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ABSTRACT:
In ocean acoustics, shallow water propagation is conveniently described using normal mode propagation. This

article proposes a framework to describe the polarization of normal modes, as measured using a particle velocity

sensor in the water column. To do so, the article introduces the Stokes parameters, a set of four real-valued quantities

widely used to describe polarization properties in wave physics, notably for light. Stokes parameters of acoustic nor-

mal modes are theoretically derived, and a signal processing framework to estimate them is introduced. The concept

of the polarization spectrogram, which enables the visualization of the Stokes parameters using data from a single

vector sensor, is also introduced. The whole framework is illustrated on simulated data as well as on experimental

data collected during the 2017 Seabed Characterization Experiment. By introducing the Stokes framework used in

many other fields, the article opens the door to a large set of methods developed and used in other contexts but

largely ignored in ocean acoustics. VC 2021 Author(s). All article content, except where otherwise noted, is licensed
under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1121/10.0006108
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I. INTRODUCTION

Sound can be described with thermodynamic variables,

the most common being pressure p, or kinematic flow varia-

bles such as particle acceleration a and velocity v. All of

these continuous field variables represent, in the linear

acoustic regime, small perturbations from their background

values. For example, in a static fluid (a common approxima-

tion for sea water), p and v are related through the linearized

Euler equation,

@v

@t
¼ �1

q
rp; (1)

with q the ocean density and t the time.

Although the ocean acoustics literature tends to focus on

the pressure p, which is clearly easier to measure and encum-

bered with fewer systematic errors, experimental techniques

for inclusion of vector acoustic fields exist (e.g., Dahl and

Dall’Osto, 2020a; D’Spain et al., 1991; Gray et al., 2016;

Shchurov et al., 2011). Along with defining sound energy

flow for which p and v are in phase (active intensity), particle

velocity notably carries information about the source and the

environment and thus can be used as input for source locali-

zation (Hawkes and Nehorai, 2003; Thode et al., 2010) and/

or environmental estimation (Bonnel et al., 2019a; Dahl and

Dall’Osto, 2020b; Dall’Osto et al., 2012; Ren and Hermand,

2012; Shi et al., 2019). Particle velocity also emerges as an

important field for fishes and crustaceans, given their use of v

either exclusively or possibly in addition to p in auditory and

environmental sensing processes (Popper and Hawkins,

2018).

The aim of the current article is to provide a physical and

signal processing framework adapted to the study of particle

velocity, with a specific focus on low-frequency (f < 500 Hz)

propagation in shallow water (depth D < 200 m). In this con-

text, the propagation is described by normal mode theory: the

environment acts as a dispersive waveguide. The sound field

is conveniently described as a sum of (dispersive) modes,

each mode propagating with its own frequency-dependent

group velocity [Jensen et al. (2011), Chap. 5]. A common

assumption associated with normal mode propagation is that

the waveguide depends exclusively on range r and depth z (it

is rotationally invariant around the source). As a result, the

particle velocity can be seen as a bi-dimensional vector and

can be expressed using its horizontal and vertical compo-

nents: v ¼ ½vr; vz�T . Note that the vector field is usually mea-

sured by a three-dimensional (3D) sensor with a vertical (vz)

and two horizontal components (usually denoted vx and vy).

The latter (vx, vy) can be projected onto the source/receiver

axis to create vr.

In this context, the particle velocity defines a bivariate
signal (Flamant, 2018), where the interrelations between

horizontal and vertical components encode relevant infor-

mation about the oceanic medium. Unfortunately, conven-

tional approaches to process bivariate signals such as rotarya)Electronic mail: jbonnel@whoi.edu, ORCID: 0000-0001-5142-3159.
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components (Gonella, 1972; Mooers, 1973) or classic bivar-

iate analysis (Priestley, 1981) do not allow for straightfor-

ward interpretation of their geometric and physical

properties. To circumvent this issue, a general framework

for the analysis and processing of bivariate signals has been

recently proposed (Flamant et al., 2017, 2019). It unravels

the key role played by the physical notion of polarization,

usually encountered in optics (Born and Wolf, 1980) and

radar (Lee and Pottier, 2017), to describe and understand the

inner properties of bivariate signals. This framework also

establishes the general relevance of Stokes parameters

(Stokes, 1851)—a set of four real-valued observables widely

used to describe polarization properties of light (Rubin

et al., 2019; Schaefer et al., 2007; Stenflo, 2013)—for bivar-

iate signals. Their extension to the case of elastic waves

(denoted elastodynamic Stokes parameters) was proposed

(Turner and Weaver, 1994) for the study of multiple scatter-

ing of ultrasounds in elastic media, but they were never

used, to the best of our knowledge, for the description of

waterborne sound particle velocity. Importantly, Stokes

parameters are energetic quantities, meaning that they can

be easily estimated from experimental bivariate signal

measurements.

In ocean acoustics, sound polarization has mostly been

described through complex intensity I ¼ pv� (Dahl and

Dall’Osto, 2020a; Dall’Osto et al., 2012; D’Spain et al.,
1991). Here, we propose to study the polarization of normal

modes using the Stokes framework. Stokes parameters are

directly derived from v, such that experimental measures do

not require a coherent and collocated measure of p and v.

Insightful polarization properties of normal modes are intro-

duced. It is notably demonstrated that the polarization of

individual modes does not depend on source position. It is

also shown that the angle of the main axis of the polarization

ellipse is proportional to modal attenuation; in a lossless

waveguide, the polarization ellipse is horizontal. Basic tools

to assess modal polarization, both in the frequency and in

the time-frequency (TF) domains, are introduced: Stokes

parameters can be easily derived from standard signal proc-

essing quantities [Fourier transforms (FTs) and spectro-

grams]. The proposed framework is illustrated on simulated

as well as experimental particle velocity data, collected at

sea during the 2017 Seabed Characterization Experiment

(SBCEX17) (Wilson et al., 2020).

The remainder of the article is organized as follows.

Section II presents the physical background required for the

article. It overviews the basics of normal mode propagation,

with the main focus on particle velocity that follows the

development in Dahl and Dall’Osto (2020a) prior to intro-

ducing the concept of the bivariate signal. Section III covers

the signal processing background required for this article. It

presents the bivariate signal context, overviews polarization

concepts including the polarization ellipse, and introduces

the Stokes parameters. Section IV constitutes the heart of

the article. It makes the link between Secs. II and III. Modal

Stokes parameters are derived and illustrated on a simulated

scenario that mimics SBCEX17. Section V introduces the

concept of polarization spectrograms, which extend the

Stokes parameter to the TF domain and enable the visualiza-

tion of modal Stokes parameters using a single vector sensor

and an impulsive source. Polarization spectrograms for

modal propagation are illustrated on simulated data as well

as on SBCEX17 experimental data in Sec. VI. The article is

concluded in Sec. VII, which provides a summary and dis-

cusses future opportunities. Two appendixes supplement the

article. Appendix A presents a comparison between the pro-

posed Stokes framework and vector metrics recently defined

in Dahl and Dall’Osto (2020a). Appendix B provides an

experimental observation of the degree of polarization (i.e.,

polarization variability).

II. PARTICLE VELOCITY AND NORMAL MODES

Low-frequency acoustic propagation in shallow water is

conveniently described using normal mode theory. Given a

broadband source signal Xðf Þ emitted at depth zs in a range-

independent waveguide, the pressure field p received at

depth z after propagation of a range r is given by [Jensen

et al. (2011), Chap. 5]

pðf ; r; zÞ ¼ Q Xðf Þ
XM

n¼1

Wnðf ; zsÞWnðf ; zÞ
e�jrknðf Þffiffiffiffiffiffiffiffiffiffiffiffi

knðf Þr
p ; (2)

where M is the number of propagating modes, Wn and kn

are, respectively, the modal depth function and the horizon-

tal wavenumber of mode n, Q ¼ ejp=4=
ffiffiffiffiffiffi
8p
p

qðzsÞ is a factor

depending only on the density qðzsÞ at depth zs, and

j2 ¼ �1. In general, the wavenumber kn is a complex num-

ber and can be written as kn ¼ kðrÞn � jbn, with kðrÞn and bn

the real and imaginary parts of kn. In a lossless waveguide

(i.e., with no attenuation), the modal wavenumber is real:

kn ¼ kðrÞn and bn ¼ 0.

To simplify notations, we define

Anðf Þ ¼ QXðf ÞWnðf ; zsÞ
e�jrknðf Þffiffiffiffiffiffiffiffiffiffiffiffi

knðf Þr
p ; (3)

so that the pressure associated with mode n is

pnðf Þ ¼ Anðf ÞWnðf ; zÞ: (4)

The modal particle velocity is obtained by combining

Eqs. (1) and (4). The horizontal component of particle

velocity for mode n is

Vrnðf Þ �
Anðf Þ
2pfq

knðf ÞWnðf ; zÞ; (5)

while its vertical component is

Vzn
ðf Þ ¼ j

Anðf Þ
2pfq

@Wnðf ; zÞ
@z

: (6)

In the frequency domain, the particle velocity vector

associated with mode n is thus Vnðf Þ ¼ ½Vrn
ðf Þ;Vzn

ðf Þ�T .
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One obtains the modal particle velocity in the time domain,

vnðtÞ, using an inverse FT. Formally,

vnðtÞ ¼
F�1Vrn

ðf Þ
F�1Vzn

ðf Þ

" #
¼

vrnðtÞ
vzn
ðtÞ

" #
; (7)

where F is the FT operator.

As stated previously, v(t)¼ RvnðtÞ is said to be a bivari-

ate signal, with components made up as a linear combina-

tion of modes.

Figure 1 illustrates the interpretation of the bivariate

signal as a time-evolving vector. Figure 1(a) depicts a bivar-

iate monochromatic signal, the elementary brick underpin-

ning our analysis. Such a signal is said to be elliptically

polarized, as its time-evolving trace in the two-dimensional

(2D) (vr, vz) plane is an ellipse, whose shape is governed by

the interrelations between the amplitudes and phases of

radial and vertical harmonic components. Figure 1(b) gives

an example of a more sophisticated narrowband bivariate

signal. Although the signal is still narrowband, its polariza-

tion is no longer constant: the signal’s trace in the 2D (vr, vz)

plane is now an ellipse with changing shape, size, and orien-

tation. This is due to complex relationships between the

amplitudes and phases of the signal’s components. The

main goal of bivariate signal analysis is to extract polariza-

tion information from such signals. The Stokes parameter

framework presented in this paper is a convenient and

physics-based solution to this problem.

III. BIVARIATE SIGNAL DESCRIPTION

This section provides a short introduction to the frame-

work for bivariate signal processing introduced and devel-

oped in Flamant (2018). Unlike existing approaches, this

new framework enables straightforward interpretations of

well-established signal processing tools in terms of the

physical concept of (wave) polarization. Notably, Stokes

parameters, a set of four real-valued energetic parameters

widely used in polarization optics (Born and Wolf, 1980),

lie at the core of the framework. The numerous physical

interpretations enabled by the framework greatly ease the

design, analysis, and processing of bivariate signals.

Here, for brevity, we only review the necessary ingredients

and results of the framework, and we refer to the original papers

for further details (Flamant et al., 2017, 2018, 2019).

A. The geometry of monochromatic bivariate signals

Let us consider first the most elementary bivariate sig-

nal, i.e., a monochromatic bivariate signal qðtÞ of frequency

f. This vector signal writes the following way:

qðtÞ ¼
xðtÞ
yðtÞ

" #
¼

ax cos ð2pftþ uxÞ
ay cos ð2pftþ uyÞ

" #
; (8)

with ax; ay � 0 and ux;uy 2 ½0; 2pÞ the amplitude and phase

of x and y, respectively. The two components x and y of q are

univariate monochromatic signals with the same frequency f,
but they may have different amplitude and phase. As a result,

the full description of qðtÞ in (8) requires four parameters:

the amplitudes ax, ay, and phases ux, uy of the two compo-

nents. The interrelations between these quantities precisely

govern the geometric properties of the signal qðtÞ.
Figure 2(a) depicts the ellipse drawn over time by the

bivariate signal q(t) in the x–y 2D plane. The ellipse trajec-

tory is described by four real-valued parameters:

• the amplitude or size j � 0 of the ellipse;
• the phase at origin u 2 ½0; 2pÞ;
• the ellipse orientation h 2 ½�p=2; p=2�, representing the

angle between the main axis of the ellipse and the hori-

zontal axis;

FIG. 1. (Color online) 3D representation of a bivariate signal vnðtÞ, showing its dynamical evolution as a rotating 2D vector. (a) A monochromatic bivariate

signal contains a single frequency and describes a fixed ellipse in the vr–vz plane. (b) A narrowband bivariate signal is characterized by instantaneous param-

eters (amplitude, frequency, orientation, and shape of the ellipse) that slowly evolve with time.
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• the ellipticity angle v 2 ½�p=4; p=4�, which characterizes

the shape of the ellipse as well as the rotation direction in

the ellipse: counterclockwise if v � 0 and clockwise

when v < 0.

The first two parameters are classical as they corre-

spond to the standard notion of amplitude and phase. The

two remaining parameters are geometric and encode the

polarization of the bivariate monochromatic signal. In par-

ticular, when v ¼ 0, the ellipse becomes a line segment: we

say that qðtÞ is linearly polarized. For v ¼ 6p=4, the ellipse

degenerates into a circle, so that qðtÞ is said to be circularly

polarized. Moreover, the signal is said to be horizontally

polarized when h ¼ 0, whereas if h ¼ 6p=2 it is said to be

vertically polarized.

The canonical parameters ½j;u; h; v� neatly encode the

trajectory of the bivariate monochromatic bivariate signal

qðtÞ. In other terms, they allow for a joint description of the

properties of the univariate components x and y. In particu-

lar, we can rewrite qðtÞ in Eq. (8) directly in terms of

j;u; h; v as (Flamant et al., 2019),

qðtÞ ¼
j cos h cos v cos ð2pftþ uÞ � j sin h sin v sin ð2pftþ uÞ
j sin h cos v cos ð2pftþ uÞ þ j cos h sin v sin ð2pftþ uÞ

" #
: (9)

We can also express the canonical parameters in terms of

amplitudes ax, ay and phases ux;uy as

j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

x þ a2
y

q
; (10)

u ¼
ux þ uy

2
; (11)

tan 2h ¼ 2axay

a2
x � a2

y

cos ðux � uyÞ; (12)

sin 2v ¼ 2axay

a2
x þ a2

y

sin ðux � uyÞ; (13)

when ax 6¼ ay. The case ax ¼ ay corresponds to circular

polarization: here v ¼ 6p=4 and h is undefined.

B. Stokes parameters and the Poincar�e sphere

To describe polarization, a popular alternative to the

canonical geometric parameters introduced above consists

of the Stokes parameters denoted by S0; S1; S2; S3. These

four real-valued parameters benefit from being easily mea-

sured experimentally from intensity measurement, which

made them particularly convenient for applications in optics

(Rubin et al., 2019; Schaefer et al., 2007; Stenflo, 2013).

Considering again the bivariate monochromatic signal

qðtÞ given in Eq. (8), Stokes parameters can be expressed in

terms of the ellipse parameters as

FIG. 2. (a) The monochromatic bivariate signal describes an elliptical trajectory in the 2D plane. (b) Poincar�e sphere of polarization states. For any point on

the sphere there is an associated unique polarization state described by either spherical angular coordinates ð2h; 2vÞ or normalized Stokes parameters

ðS1=S0; S2=S0; S3=S0Þ. Figure adapted from J. Flamant, “A general approach for the analysis and filtering of bivariate signals,” Ph.D. thesis (Centrale Lille,

2018) (Flamant, 2018).
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S0 ¼ j2; (14)

S1 ¼ Uj2 cos 2h cos 2v; (15)

S2 ¼ Uj2 sin 2h cos 2v; (16)

S3 ¼ Uj2 sin 2v; (17)

where U 2 ½0; 1� is the degree of polarization of the signal,

further discussed below. First, note that expressions

(14)–(17) do not include the overall phase u, since Stokes

parameters are energetic quantities, which, by definition, are

insensitive to a global phase shift.

For the sake of generality, Eqs. (15)–(17) include the

degree of polarization U, a statistical measure of the dispersion

of the polarization ellipse across multiple realizations (Flamant

et al., 2017) (see Fig. 3). If one assumes that the bivariate signal

is generated by a stochastic (i.e., random) process, then the

degree of polarization is used to quantify the stability of the

polarization ellipse from one realization to another. When U ¼
1, the polarization ellipse is always strictly the same, and the

signal is said to be fully polarized. When U ¼ 0, the ellipse is

fully random, and the signal is unpolarized. In intermediate

cases (0 < U < 1), the signal is said to be partially polarized.

Note that deterministic signals, such as qðtÞ given by (8), are

fully polarized signals (U ¼ 1). Indeed, all the realizations of a

deterministic signal are strictly identical; therefore, the polarization

ellipse is the same for all the realizations. In this paper, we assume

that bivariate signals are fully polarized unless stated otherwise.

Section VII discusses briefly the case of partial polarization, and

an example from field observations is given in Appendix B.

Stokes parameters are homogeneous to intensities, such

that S0 describes pure energetic information while the three

remaining parameters S1, S2, and S3 give geometric polariza-

tion properties in intensity units. It is convenient to remove

the intensity dependence in S1; S2; S3 by defining normalized

Stokes parameters as

s1 ¼
S1

S0

; s2 ¼
S2

S0

; s3 ¼
S3

S0

: (18)

Thanks to the Poincar�e sphere of polarization states shown

in Fig. 2(b), normalized Stokes parameters have a natural

interpretation as the Cartesian coordinates of the vector

described by spherical coordinates ðU; 2h; 2vÞ. Each point

on the sphere is associated with a single polarization state.

Thus, one can easily switch from one representation to

another: for instance, the amplitude a, orientation h, elliptic-

ity v, and degree of polarization U are obtained from the

Stokes parameters using

j ¼
ffiffiffiffiffi
S0

p
; (19)

h ¼ 1

2
arctan

S2

S1

¼ 1

2
arctan

s2

s1

; (20)

v ¼ 1

2
arctan

S3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

1 þ S2
2

p ¼ 1

2
arctan

s3ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1 þ s2
2

p ; (21)

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

1 þ S2
2 þ S2

3

p
S0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1 þ s2
2 þ s2

3

q
: (22)

C. Spectral Stokes parameters for general bivariate
signals

Until now, we have only considered the definition of

Stokes parameters for a single bivariate monochromatic sig-

nal of frequency f. To generalize the Stokes formalism to

generic, broadband bivariate signals, one needs to define

frequency-dependent Stokes parameters, as explained below.

Spectral Stokes parameters simultaneously describe the

energetic and polarization properties of a bivariate signal

with respect to frequency. They are defined easily in terms

of power spectral densities (PSDs). Let Pxxðf Þ be the PSD of

x(t), Pyyðf Þ the PSD of y(t), and Pxyðf Þ the cross-spectral

density (CSD) between x(t) and y(t). Note that in practice,

for a deterministic signal with a finite support (length T), the

PSDs are trivially obtained using the FT. Let Xðf Þ ¼ FxðtÞ
and Yðf Þ ¼ FyðtÞ. Then Pxxðf Þ ¼ Xðf ÞX�ðf Þ=T; Pyyðf Þ
¼ Yðf ÞY�ðf Þ=T and Pxyðf Þ ¼ Xðf ÞY�ðf Þ=T. More generally,

FIG. 3. (Color online) Illustration of the degree of polarization. Figure adapted from J. Flamant, “A general approach for the analysis and filtering of bivari-

ate signals,” Ph.D. thesis (Centrale Lille, 2018) (Flamant, 2018).
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the PSD and CSD can always be defined as the FT of the

autocorrelations and cross-correlations of the univariate

signals x(t) and y(t).1 Spectral Stokes parameters are then

defined as (Flamant et al., 2017; Schreier and Scharf,

2010)

S0ðf Þ ¼ Pxxðf Þ þ Pyyðf Þ; (23)

S1ðf Þ ¼ Pxxðf Þ � Pyyðf Þ; (24)

S2ðf Þ ¼ 2< Pxyðf Þ
� �

; (25)

S3ðf Þ ¼ 2= Pxyðf Þ
� �

; (26)

where <½:� and =½:� stand for real and imaginary parts. Just

as before, for frequencies such that S0ðf Þ 6¼ 0, one defines

the normalized Stokes parameters, with values between –1

and 1, as s1ðf Þ ¼ S1ðf Þ=S0ðf Þ; s2ðf Þ ¼ S2ðf Þ=S0ðf Þ; s3ðf Þ
¼ S3ðf Þ=S0ðf Þ.

IV. MODAL POLARIZATION

A. Theory

This section makes a link between the polarization

parameters (Sec. III) and the modal propagation (Sec. II).

The propagation environment is assumed to be known and

non-fluctuating, and the modes are noiseless. As a result,

considered signals are deterministic: the modes are fully

polarized (U ¼ 1). The context of partially polarized modes,

which arises when the received signal is noisy and/or when

the propagation environment is fluctuating, will be discussed

in Sec. VII and in Appendix B.

For a given mode n, we make a link between the parti-

cle velocity [Eq. (7)] and the vector model for bivariate sig-

nals [Eq (8)]. This link is done through xðtÞ ¼ vrn
ðtÞ and

yðtÞ ¼ vzn
ðtÞ. In the frequency domain, assuming a particle

velocity signal of length T,

Pxxðf Þ ¼ jVrn
ðf Þj2=T ¼

���� Anðf Þ
2pfqT

����
2

jknðf Þj2Wnðf ; zÞ2;

(27)

Pyyðf Þ ¼ jVzn
ðf Þj2=T ¼

���� Anðf Þ
2pfqT

����
2
@Wnðf ; zÞ

@z

� �2

; (28)

Pxyðf Þ ¼ Vrn
ðf ÞVzn

ðf Þ�=T

¼ �j

���� Anðf Þ
2pfqT

����
2

knðf ÞWnðf ; zÞ
@Wnðf ; zÞ

@z
: (29)

One can easily show that

S0ðf Þ¼
���� Anðf Þ
2pfqT

����
2

jknðf Þj2Wnðf ;zÞ2þ
@Wnðf ;zÞ

@z

� �2
" #

; (30)

S1ðf Þ¼
���� Anðf Þ
2pfqT

����
2

jknðf Þj2Wnðf ;zÞ2�
@Wnðf ;zÞ

@z

� �2
" #

; (31)

S2ðf Þ ¼ 2

���� Anðf Þ
2pfqT

����
2

bnðf ÞWnðf ; zÞ
@Wnðf ; zÞ

@z
; (32)

S3ðf Þ ¼ �2

���� Anðf Þ
2pfqT

����
2

kðrÞn ðf ÞWnðf ; zÞ
@Wnðf ; zÞ

@z
: (33)

The normalized Stokes parameters are thus

s1ðf Þ ¼
jknðf Þj2Wnðf ; zÞ2 �

@Wnðf ; zÞ
@z

� �2

jknj2Wnðf ; zÞ2 þ
@Wnðf ; zÞ

@z

� �2
; (34)

s2ðf Þ ¼ 2bnðf Þ
Wnðf ; zÞ

@Wnðf ; zÞ
@z

jknj2Wnðf ; zÞ2 þ
@Wnðf ; zÞ

@z

� �2
; (35)

s3ðf Þ ¼ �2kðrÞn ðf Þ
Wnðf ; zÞ

@Wnðf ; zÞ
@z

jknj2Wnðf ; zÞ2 þ
@Wnðf ; zÞ

@z

� �2
: (36)

Equations (34)–(36) are important results that charac-

terize the modal polarization. First of all, it is reassuring to

see that the (normalized) Stokes parameters are real num-

bers and that they do not depend on the signal length T.

Also, they depend on the environment (through kn and Wn)

and on the receiver depth z. However, they do not depend on

the range r or on the source depth zs. In other words, for a

given receiver position, they are fully independent from the

source position. This important behavior is obtained thanks

to the normalization process (division by S0). Remember

that the results presented here have been derived in a range-

independent waveguide. The derivation of the Stokes

parameters for range-dependent waveguides, particularly

when mode coupling occurs, is an exciting research ques-

tion, but it is beyond the scope of this paper.

Finally, remember that in the specific case of a lossless

waveguide, kn ¼ kðrÞn , so that Pxyðf Þ is purely imaginary.

This indicates that the spectral components of x and y are in

phase quadrature (90� phase shift). Further, in the same sce-

nario, bm ¼ 0 leads to s2 ¼ 0. Using (20), this implies that h
¼ 0 and the major axis of the polarization ellipse is horizon-

tal. Equivalently, this also means that its polarization state is

located on the prime meridian of the Poincar�e sphere (Fig. 2).

In a lossless waveguide, the particle velocity of individual

normal modes is polarized horizontally.2 In a general wave-

guide with attenuation, s2 is directly proportional to bm.

B. Example

This section illustrates the Stokes parameters on a simu-

lated scenario that mimics SBCEX17 (Wilson et al., 2020).

The experiment took place on the “New England Mud

Patch,” about 100 km south of Cape Cod, Massachusetts. A

specificity of the environment is that the seabed features a
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first, thick layer of mud over more consolidated sediments.

In this article, a notional geoacoustic model of the environ-

ment is considered:

• water column: depth D ¼ 74.4 m, isovelocity sound speed

profile cw ¼ 1468:3 m/s;
• layered seabed with a mud layer (thickness hmud ¼ 11 m,

sound speed gradient from cTOP
mud ¼ 1460 m/s to cBOT

mud

¼ 1550 m/s, constant density qmud ¼ 1:6, and constant

attenuation amud ¼ 0:05 dB/k);
• semi-infinite basement (sound speed cb ¼ 1800 m/s, den-

sity qb ¼ 2, and attenuation ab ¼ 0:1 dB/k);
• source range r ¼ 16 km, source depth zs ¼ 18:3 m,

receiver depth zr ¼ 72:2 m.

This specific simulated scenario has been chosen to

reproduce the conditions of a particle velocity study by Dahl

and Dall’Osto (2020a). In their article, Dahl and Dall’Osto

derived four quantities from coherent combinations between

pressure and particle velocity. Although they are based on

the complex intensity I ¼ pv� rather than on just v, those

quantities are closely related to the modal polarization. A

thorough comparison between these quantities and the

Stokes parameters is presented in Appendix A.

The simulated Stokes parameters for the first five modes

are shown in Fig. 4 (continuous lines). The figure shows S0

and the three normalized Stokes parameters (s1, s2, s3) for

frequencies between 0 and 200 Hz. One clearly sees the

effect of modal dispersion on the Stokes parameters: they

depend both on mode number and frequency. Remember

that s2ðf Þ / bm was an important theoretical result from

Sec. IV A. Since bm is typically a very small number, so is

s2. Note here that the vertical scale for s2 is different from

the one used for s1 and s3.

To illustrate the polarization sensitivity to geoacoustic

parameters, the Stokes parameters are also computed in an

environment where the mud layer is replaced by sand, which

follows an example given in Dahl and Dall’Osto (2020a).

The only difference from the previous simulation is that

cTOP
mud ¼ cBOT

mud ¼ 1600 m/s. The resulting data are also shown

in Fig. 4 (dotted lines), and these differ markedly from the

previous dataset. This suggests that the Stokes parameters

have a high sensitivity to the environment and may be good

inputs for geoacoustic inversion. This is confirmed by look-

ing at the group speed associated with the two different

environments, also plotted in Fig. 4. Group speeds are usu-

ally derived from pressure data and are known to be good

FIG. 4. (Color online) Stokes parameters and group velocities simulated in an environment with a mud layer (continuous lines) or sand (dotted lines) layer.

Note that the vertical scale goes from �1 to 1 for s1 and s3, while it goes from �10�3 to 10�3 for s2.
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input data for environmental inversion (e.g., Bonnel et al.,
2021; Potty et al., 2000). However, Stokes parameters are

clearly more sensitive to environmental changes. Provided

they can be correctly estimated from particle velocity data,

the Stokes parameters should become excellent input for

geoacoustic inversion.

V. POLARIZATION SPECTROGRAMS

Figure 4 shows that the modal polarization is

frequency-dependent. This, obviously, is intrinsically

related to modal dispersion. In the following, we use TF

analysis to study modal dispersion. Indeed, spectrograms are

commonly used to visualize and estimate the dispersion of

individual modes with application for geoacoustic inver-

sions (Ballard et al., 2014; Bonnel et al., 2019a; Potty and

Miller, 2020) or marine mammal localization (Bonnel et al.,
2014; Thode et al., 2017).

One may thus wonder if the modal separation provided

by TF analysis could be helpful to assess the modal polariza-

tion. The recent paper by Dahl and Dall’Osto (2020a) (men-

tioned in Sec. IV B and detailed in Appendix A) suggests

that TF analysis is indeed a good tool to study polarization-

related properties of modes. In this section, the concept of

the polarization spectrogram, based on the Stokes frame-

work presented above, is introduced and illustrated on simu-

lated data. An experimental example will be provided in

Sec. VI. The current section shows that the polarization

spectrograms of particle velocity data, as measured by a sin-

gle vector sensor, allow the visualization of modal polariza-

tion properties of individual modes.

A. Theory

The Stokes framework, presented above, has been

derived for monochromatic signals. However, it can easily

be extended to study non-stationary deterministic signals in

the TF domain. Indeed, one can build polarization spectro-
grams showing the TF distribution of the (normalized)

Stokes parameters.

The polarization spectrogram theory is fully described

in Flamant et al. (2019). In practice, polarization spectro-

grams can be computed very simply. The procedure is simi-

lar to what is presented in Sec. III C, except that the FT

operator F needs to be replaced by a short-time FT operator.

The TF Stokes parameter S0ðt; f Þ is thus obtained by sum-

ming the spectrograms of the vertical and horizontal particle

velocity, while S1ðt; f Þ is obtained by computing their differ-

ence. The parameters S2ðt; f Þ and S3ðt; f Þ are obtained by

evaluating the real and imaginary part of the cross-

spectrograms. Normalized TF Stokes parameters s1ðt; f Þ;
s2ðt; f Þ and s3ðt; f Þ] are obtained through normalization by

S0ðt; f Þ. The four TF Stokes parameters S0ðt; f Þ, s1ðt; f Þ,
s2ðt; f Þ, and s3ðt; f Þ will now be called “polarization

spectrograms.” Polarization spectrograms can be trivially

computed in most programming languages using any off-

the-shelf TF toolbox. Note that the normalization by S0ðt; f Þ
may be problematic if S0ðt; f Þ ’ 0. This issue is easily

solved by setting a lower threshold � on S0ðt; f Þ. To do so,

one finds all the TF points such that S0ðt; f Þ < � and then

sets S0ðt; f Þ ¼ � for all those points. The parameter � is typi-

cally fixed as a small percentage (typically 0.1% or less) of

the total energy of the signal and/or the maximum value

attained by S0 in the TF plane. Note that a PYTHON toolbox

dedicated to the TF analysis of bivariate signals is available

with Flamant et al. (2019).

An important property of polarization spectrograms is

that, for a single-component noise-free signal and no inter-

ference, the polarization spectrogram values at the signal’s

TF location (i.e., the ridge) exactly give the values of the

underlying Stokes parameter (Flamant et al., 2019). In more

complex scenarios, if the polarization spectrograms are not

overly contaminated by interference and/or noise, this prop-

erty is still approximately true. Note that this behavior is

fully similar to that of traditional spectrograms, which give

the signal’s energy along the TF ridge (up to a constant mul-

tiplicative factor that depends on spectrogram parameters).

As a reminder, in our modal propagation context, the

theoretical TF location of mode m with frequency f is given

by (Bonnel et al., 2020)

tmðf Þ ¼ tsðf Þ þ
r

vmðf Þ
; (37)

with r the source/receiver range, vmðf Þ the group speed of

mode m, and tsðf Þ the emission time of frequency f by the

source. If the source is impulsive, all the frequencies are

emitted at the same time, and tsðf Þ ¼ t0 is constant. Note

that modal separation in the TF domain increases when

range r increases.

B. Example

The simulated scenario from Sec. IV B is now used to

illustrate polarization spectrograms. Simulated time series

are computed using the first five propagating modes, assum-

ing a perfectly impulsive source with frequencies between 0

and 200 Hz. Polarization spectrograms are computed using

the procedure explained in Sec. V A. The threshold � is cho-

sen as 0.1% of the maximum of S0ðt; f Þ. The obtained polar-

ization spectrograms are presented in Fig. 5. To facilitate

reading, the modal TF locations are shown as black curves

on all the spectrograms.

The polarization spectrogram S0ðt; f Þ shows the TF dis-

tribution of the bivariate signal’s energy. It can be inter-

preted as a traditional spectrogram for a univariate signal.

Here, the simulated range is large enough for S0ðt; f Þ to

show cleanly separated modes. The other polarization spec-

trograms s1ðt; f Þ, s2ðt; f Þ, and s3ðt; f Þ show the TF distribu-

tion of the normalized Stokes parameters. They enable the

evaluation of individual mode polarization properties. From

a signal processing point of view, the polarization properties

fully encode the interdependencies between amplitudes and

phases of the vector field, and the polarization spectrograms

enable doing so for individual modes.
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The polarization spectrogram s1ðt; f Þ shows that s1 is

larger than 0.5 for all modes at all frequencies, with the

notable exception of mode 5, for which s1ðt; f Þ drastically

drops for frequencies below 150 Hz. This behavior is fully

consistent with normalized Stokes parameters computed for

individual modes, as shown in the top-right panel of Fig. 4.

From Fig. 4, note that negative values of s1ðf Þ are predicted

for mode 5 and at frequencies between ’ 75 and 100 Hz;

this is not visible on s1ðt; f Þ (Fig. 5) because this frequency

band is highly attenuated.

The polarization spectrogram s2ðt; f Þ is quite puzzling

at first look. Although we know js2j � 1 (see Fig. 4), s2ðt; f Þ
clearly shows high values between modes. This is due to

interference resulting from the TF uncertainty, which

spreads the modes outside of their theoretical locations (i.e.,

this interference is an artifact from the TF processing).

However, for frequencies higher than ’ 75 Hz, one sees that

s2ðt; f Þ is indeed very small along the modal TF position. On

the other hand, for frequencies less than ’ 75 Hz, s2ðt; f Þ is

relatively large even at the modal TF position. This is

because, at those frequencies, actual interference between

modes exists. This is shown in Fig. 5 by the black curves

that cross each other. Physically, the Airy phase of mode m0

interferes with modes m, with m < m0. Note that the acous-

tic energy associated with the modal Airy phase is highly

attenuated so that this behavior is unlikely to be resolved on

most noisy and/or experimental data.

Finally, the polarization spectrogram s3ðt; f Þ shows

clear polarization difference between modes. As an

example, s3ðt; f Þ < 0 for mode 1 at all frequencies, while

s3ðt; f Þ > 0 for modes 3–5. More interestingly, s3ðt; f Þ
changes sign for mode 2 around 50 Hz. This detailed behav-

ior is fully consistent with s3ðf Þ, as computed for individual

modes (see the bottom-right panel of Fig. 4).

VI. EXPERIMENTAL APPLICATION

This section presents an experimental application of the

Stokes parameter framework for data collected during

SBCEX17.

A. SBCEX17

SBCEX17 was a multi-institutional, multi-ship, multi-

disciplinary effort that took place on the New England Mud

Patch, about 110 km south of Cape Cod, in March/April

2017. Its main objective was to advance understanding of

the acoustic properties of fine-grained sediments with clay,

i.e., mud. An overview of SBCEX17 is provided in Wilson

et al. (2020).

During SBCEX17, multiple acoustic receivers and sour-

ces were deployed, covering frequencies from about 10 Hz

to 10 kHz. Of particular interest here is the Intensity Vector

Autonomous Recorder (IVAR) deployed by the Applied

Physics Laboratory, University of Washington (Dahl and

Dall’Osto, 2020a) at location (40.48655� N; 70.63831�W).

IVAR is a bottom moored vector sensor: it records the 3D

particle velocity vector field at a given location in the water

column, 	1 m above the seafloor.

FIG. 5. (Color online) Polarization spectrograms for the simulated SBCEX17 data. The black curves show the theoretical TF position of the modes. All the spec-

trograms are plotted with linear scales. The blue/green/yellow color scale is valid only for S0, which has been arbitrarily normalized so that its maximum value

is 1. The blue/red color scale is valid for the normalized Stokes parameters s1, s2, and s3. The time axis origin is arbitrary but is the same for all the panels.
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In this article, we consider an excerpt of IVAR data that

contains the signal from a distant combustive sound source

(CSS) deployed by the Applied Research Laboratory,

University of Texas. The specific CSS transmission occurred

on March 18 around 16:19 UTC at a way-point called

“station 35,” located at (40.49881� N; –70.45240�W),

	16 km away from IVAR. Three shots were successively

emitted at depth zs ’ 20 m; this paper considers only the

first. The CSS signal is a low-frequency high-energy impulse,

followed by several weaker replicas called “bubble pulses”

(McNeese et al., 2014). The source signal was measured dur-

ing the experiment using a hydrophone hard-mounted on the

CSS deployment frame, 	1 m away from the center of the

source chamber. This signal will be used to perform source

deconvolution.

B. Data

As stated in Sec. VI A, IVAR measures the 3D particle

velocity vector field. More specifically, IVAR measures two

horizontal velocity components and a vertical one. To build

the bivariate signal vðtÞ ¼ ½vrðtÞ; vzðtÞ�T , it is required to pro-

ject the two IVAR horizontal components into a single vrðtÞ,
with the r axis pointing toward the source. This is done

using simple geometrical rules, as explained in Eq. (12) of

Dahl and Dall’Osto (2020a).

The received signal is further processed using a band

stop filter between 86 and 88 Hz to remove contamination

from internal interference (note that a high-pass filter start-

ing at 25 Hz is also embedded in the recording system to

prevent signal saturation). Last, source deconvolution is per-

formed using the simple “water level” method (Clayton and

Wiggins, 1976). The method description and its application

to SBCEX17 CSS data are presented in depth in Bonnel

et al. (2020), along with data examples and companion

MATLAB code.

The preprocessing chain (horizontal projection, filter-

ing, and source deconvolution) leads to an experimental

bivariate signal vðtÞ ¼ ½vrðtÞ; vzðtÞ�T that represents the

waveguide impulse response [i.e., as if Xðf Þ ¼ 1]. This sig-

nal is presented in Fig. 6. Since the signal contains several

modes, its time-domain representation is not legible. Still,

one notes that the peak value of vzðtÞ is roughly an order of

magnitude smaller than the peak value of vrðtÞ. This leads to

a 2D trace in the r–z domain that looks like a horizontal

elongated ellipse. This will be further quantified, on an indi-

vidual mode basis, using polarization spectrograms.

C. Polarization spectrograms

Experimental polarization spectrograms are shown in

Fig. 7. The theoretical TF positions of the modes, computed

using the environmental parameters from Sec. IV B, are also

plotted as black curves. The polarization spectrograms were

computed using an � threshold equal to 1% of the maximum

of S0ðt; f Þ. This value was empirically chosen to provide

visually good results. It is notably higher than the one used

in Sec. V B to cope with experimental noise.

The experimental polarization spectrograms enable the

visualization of the polarization properties of individual

modes. These spectrograms are qualitatively similar to the

simulated ones. Important features include high values of

s1ðt; f Þ for modes 1–4 at all frequencies. Although s3ðt; f Þ is

clearly contaminated by noise and interference, it shows a

pattern similar to the one predicted in Fig. 5. Indeed,

s3ðt; f Þ > 0:5 at most frequencies for modes 4 and 5, while

it has smaller but positive values for mode 3. Modes 1 and 2

are not as legible, but mode 2 shows s3ðt; f Þ < 0 for frequen-

cies between 50 and 100 Hz, as predicted by the simulation.

Note that a clear mismatch exists between experiment

and simulation for fine details of the polarization spectro-

grams. As an example, the experimental data do not show

s1ðt; f Þ < 0 for mode 3 and f < 100 Hz. This is to be

expected since the simulation has been performed using a

notional environmental model. Obtaining a true match

between simulation and experiment would require a dedi-

cated environmental inversion, which is beyond the scope of

this paper. Nonetheless, the qualitative agreement between

simulation and experiment clearly demonstrates the rele-

vance of the proposed method.

VII. DISCUSSION

The Stokes parameter framework presented in this arti-

cle enables a full description of the polarization of underwa-

ter sound. It differs from existing underwater vector

acoustics works mentioned previously in that it focuses

exclusively on the particle velocity v rather than on the com-

plex intensity I ¼ pv� that requires a concurrent and collo-

cated measure of both pressure p and particle velocity v.

Since p and v have to be measured with two different

FIG. 6. (Color online) Experimental particle velocity data (SBCEX17) after

projection in the r – z domain, filtering, and source deconvolution. The time

evolution of the bivariate signal (dark blue) shows a main acoustic arrival

around t ¼ 0.5 s (time axis origin is arbitrary). Individual particle velocities

vr and vz are shown explicitly (intermediate blue) in the bottom and right

projection panels. The total time history of the 2D trace in the r – z domain

is shown at the far left (lightest blue).
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sensors (usually a hydrophone for p and an accelerometer

for v), the proposed framework simplifies the experimental

task associated with measuring underwater sound

polarization.

Restricting the scope of the study to modal propagation,

Dahl and Dall’Osto recently defined a set of “modal vector

metrics” that describes modal polarization (Dahl and

Dall’Osto, 2020a). As stated above, the Dahl and Dall’Osto

metrics are different from the Stokes parameters because

they are derived from I ¼ pv�. Another important difference

is that the Dahl and Dall’Osto metric definition requires

some (limited) knowledge about the environment, notably

the water sound speed and density at the receiver location.

Last, these metrics are fully defined using physics-based

arguments. While they are very informative about the modal

polarization, there is no path to determine if those metrics

form a complete description of the polarization. On the other

hand, since the Stokes framework is based on signal proc-

essing arguments, it fully describes the polarized signal. We

note that indeed the Dahl and Dall’Osto metrics are very

similar to the Stokes parameters, and the formal link

between the two is presented in Appendix A.

Whether considering Dahl and Dall’Osto metrics or the

Stokes parameters, the reader may wonder if modal polari-

zation has practical applications. In Sec. IV B, we suggested

that the Stokes parameters are highly sensitive to the envi-

ronment (see Fig. 4) and thus may be used as input for geoa-

coustic inversion. This idea was explored for the Dahl and

Dall’Osto metrics in Bonnel et al. (2019a). A similar study

(not presented here for the sake of concision) was run for

the Stokes parameters, and similar results were obtained.

The modal polarization parameters (Stokes or Dahl and

Dall’Osto metrics) are more sensitive to the seafloor proper-

ties than the modal group speeds, a classical input for geoa-

coustic inversion (Ballard et al., 2014; Bonnel et al., 2019b;

Potty et al., 2000). As a result, Stokes parameters appear to

be promising input data for upcoming inversion studies. An

example is the recent study by Dahl and Dall’Osto (2021)

involving what they refer to as circularity, or s3 in this study,

for geoacoustic inversion of underwater ship noise from

SBCEX17.

Also, it is important to come back to the notion of

degree of polarization U, which was introduced in Sec.

III B. The degree of polarization can be defined as a statisti-

cal measure of dispersion of the polarization ellipse across

multiple realizations (Flamant et al., 2017; Schreier and

Scharf, 2010). In the context considered in this article, the

signal is noise-free and the environment is not fluctuating.

As a result, the signal is fully deterministic and modal polar-

ization does not change. Therefore, the signal is fully polar-

ized and U ¼ 1. This, obviously, will never be true in an

experimental context. Let us consider a classical tomo-

graphic setup with a fixed receiver and a fixed source. If the

source emits recurrent signals, each received signal can be

considered as a realization of the underlying stochastic oce-

anic process (Colosi, 2016). One can then estimate the

Stokes parameters and derive the degree of polarization U
using Eq. (22). It is expected that U would be representative

FIG. 7. (Color online) Polarization spectrograms for the experimental SBCEX17 data. The black curves show the theoretical TF position of the modes. All

the spectrograms are plotted with linear scales. The blue/green/yellow color scale is valid only for S0, which has been arbitrarily normalized so that its maxi-

mum value is 1. The blue/red color scale is valid for the normalized Stokes parameters s1, s2, and s3. The time axis origin is arbitrary but is the same for all

the panels.
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of environmental fluctuations. The exact link between U and

environmental fluctuation regimes (unsaturated, partially

saturated, and fully saturated) needs to be determined.

However, interesting perspectives arise in using the Stokes

parameters to quantify environmental fluctuations. An

important result from Dahl and Dall’Osto (2020a) is revis-

ited in Appendix B to experimentally illustrate the concept

of degree of polarization of individual modes. More broadly,

the degree of polarization can be used to track fluctuations

of either the whole signal or individual arrivals (modes or

rays). This opens new research avenues, notably for long

range propagation in deep water. Indeed, in this context,

water column fluctuations highly impact the signal, and new

methods are required to better link the physical oceanogra-

phy and the acoustics.

Finally, using the Stokes parameters for practical

marine applications calls into question our ability to prop-

erly estimate them from a particle velocity signal. For

generic bivariate signals, Eqs. (23)–(26) show that spectral

Stokes parameters can be efficiently obtained by combina-

tion of conventional non-parametric spectral density estima-

tors (e.g., periodogram, multitaper) [see Flamant et al.
(2017) for details]. In the context of particle velocity signals,

estimation methods for individual modes should further take

into consideration the near-horizontal polarization, i.e.,

js2ðf Þj � 1. Other physical constraints may be also

included, such as parametric modeling of the spectral dis-

persion of Stokes parameters. Also, polarization properties

of modal interference can be examined [see Dahl and

Dall’Osto (2020b, 2021) for examples with ship noise],

which opens the door to interesting questions about the link

between polarization and the waveguide invariant [Jensen

et al. (2011), Chap. 5]. As a result, the practical estimation

of Stokes parameters defines key challenges, in terms of

both physical interpretability and robustness to noise. The

development of dedicated estimation procedures is required

to ensure the full exploitation of the information gathered in

Stokes parameters. The proposed framework opens the door

to novel physics-based bivariate signal processing methods

for ocean acoustics.
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APPENDIX A: OTHER MODAL VECTOR METRICS

This appendix makes a comparison between the Stokes

parameters and the modal vector metrics defined by Dahl

and Dall’Osto (2020a).

1. Definitions

Using coherent combination between pressure and

velocity channels, Dahl and Dall’Osto (2020a) define four

quantities derived from the vector acoustic measurements:

modal phase speed, circularity, normalized vertical reactive

intensity, and the depth-dependent mode speed of energy.

All these quantities depend on the mode number n and on

the frequency. The first quantity, the phase speed, is not

related to polarization and thus not interesting here. The

other three quantities (hereinafter referred to as Dahl and

Dall’Osto metrics) are defined as follows:

• circularity,

Hnðf Þ ¼
2=fVrn

ðf ÞV�zn
ðf Þg

jVrn
ðf Þj2 þ jVzn

ðf Þj2
; (A1)

• normalized vertical reactive intensity,

Qzn
ðf Þ ¼ qcw

=fPnðf ÞV�zn
ðf Þg

jPnðf Þj2
; (A2)

• depth-dependent mode speed of energy,

uen
ðf Þ ¼

2<fPnðf ÞV�rn
ðf Þg

jPnðf Þj2=ðqc2
wÞ þ qðjVrn

ðf Þj2 þ jVzn
ðf Þj2Þ

:

(A3)

In the above formula, q and cw are, respectively, the density

and sound speed in the water column. Both are assumed to

be constant. Note that uen
ðf Þ has previously been defined as

“transport velocity” in other papers (e.g., D’Spain et al.,
1991; Schiffrer and Stanzial, 1994).

2. Comparison with Stokes parameters

An interesting question arises in comparing the Dahl

and Dall’Osto metrics with the Stokes parameters. First of

all, it is obvious that

Hnðf Þ ¼ s3ðf Þ: (A4)

The link between the other two Dahl and Dall’Osto

metrics and the Stokes parameters requires further deriva-

tion. By combining Eqs. (4) and (5), one can show that

pnðf Þ ¼ qcnðf ÞVrn
ðf Þ, with cnðf Þ ¼ 2pf=kn. In a lossless

waveguide, kn ¼ kðrÞn is a real number, and cn is the modal

phase speed. In a general lossy waveguide, cn is merely a

quantity convenient for derivation, cn ¼ ð2pf=jknj2ÞðkðrÞn

þ jbnÞ ¼ 2pf ðk�n=jknj2Þ, with � the complex conjugation

operator. One can then show that

uen
ðf Þ ¼ < cnðf Þ½ � 1þ s1ðf Þ

jcnðf Þj2

2c2
w

1þ s1ðf Þ½ � þ 1

: (A5)

As stated above, in a lossless waveguide, cnðf Þ is the modal

phase speed. It can be rewritten as cnðf Þ ¼ cw= cos½#nðf Þ�,
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with #nðf Þ ¼ arccos½knðf Þcw=ð2pf Þ� the mode angle. In such

a case, one can show that

uðlosslessÞ
en

ðf Þ ¼ cw cos #nðf Þ½ �ð1þ s1ðf ÞÞ
0:5s1ðf Þ þ 0:5þ cos2 #nðf Þ½ � ; (A6)

which relates the depth-dependent mode speed of energy

and the Stokes parameters through the mode angle. If one

further makes a low-grazing angle approximation, i.e.,

#nðf Þ ’ 0 and cnðf Þ ¼ cw, the relationship becomes even

simpler,

uðlgaÞ
en
ðf Þ ¼ cw

1þ s1ðf Þ
1:5þ 0:5s1ðf Þ

: (A7)

Similarly, one can derive that, in a general lossy wave-

guide, the normalized vertical reactive intensity

Qzn
ðf Þ ¼ cw

s2ðf Þ
bnðf Þ
2pf

þ s3ðf Þ
kðrÞn ðf Þ

2pf

1þ s1ðf Þ
: (A8)

Following the same approximation as above, one can show

that, in a lossless waveguide,

QðlosslessÞ
zn

ðf Þ ¼ cw

cn

s3ðf Þ
1þ s1ðf Þ

: (A9)

A notable difference between Eqs. (A8) and (A9) is that the

latter does not contain s2ðf Þ. This is because, in a lossless

waveguide, s2ðf Þ ¼ 0 for all modes at every frequency.

Further, under a low-grazing angle approximation, one

obtains the simple relationship

QðlgaÞ
zn
ðf Þ ¼ s3ðf Þ

1þ s1ðf Þ
: (A10)

Interestingly, Eqs. (A7) and (A10) are very good

approximations even for actual propagating modes

(#nðf Þ > 0) in a lossy waveguide. The three Dahl and

Dall’Osto metrics (A1)–(A3) are simulated in the environ-

ment described in Sec. IV B. The lossless low-grazing angle

Stokes approximations [Eqs. (A7) and (A10)] as well as s3

[Eq. (A4)] are also simulated in the same environment. A

comparison between the two sets of metrics is presented in

Fig. 8: the match is very good for all modes at all frequen-

cies, except for the depth-dependent speed of energy of

modes 1 and 2 at low frequencies. This is probably due to

the low-grazing angle approximation, which does not hold

for these modes at those frequencies.

APPENDIX B: EXPERIMENTAL OBSERVATION
OF THE DEGREE OF POLARIZATION

This appendix revisits an important result from Dahl

and Dall’Osto (2020a) and uses it to experimentally illus-

trate the concept of degree of polarization U (see Sec. III B

and Fig. 3). In their paper, Dahl and Dall’Osto consider

experimental data collected during SBCEX17. The dataset

consists of 22 different source signals recorded on a vector

sensor (IVAR). The 22 acoustic sources are at different loca-

tions, all with locations at least 5 km away from the IVAR

to yield sufficient TF dispersion to identify separate mode

arrivals. The received signals are used to estimate the polari-

zation metrics Hnðf Þ, Qzn
ðf Þ, and uen

ðf Þ (see Appendix A).

The whole process leads to 22 different experimental

estimates of the polarization metrics. However, since the

metrics are independent from the source location (exactly

like the normalized Stokes parameters), the 22 estimates are

roughly similar. This is illustrated for the circularity Hnðf Þ
in Fig. 9. This specific metric is chosen here because

Hnðf Þ ¼ s3ðf Þ. Similar results are presented in Dahl and

Dall’Osto (2020a) for the other metrics Qzn
ðf Þ and uen

ðf Þ.
Figure 9 shows the estimation statistics in terms of

median and 25th and 75th percentiles. While some disper-

sion exists, the estimated circularity is very consistent for all

the source signals. The variability may be due to two

FIG. 8. (Color online) Comparison between the modal vector metrics from Dahl and Dall’Osto (red) and their lossless low-grazing angle Stokes approxima-

tions (black).
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factors: the ambient noise and environmental fluctuations.

These two factors contribute in making estimated polariza-

tion properties different when using different source signals.

If one assumes ergodicity (source signals recorded at differ-

ent times have the same underlying statistics) and spatial

homogeneity (the environment is perfectly range- and

azimuth-independent), this constitutes an experimental

observation of the degree of polarization U.

Formally, note that estimating U from the dataset used

in Dahl and Dall’Osto (2020a) is not straightforward and is

beyond the scope of this paper. In short, it would require

assumptions about the variability of U. If U is assumed to be

spatially homogeneous, then it could be estimated by aver-

aging normalized Stokes parameters (further assuming ergo-

dicity). On the other hand, if the environment is spatially

variable, then it is likely that U depends on source position.

In this case, it must be estimated using Stokes parameters

rather than the normalized ones. In such a scenario, normal-

ized Stokes parameters (as well as Dall and Dall’Osto met-

rics) would depend on source position.

1This works both for deterministic and stochastic signals.
2It is possible for s2 ¼ 0 along with h 6¼ 0 while v ¼ 6p=4, but in this

case, the polarization ellipse is a circle, and orientation is meaningless.
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