ
, for ξ > 1/µ . (30)

This weight is indeed real valued, positive, and fulfills the
well-posedness condition∫ ∞

µ−1

g(ξ)

1 + ξ
dξ < ∞ (31)

that is required for the functional setting to make sense.

3.1 Extended diffusive representation

For the G transfer function alone with input v := ḣ and
output y := G ∗ v, a diffusive realization is of the form:

∂tφ(t, ξ) =−ξ φ(t, ξ) + v(t), φ(0, ξ) = 0 (32)

y(t) =

∫ ∞

µ−1

g(ξ)φ(t, ξ) dξ . (33)

The formal proof is straightforward and relies on the fact
that ∂t(e

−ξ t ∗ v) = −ξ (e−ξ t ∗ v) + v(t).

Now for the F transfer function with input v and new
output z := F ∗ v, since F̂ (s) = 1 + s Ĝ(s), the following
extended diffusive realisation can be proposed:

∂tϕ(t, ξ) =−ξ ϕ(t, ξ) + v(t), ϕ(0, ξ) = 0 (34)

z(t) =

∫ ∞

µ−1

g(ξ) ∂tϕ(t, ξ) dξ + 1 v(t) . (35)

Indeed, defining as energy Eϕ(t) := 1
2

∫∞
µ−1 ξg(ξ) |ϕ(t, ξ)|2 dξ,

one can easily compute the following balance:

d

dt
Eϕ(t) = +v(t) z(t)− 1 (v(t))2 −

∫ ∞

µ−1

g(ξ) |∂tϕ(t, ξ)|2 dξ .

(36)
This latter energy balance will play a key role when
analyzing the stability of the coupled system. Note that
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ḧS(t) = − l2

2

∫ t

0
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any right-half plane, it does not correspond to a causal
function, but rather a causal distribution: indeed, when
µ → ∞, the term

√
s appears, which is related to the

fractional derivative of order 1/2, see e.g. Matignon (2009)
and references therein. On the contrary, 1/

√
s is bounded

and corresponds to the fractional integration of order 1/2,
this is the reason why we shall be interested rather in

Ĝ(s) :=
F̂ (s)− 1

s
=

µ

1 +
√
1 + µs

, for�(s) > −1/µ .

(28)
This extra transfer function is of so-called diffusive type,
and enjoys nice properties, see e.g. Matignon and Prieur
(2005): it is a completely monotone function, i.e. G(t) :=∫∞
0

g(ξ) exp(−ξ t) dξ for some appropriate positive and
real-valued weight function g to be computed, or equiva-
lently Ĝ(s) :=

∫∞
0

g(ξ) (s+ξ)−1 dξ, for �(s) > 0. Following
e.g. Matignon (1998b), we can compute g explicitely as:

g(ξ) := lim
ε→0+

1

2iπ
(Ĝ(−ξ − iε)− (Ĝ(−ξ + iε)) , (29)

=
1

π

√
µξ − 1

µξ
, for ξ > 1/µ . (30)

This weight is indeed real valued, positive, and fulfills the
well-posedness condition∫ ∞

µ−1

g(ξ)

1 + ξ
dξ < ∞ (31)

that is required for the functional setting to make sense.

3.1 Extended diffusive representation

For the G transfer function alone with input v := ḣ and
output y := G ∗ v, a diffusive realization is of the form:

∂tφ(t, ξ) =−ξ φ(t, ξ) + v(t), φ(0, ξ) = 0 (32)

y(t) =

∫ ∞

µ−1

g(ξ)φ(t, ξ) dξ . (33)

The formal proof is straightforward and relies on the fact
that ∂t(e

−ξ t ∗ v) = −ξ (e−ξ t ∗ v) + v(t).

Now for the F transfer function with input v and new
output z := F ∗ v, since F̂ (s) = 1 + s Ĝ(s), the following
extended diffusive realisation can be proposed:

∂tϕ(t, ξ) =−ξ ϕ(t, ξ) + v(t), ϕ(0, ξ) = 0 (34)

z(t) =

∫ ∞

µ−1

g(ξ) ∂tϕ(t, ξ) dξ + 1 v(t) . (35)

Indeed, defining as energy Eϕ(t) := 1
2

∫∞
µ−1 ξg(ξ) |ϕ(t, ξ)|2 dξ,

one can easily compute the following balance:

d

dt
Eϕ(t) = +v(t) z(t)− 1 (v(t))2 −

∫ ∞

µ−1

g(ξ) |∂tϕ(t, ξ)|2 dξ .

(36)
This latter energy balance will play a key role when
analyzing the stability of the coupled system. Note that
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the whole rigourous functional analytic setting needed to
address this problem is fully detailed in Matignon and
Prieur (2005), both for standard and extended diffusive
realizations.

3.2 Energy balance and new stability proof

Consider the original system (27), set ḣ := v and z := F∗ḣ,
it can then be viewed as a coupled system



(
1 +

l3

12

)
ḧS + z(t) + lḣS + lµhS = 0

v(t) = ḣS(t)
∂tϕ(t, ξ) = −ξϕ(t, ξ) + v(t); ϕ(0, ξ) = 0

z(t) =

∫ ∞

µ−1

g(ξ)∂tϕ(t, ξ) dξ + 1v(t).

(37)

The mechanical energy of the oscillator is

E(t) :=
1

2

(
1 +

l3

12

)
(ḣS)

2(t) +
1

2
lµ (hS)

2(t) .

Its energy balance reads

d

dt
E(t) = −l(ḣS)

2(t)− ḣS(t) (F ∗ ḣS)(t) ;

while the first term is indeed negative, the second has no
definite sign; however it reads −v(t) z(t) and compensates
exactly with +v(t) z(t) in (36).

This is the reason why we shall define a global energy
functional E(t) := E(t) + Eϕ(t) for the augmented system
with state variables (hS , ω, ϕ) in the state space R× R×
H̃, where H̃ =

{
ϕ ∈ L2

loc (R+, dg) ,
∫∞
0

ξ|ϕ|2dg(ξ) < ∞
}
.

Indeed, the global energy balance reads, at least formally:

d

dt
E(t) = −(1 + l)(ḣS)

2(t)−
∫ ∞

µ−1

g(ξ) |∂tϕ(t, ξ)|2 dξ ≤ 0 .

This decay of the global energy is the starting point to the
following asymptotic stability result.

Proposition 3. For all (hS,0, ω0) ∈ C2, the solution of the
coupled system (37), with initial condition (hS,0, ω0, 0),
satisfies

(hS , ḣS , ϕ)(t) →t→∞ 0 in C2 × H̃.

Proof. Indeed, since the weight g(ξ) is positive and sat-
isfies the well-posedness condition (31), Theorem 3.7 in
Matignon and Prieur (2005) applies directly to our prob-
lem.

3.3 Asymptotic behaviour (special case)

Thanks to the diffusive representation of F̂ , involving a
branch cut on (−∞,− 1

µ ] on R−, following e.g. Matignon

(1998b), it is known thanks to the Watson lemma that the

branchpoint at s = − 1
µ with local behaviour

√
µ

π

√
ξ − 1

µ

translates into
√
µ

π Γ( 32 ) e
− t

µ t−3/2 as t → +∞ by in-
verse Laplace transform.

But as usual, apart from the branchcut, other singularities
of the transfer function like poles sk can appear, giving
rise to rk e

sk t terms in the time domain. At this stage
however, we are not in a position to state whether or not
�(sk) ≤ − 1

µ , so our result is only a partial one.

Proposition 4. If all the poles sk of the transfer function
lie in the left halfplane �(s) < − 1

µ , then the asymptotic

behaviour of the solution hS of the system (37) reads

hS(t) ∼ K e−
t
µ t−3/2 , as t → +∞ .

Hence, there is a need to inspect the location of the
poles more thoroughly in order to analyze the asymptotic
behaviour of the solution in the general case, i.e. whatever
the location of those poles.

4. ANALYTICAL SOLUTION AND ASYMPTOTIC
BEHAVIOUR

For simplicity in this Subsection, we use the following

notations: l = b − a, A = 1 + l3

12 , B = l2

2 and C = lµ;
all are positive constants. In § 4.1, the case of the inviscid
fluid µ = 0 is recalled, while in § 4.2, the general case
of the viscous fluid µ > 0 is examined. Finally in § 4.3,
numerical evidence is provided of the possible transition
between different asymptotic regimes, as the viscosity µ
increases.

4.1 Case µ = 0

If we consider µ = 0 in (27), the model reduces to an ODE:
{
AḧS +BḣS + lhS = 0,

hS(0) = h0, ḣS(0) = ḣ0.
(38)

This model has the form of a simple mechanical oscillator,
free of external forces, which we shall call free oscillation.

Applying Laplace transform to the equation (38), and after
simplifications, we get[

As2 +Bs+ l
]
ĥS(s) = [As+B] h0 +A ḣ0. (39)

By calculating the inverse of the Laplace transform of the
rational function appearing implicitely in (39), we obtain
that the solution for the model (38) is given by

hS(t) = (C1 cos(ωdt) + C2 sin(ωdt)) e
−δt, (40)

when B2 < 4Al, where

δ =
B

2A
, ω0 =

√
l

A
, ωd =

√
ω2
0 − δ2 =

√
4Al −B2

2A
,

(41)
are the damping coefficient, the undamped natural angular
frequency and the damped angular frequency, respectively.
The constants C1 and C2, are given by

C1 = h0, C2 =
ḣ0 + h0δ

ωd
=

h0B + 2ḣ0A√
4Al −B2

. (42)

Remark 5. If (b − a) > 3
√
6, the free oscillation is over-

damped, that is, if δ > ω0, then ωd is imaginary. In
this situation, B2 > 4Al, the general solution for the
model (38) is a linear combination of two real, decaying
exponential functions, with explicit form given by

hS(t) = (C1 cosh(ωdt) + C2 sinh(ωdt)) e
−δt, (43)

where C2 = h0B+2ḣ0A√
|4Al−B2|

and ωd =

√
|Al−B2|
2A .

4.2 Case µ > 0

Considering µ > 0 and applying Laplace transform to the
equation (27), setting B :=

√
µB, and ε := 1

µ , we obtain

after simplifications[
As2 +B s

√
s+ ε+ Cs+ l

]
ĥS(s)

=
[
As+B

√
s+ ε+ C

]
h0 +A ḣ0, (44)

Remark 6. In the case ε = 0, which corresponds to an
infinitely viscous fluid, the above equation is a Fractional
Differential Equation (FDE) of order 1/2.

When ε > 0, this is a Generalized Fractional Differential
Equation (GFDE), originally studied in Matignon (1998a);
to tackle this, we proceed in 4 steps:

(1) perform a change of variables in order to work with
polynomials,

(2) decompose the rational functions of interest into
simple elements,

(3) apply the inverse Laplace transform, using Mittag-
Leffler special functions of fractional calculus,

(4) make use of the adapted algebraic stability criterion
to get the asymptotic behaviour of the solution, and
conclude to stability.

Change of variables Let us denote σ :=
√
s+ ε, then the

pseudo polynomials appearing in (44) can be equivalently
transformed thanks to the algebraic relation s = −ε+ σ2.

n0(s) :=As+B
√
s+ ε+ C

= Aσ2 +Bσ + (C − εA) := N0(σ) , (45)

d(s) :=As2 +B s
√
s+ ε+ Cs+ l ,

= Aσ4 +Bσ3 + (C − 2εA)σ2 − εB σ + ε2 A ,

:= PT (σ) . (46)

The viscous polynomial PT is real valued, of degree 4,
and has 4 complex roots, called λi, which can be found
analytically in Appendix A, PT (σ) = A

∏4
i=1(σ − λi);

alternatively, they can be computed numerically as in § 4.3
to study their parametric depence w.r.t. µ.

Remark 7. One has to be careful with this change of
variables. Indeed, as is usual with multivalued complex
functions, a cut has to be performed first on the branch
cut )−∞,−ε], then ∀s ∈ C\)−∞,−ε], ∃!σ ∈ C+

0 , defined
by σ :=

√
s+ ε, that is with positive real part. But care

must be taken that a complex number σ with negative real
part has no counterpart s in the Laplace plane C\)−∞,−ε]
given by this relation.

Decomposition into simple elements From (44), we get

ĥS(s) =
n0(s)

d(s)
h0 +

A

d(s)
ḣ0 ,

=
N0(σ)

PT (σ)
h0 +

A

PT (σ)
ḣ0 ,

=

(
4∑

i=1

ri
σ − λi

)
h0 +

(
4∑

i=1

r̃i
σ − λi

)
ḣ0 .

Each ri and r̃i are to the residues of the rational function
of interest at the pole λi: they correspond either to the

response to initial displacement h0, or to the response to
initial velocity ḣ0. Their algebraic expression can be found
in Appendix B.

Time-domain solution The key issue here is to identify

L−1

(
1√

s+ ε− λ

)
in some right-half plane to be deter-

mined later, for ε ≥ 0 and λ ∈ C. The easiest way to
proceed is to use the shift theorem for Laplace transform,
and identify the eigenfunctions of the fractional derivative
operators, which are Mittag-Leffler functions.

Definition 8. Let us denote Eα(λ, t) the function for which

L[Eα(λ, .)](s) =
1

sα − λ
, for �(s) > aλ . (47)

This special function is related to the so-called two para-
metric Mittag-Leffler functions,

Eα(λ, t) := tα−1 Eα,α(z = λ tα) ,

where we have used

Definition 9. The two-parametric Mittag-Leffler function
is the complex-valued function defined by

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, (48)

where α > 0, β ∈ C and Γ(z) =
∫∞
0

tz−1e−tdt is the Euler
Gamma function.

See for instance Podlubny (1998) or Matignon (2009) for
many useful properties of these functions.

Thanks to the shift theorem for Laplace transforms, we
are now in a position to identify the useful elementary
functions,

L−1

(
1√

s+ ε− λ

)
= exp(−ε t) E 1

2
(λ, t) ,

and state the following result in the time domain:

Theorem 10. The solution of the GFDE (44) is given by

hS(t) = exp(−ε t)

(
4∑

i=1

Θi E 1
2
(λi, t)

)
, (49)

with constants Θi := ri h0 + r̃i ḣ0.

Thanks to this explicit solution, we are now in a position
to examine the asymptotic behaviour more in depth.

Asymptotic behaviour (general case) Indeed, let us re-
call the following seminal results about the long time
behaviour of the Mittag-Leffler functions:

Theorem 11. (Matignon (1996)). We have the following
asymptotic equivalents for Eα (λ, t) as t reaches +∞ :

• for | arg(λ) |≤ απ
2 ,

Eα (λ, t) ∼ 1

α
λ

1
α−1eλ

1
α t, (50)

• for | arg(λ) |> απ
2 ,

Eα (λ, t) ∼ α

Γ(1− α)
λ−2t−1−α, (51)

which belongs to Lr([1,+∞),R), for all r ≥ 1.

Recently, some higher order asymptotics have been pro-
vided to all sorts of Mittag-Leffler functions, see (Popov
and Sedletskii, 2013, Section 1.4).
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4.2 Case µ > 0

Considering µ > 0 and applying Laplace transform to the
equation (27), setting B :=

√
µB, and ε := 1

µ , we obtain

after simplifications[
As2 +B s

√
s+ ε+ Cs+ l

]
ĥS(s)

=
[
As+B

√
s+ ε+ C

]
h0 +A ḣ0, (44)

Remark 6. In the case ε = 0, which corresponds to an
infinitely viscous fluid, the above equation is a Fractional
Differential Equation (FDE) of order 1/2.

When ε > 0, this is a Generalized Fractional Differential
Equation (GFDE), originally studied in Matignon (1998a);
to tackle this, we proceed in 4 steps:

(1) perform a change of variables in order to work with
polynomials,

(2) decompose the rational functions of interest into
simple elements,

(3) apply the inverse Laplace transform, using Mittag-
Leffler special functions of fractional calculus,

(4) make use of the adapted algebraic stability criterion
to get the asymptotic behaviour of the solution, and
conclude to stability.

Change of variables Let us denote σ :=
√
s+ ε, then the

pseudo polynomials appearing in (44) can be equivalently
transformed thanks to the algebraic relation s = −ε+ σ2.

n0(s) :=As+B
√
s+ ε+ C

= Aσ2 +Bσ + (C − εA) := N0(σ) , (45)

d(s) :=As2 +B s
√
s+ ε+ Cs+ l ,

= Aσ4 +Bσ3 + (C − 2εA)σ2 − εB σ + ε2 A ,

:= PT (σ) . (46)

The viscous polynomial PT is real valued, of degree 4,
and has 4 complex roots, called λi, which can be found
analytically in Appendix A, PT (σ) = A

∏4
i=1(σ − λi);

alternatively, they can be computed numerically as in § 4.3
to study their parametric depence w.r.t. µ.

Remark 7. One has to be careful with this change of
variables. Indeed, as is usual with multivalued complex
functions, a cut has to be performed first on the branch
cut )−∞,−ε], then ∀s ∈ C\)−∞,−ε], ∃!σ ∈ C+

0 , defined
by σ :=

√
s+ ε, that is with positive real part. But care

must be taken that a complex number σ with negative real
part has no counterpart s in the Laplace plane C\)−∞,−ε]
given by this relation.

Decomposition into simple elements From (44), we get

ĥS(s) =
n0(s)

d(s)
h0 +

A

d(s)
ḣ0 ,

=
N0(σ)

PT (σ)
h0 +

A

PT (σ)
ḣ0 ,

=

(
4∑

i=1

ri
σ − λi

)
h0 +

(
4∑

i=1

r̃i
σ − λi

)
ḣ0 .

Each ri and r̃i are to the residues of the rational function
of interest at the pole λi: they correspond either to the

response to initial displacement h0, or to the response to
initial velocity ḣ0. Their algebraic expression can be found
in Appendix B.

Time-domain solution The key issue here is to identify

L−1

(
1√

s+ ε− λ

)
in some right-half plane to be deter-

mined later, for ε ≥ 0 and λ ∈ C. The easiest way to
proceed is to use the shift theorem for Laplace transform,
and identify the eigenfunctions of the fractional derivative
operators, which are Mittag-Leffler functions.

Definition 8. Let us denote Eα(λ, t) the function for which

L[Eα(λ, .)](s) =
1

sα − λ
, for �(s) > aλ . (47)

This special function is related to the so-called two para-
metric Mittag-Leffler functions,

Eα(λ, t) := tα−1 Eα,α(z = λ tα) ,

where we have used

Definition 9. The two-parametric Mittag-Leffler function
is the complex-valued function defined by

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, (48)

where α > 0, β ∈ C and Γ(z) =
∫∞
0

tz−1e−tdt is the Euler
Gamma function.

See for instance Podlubny (1998) or Matignon (2009) for
many useful properties of these functions.

Thanks to the shift theorem for Laplace transforms, we
are now in a position to identify the useful elementary
functions,

L−1

(
1√

s+ ε− λ

)
= exp(−ε t) E 1

2
(λ, t) ,

and state the following result in the time domain:

Theorem 10. The solution of the GFDE (44) is given by

hS(t) = exp(−ε t)

(
4∑

i=1

Θi E 1
2
(λi, t)

)
, (49)

with constants Θi := ri h0 + r̃i ḣ0.

Thanks to this explicit solution, we are now in a position
to examine the asymptotic behaviour more in depth.

Asymptotic behaviour (general case) Indeed, let us re-
call the following seminal results about the long time
behaviour of the Mittag-Leffler functions:

Theorem 11. (Matignon (1996)). We have the following
asymptotic equivalents for Eα (λ, t) as t reaches +∞ :

• for | arg(λ) |≤ απ
2 ,

Eα (λ, t) ∼ 1

α
λ

1
α−1eλ

1
α t, (50)

• for | arg(λ) |> απ
2 ,

Eα (λ, t) ∼ α

Γ(1− α)
λ−2t−1−α, (51)

which belongs to Lr([1,+∞),R), for all r ≥ 1.

Recently, some higher order asymptotics have been pro-
vided to all sorts of Mittag-Leffler functions, see (Popov
and Sedletskii, 2013, Section 1.4).
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(a) (b)

Fig. 2. Evolution of the four roots λi in the σ-plane, as a
function of µ. (a): global picture with 4 trajectories.
(b): zoom in the right-half plane �(σ) > 0, 2 trajecto-
ries crossing the segment Re(λ) = |�(λ)| for a critical
value µc of the viscosity.

For our purpose, the following asymptotics are needed:

Theorem 12. (Matignon (1998b)). We have the following
asymptotic equivalents for exp(−ε t) E1/2 (λ, t) as t reaches
+∞ :

• for | arg(λ) |≤ π
4 ,

e−ε t E1/2 (λ, t) ∼ 2λ exp((λ2 − ε) t), (52)

• for | arg(λ) |> π
4 ,

e−ε t E1/2 (λ, t) ∼
1

2Γ(1/2)
λ−2t−

3
2 exp(−ε t) . (53)

Indeed, with (53), the case of Proposition 4 is recovered
as a special case, which occurs if and only if all the roots
λi fulfill | arg(λi) |> π

4 .

Otherwise, if but one λ0 lies in the sector | arg(λ) |< π
4 ,

then a very different asymptotic behaviour is to be found,
namely a purely exponentially decaying one, with decay
rate δ := ε − �(λ2) > 0 (it must be positive indeed,
since asymptotic stability has already been proved in
Proposition 3). To be more specific from a geometric
viewpoint, by decomposing λ into its real and imaginary
parts, the new zone of interests lies between the sector
�(λ) > |�(λ)| and the hyperbola �(λ)2 < ε+ �(λ)2.
We are now in a position to state the general stability
theorem:

Theorem 13. For the solution (49) of the GFDE (44), for
a given value of the viscosity µ, two cases may occur,
depending of the location of the four roots λi of the viscous
polynomial PT :

• either there is at least one root with �(λj) > |�(λj)|
then the asymptotics is of exponential type, with rate
δ(µ) := 1

µ −�(λ2) > 0

hS(t) ∼
∑
j

Cj exp((λ
2
j −

1

µ
) t), (54)

• or all the four roots lie in | arg(λ) |> π
4 , then the

asymptotics is of mixed type,

hS(t) ∼ C t−
3
2 exp(− 1

µ
t) . (55)

Proof. Using the explicit solution (49), and the asymp-
totic results of Theorem 12 for one root λi, upon selecting
between these roots, we obtain the desired asymptotic
result.

4.3 Evolution of the asymptotic behaviour with viscosity

The goal of this last part is to provide numerical evidence
that both situations stated by Theorem 13 may occur in
practise. In particular, we shall illustrate the transition
between the two possible regimes, as the viscosity µ of the
fluid increases.

In Figure 2 the trajectory of the four roots λi is drawn
as a function of µ in the σ-plane: two roots belong to the
left half-plane and will have no couterpart in the Laplace
plane; the two other roots belong to the right half-plane
and will give rise to a pole in the Laplace plane; picture (b)
provides a zoom on these two, which cross the segments
�(λ) = |�(λ)| for a critical value µc of the viscosity.

Fig. 3. Plot of the poles sj = λ2
j − 1

µ in the Laplace plane.

Figure 3 shows the 2 conjugate poles sj = λ2
j − 1

µ in the

Laplace corresponding to the 2 roots λ1,2: starting from
the case µ = 0, and increasing µ, there is some more
damping up to some value µ∗, then the damping reduces
monotonically towards 0.

Figure 4 shows the damping rate δ(µ) as a function of
µ, as can be forecast from Figure 3. Note that above the
critical value µc, δ(µ) = 1/µ, meaning that we are in the
mixed type regime. Indeed, the two roots λ1,2 now fulfill
| arg(λ1,2)| > π

4

5. CONCLUSION

In this work, we have given an analytic solution and
computed the refined asymptotic estimates of solution the
return to the equilibrium problem of a model describing
the vertical motion of a solid floating at the free surface of
a viscous fluid with finite depth and flat bottom. Moreover,
numerical evidence has been provided of the possible

Fig. 4. Damping rate δ(µ) = �(λ2) − 1
µ as a function of

viscosity µ

transition between different asymptotic regimes when the
viscosity of the fluid increases.
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Appendix A. ANALYSIS OF THE VISCOUS
POLYNOMIAL

In this Appendix we develop explicit formulas for the roots
and its distribution in the complex plane of the so-called
Viscous polynomial in the variable λ, which is given by

PT (λ) = (1 +
l3

12
)λ4 + l2

√
µλ3

+ (lµ− 2

µ
(1 +

l3

12
))λ2 − l2

√
µ
λ+

1

µ2
(1 +

l3

12
), (A.1)

where l and µ are positive numbers.

A.1 Roots

By combine terms in the Viscous polynomial (A.1), we
obtain an equivalent form given by

PT (λ) =

(
1 +

l3

12

)(
λ2 − 1

µ

)2

+ l
√
µλ

(
lλ2 +

√
µλ− l

µ

)
. (A.2)

Multiplying this by 1/λ2, denoting by y = λ − 1
λµ and

suppose that λµ �= 0, we conclude that solve the equation
PT (λ) = 0 is equivalent to solve

Q(y) =

(
1 +

l3

12

)
y2 + l2

√
µy + lµ = 0. (A.3)

This means that we can actually compute the roots via a
nested sequence of two quadratic equations. In fact, the
roots of Q(y) = 0 are given by

y1,2 =
−l2

√
µ±

√
lµ(l3 − (1 + l3/12))

2(1 + l3/12)
, (A.4)

then, like y1,2 = λ2µ−1
λµ , we see that the roots of the

equation (A.1) follows of solve

µλ2 − y1,2µλ− 1 = 0. (A.5)

Therefore, the explicit roots of eq. (A.1) are given by

λ1,2,3,4 =
y1,2µ±

√
y21,2µ

2 + 4µ

2µ
∈ C. (A.6)

Remark 14. If l ≥ 3
√
6 then all the roots of Viscous poly-

nomial are reals. In fact, the discriminat of the polynomial
(A.3) is given by ∆Q = l4µ−4lµ(1+(l3/12)). We see that

∆Q is positive if and only if l ≥ 3
√
6. If the roots of equation
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Fig. 4. Damping rate δ(µ) = �(λ2) − 1
µ as a function of

viscosity µ

transition between different asymptotic regimes when the
viscosity of the fluid increases.
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(A.3) are reals, then the discriminant of equation (A.5) is
positive, and hence the result follow.

A.2 Distribution of roots

In this Section, we study how the roots of the Viscous
polynomial (A.1) are distributed on C. To this end, we in-
troduce the notion of anti-Hurwitz polynomial. Morevover,
we denote by Λ = {λ1, λ2, λ3, λ4} the set of roots of the
polynomial PT (λ) defined in eq. (46) and we consider the
following set

L1/2 = {z ∈ C : z �= 0, | arg z| ≤ π/2}.
Definition 15. A real polynomial f(X) in the complex
variable X is said to be Hurwitz if the real part of all
its roots is negative, that is �(u) < 0 for all u ∈ C such
that f(u) = 0.

The following result attributed to A. Stodola (see for
instance pp. 81 in Katkova and Vishnyakova (2008) or
Theorem 1 in Vergara-Hermosilla (2021)), is a well-known
necessary condition for a real polynomial to be Hurwitz.

Theorem 16. (Stodola condition). If a polynomial with
real coeficients is Hurwitz, then all its coeficients are of
the same sign.

Remark 17. Since there are different signs in the coeffi-
cients of the Viscous polynomial pT (λ), we conclude that
it is not Hurwitz, i.e. Λ ∩ L1/2 �= ∅.
Definition 18. A real polynomial f(X) in the complex
variable X is a anti-Hurwitz polynomial if and only if,
the real part of all its complex roots is posititive, that is;
�(u) > 0 for all u ∈ C such that f(u) = 0.

Lemma 19. A real polynomial f(X) is anti-Hurwitz if and
only if f(−X) is Hurwitz.

Proof. If f(X) is anti-Hurwitz and u is a complex root
of f(−X), since f(−u) = 0, we conclude that �(−u) >
0. Hence �(u) < 0 and therefore f(−X) is Hurwitz.
Similarly, if f(−X) is Hurwitz and u is a root of f(X),
since f(u) = f(−(−u)) = 0 we conclude that �(−u) <
0. Hence �(u) > 0 and then f(X) is an anti-Hurwitz
polynomial.

Remark 20. Since there are different signs in the coeffi-
cients of the polynomial pT (−λ), by Lemma 19 we con-
clude that pT (λ) is not anti-Hurwitz, i.e. Λ∩C \L1/2 �= ∅.

Appendix B. RESIDUES

In this appendix, our aim is show the explicit form of
each ri and each r̃i corresponds to the partial-fraction
decompositions of the rational functions present in the
equation (46). To this end, if Λ is the set of the four roots

of PT , λi ∈ Λ and d(s) = A

4∏
i=1

(
√
s+ ε− λi), then

A

PT (σ)
=

4∑
i=1

r̃i
(σ − λi)

,

where

r̃1 = −
(
λ2
1 λ2 + λ2

1 λ3 + λ2
1 λ4 − λ3

1 − λ1 λ2 λ3

−λ1 λ2 λ4 − λ1 λ3 λ4 + λ2 λ3 λ4)
−1

, (B.1)

r̃2 = −A
(
λ1 λ

2
2 + λ2

2 λ3 + λ2
2 λ4 − λ3

2 − λ1 λ2 λ3

−λ1 λ2 λ4 + λ1 λ3 λ4 − λ2 λ3 λ4)
−1

, (B.2)

r̃3 = −A
(
λ1 λ

2
3 + λ2 λ

2
3 + λ2

3 λ4 − λ3
3 − λ1 λ2 λ3

+λ1 λ2 λ4 − λ1 λ3 λ4 − λ2 λ3 λ4)
−1

, (B.3)

r̃4 = −A
(
λ1 λ

2
4 + λ2 λ

2
4 + λ3 λ

2
4 − λ3

4 + λ1 λ2 λ3

−λ1 λ2 λ4 − λ1 λ3 λ4 − λ2 λ3 λ4)
−1

. (B.4)

Moreover,

Aσ2 +Bµ1/2σ + (C −A/µ)

PT (σ)
=

4∑
i=1

ri
(σ − λi)

,

where

r1 = (µA)−1(C µ − A + λ2
1 Aµ + λ1 B µ3/2)r̃−1

1 , (B.5)

r2 = Aµ−1(C µ − A + λ2
2 Aµ + λ2 B µ3/2)r̃−1

2 , (B.6)

r3 = Aµ−1(C µ − A + λ2
3 Aµ + λ3 B µ3/2)r̃−1

3 , (B.7)

r4 = Aµ−1(C µ − A + λ2
4 Aµ + λ4 B µ3/2)r̃−1

4 . (B.8)


