N

N

Analysis of strain localization during tensile tests by
digital image correlation
Bertrand Wattrisse, Jean-Michel Muracciole, M. Némoz-Gaillard, André
Chrysochoos

» To cite this version:

Bertrand Wattrisse, Jean-Michel Muracciole, M. Némoz-Gaillard, André Chrysochoos. Analysis of
strain localization during tensile tests by digital image correlation. Experimental Mechanics, 2001, 41
(1), pp.29-39. 10.1007/BF02323101 . hal-03349657

HAL Id: hal-03349657
https://hal.science/hal-03349657

Submitted on 20 Sep 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-03349657
https://hal.archives-ouvertes.fr

Analysis of Strain Localization during Tensile Tests

by Digital Image Correlation

by B. Wattrisse, A. Chrysochoos, J.-M. Muracciole and M. Némoz-Gaillard

ABSTRACT—This paper presents an imaging technique de-
veloped to study the strain localization phenomena that oc-
cur during the tension of thin, flat steel samples. The data
are processed using digital speckle image correlation to de-
rive the two in-plane components of the displacement vectors.
The authors observe that the calculation of the intercorrela-
tion function reveals a systematic error and propose a numer-
ical method to limit its influence. Plastic incompressibility and
thin-sheet assumptions are used to derive the third displace-
ment component and, hence, the various strain and strain
rate components. Numerous checks are presented at each
step in processing the data to determine the final accuracy of
the strain measurements, It is estimated that this accuracy is
quite sufficient to track the inception and the development of
localization. Examples of possible application are presented
for mild steels whose strain localization mechanisms appear
to be precocious and gradual.

KEY WORDS—Digital image correlation, strain rate measure-
ment, necking, material behavior, steel

Over the past two decades, the simulation tools used in
mechanics of materials have become increasingly powerful.
Progress made in the field of scientific computation is giv-
ing rise to a new branch of mechanics called computational
mechanics of solids.! It allows the use of more realistic, and
also more complex, models of behavior.

Of course, the consistency of the simulation results de-
pends very much on the validity of the constitutive equations
implemented in the computational codes. These phenomeno-
logical equations are, most often, identified on the basis of
experiments carried out on particular structures for which
stress and strain patterns are supposed to be known. For
instance, we assume that strain and stress fields are homo-
geneous in the gage part of a sample during a simple tensile
test. This homogeneity hypothesis, often implicitly assumed,
is necessary to estimate the stress and the strain from load
and displacement measurements. Naturally, as soon as a
strain localization occurs—local necking, Liiders bands,
transformation bands and so on—the mechanical fields are
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no longer homogeneous. These localization phenomena have
long been under investigation by many authors from experi-
mental, theoretical and numerical points of view.2~ 10 These
works call for the detailed knowledge of the constitutive equa-
tions. Consequently, it is of a great importance to be able to
detect, with even greater precision, the onset of such local-
ization mechanisms.

The computational resources currently available offer
new and powerful possibilities of experimental data pro-
cessing. For instance, optical methods using digital im-
age correlation grovide whole-field displacement data for
plane structures.!~# The most precise methods take into
account the deformation of the surface due to straining
between two images.!> Nevertheless, these methods use
iterative algorithms and generally require considerable
computation time. In addition, to track the localization de-
velopment precisely, the strain field must be determined on
high-resolution grids. This fact led us to develop a suit-
able direct correlation method. It enables such resolutions
to be achieved within a reasonable computation time using
a standard microcomputer. The third displacement compo-
nent can be obtained by assuming material incompressibility
and depthwise homogeneity of the strain field (thin-sheet as-
sumption). The strain and strain rate tensors are derived by
differentiation. Because the displacement fields are discrete
and noisy, a local polynomial fitting method is implemented
to estimate the space and time derivatives.

This paper is divided into six sections, followed by con-
cluding comments. The first three focus on the different steps
in the image processing. The first is devoted to computation
of the two in-plane components of the displacement vector.
The second describes the calculation of the out-of-plane com-
ponent. The third presents the differentiation method. The
fourth section deals with the tests developed to check the ac-
curacy of the displacement and strain measurements. Next,
the experimental setup is introduced. Finally, potential appli-
cations of the experimental approach are proposed through
results describing the localization development in tensile tests
performed on standard thin, flat steel samples.

In-plane Components of the Displacement Vector
Grid Step Definition

The recorded speckled images correspond to noisy two-
dimensional discrete signals defined by the distribution of
light intensity on the sample surface. The displacement field
is computed at each point M(ip, jo) of a virtual grid de-
fined in the reference configuration. To achieve high spatial



resolution, the grid step of the mesh (G S) is generally chosen
between 2 and 5 pixels corresponding to about 10* points of
measurements per couple of images.

Intercorrelation Function ¢

To determine the displacement at each point of the grid,
we choose to perform a direct correlation computation and
use a normalized intercorrelation function ¢. Between two
images and I; and I, separated by a small strain increment,
¢ is written as
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where CZ is the correlation zone (i.e., M’s neighborhood
corresponding to a local optical signature of grid point M)
and RZ is the research zone (i.e., M’s neighborhood where
the optical signature is tracked). These zones correspond to
the domains of variation of (i, j) and (k, I), respectively.

The intercorrelation function ¢ is computed for multiple
pixel shifts (k, I). So the displacements are estimated with a
1-pixel resolution. To achieve higher resolutions, the discrete
intercorrelation function is interpolated in the neighborhood
of its discrete maximum by a quadratic polynomial.'6

Choice of CZ andRZ

The computation time for the intercorrelation function is
related to CZ and RZ: it increases approximately as the
square power of these two quantities.

The parameter CZ affects the accuracy of the displace-
ment measurement; the use of larger CZ tends to increase
the accuracy. A compromise has to be found between speed
and accuracy. For this study, we choose a CZ of approxi-
mately 20 x 20 pixels.

To minimize the computation time, small values of RZ
should also be used. But, in the case of large transforma-
tions, the incremental displacement may become too great.
To maintain a short CPU time, we first compute a rough esti-
mate of the displacement field on a coarse grid (GS = 25 to
50 pixels) using a sufficiently large RZ. Then, we compute
the displacement on a finer grid using an interpolation of the
previously computed data as a first estimate of the displace-
ment field.

For example, between two 1024 x 1024 images homoge-
neously deformed (tensile strain state, longitudinal strain: 10
percent), RZ should be at least 103 pixels. For a displace-

ment field spanning n = 10* points, the computation time is
around 22.10 s for the complete calculation, whereas it is
only around 222 + 42 = 264 s when an interpolation of the
displacement field calculated on n = 10? points is used to
compute the whole displacement field (see Table 1). Using
the first estimate of the displacement field, RZ ranges from
3 to 5 pixels.

Out-of-plane Components of the Displacement
Vector

Assuming the plastic incompressibility, the out-of-plane
component of the displacement vector can be deduced from
the in-plane components. In the finite transformations frame-
work, the local equation of the volume balance leads to

det®(M)) =1, €))

where F(M) is the deformation gradient tensor at point M.
Its representative matrix is defined by
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where i = (i, v, w) is the displacement vector at point M
and (x, y, z) are the Lagrangian coordinates.

Furthermore, if the transformation is supposed to be ho-
mogeneous throughout the thickness of the sample (thin-
sheet assumption), eq (2) becomes
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Knowing the spatial derivatives of the in-plane displace-
ment components (¢ and v) and the initial geometry (z(x, ¥)),
the integration of the differential eq (4) gives the out-of-plane
component of the displacement w at point M.

Once the whole displacement vector field has been cal-
culated, the grid is upgraded, and the displacement field be-
tween a next couple of images can be determined; the path
of each point on the grid is then calculated step by step. Af-
ter a first loading increment, the position of each point M no
longer corresponds to an integer value of pixel. Naturally, the
simplest way to compute the next displacement is to choose
the nearest integer pixel location as a basis for the next mea-
surement. By doing so, we add errors to the measurement
and deviate from the true Lagrangian measurement. The typ-
ical strain increment Ae between two images is about 5 1073,
Consequently, the maximum error on the displacement mea-
surement due to the nearest pixel approximation is around
Ag/2, which corresponds to 2.5 1073 pixels. This small er-
ror is reduced by performing a local numerical translation of
images I; and [». Using a bilinear interpolation, the correla-
tion zone C Z of each point M is shifted by the decimal value
of the previously computed displacement in order to always
track the same material zone throughout the test.



TABLE 1-—EXAMPLES OF CPU TIMES PERFORMED ON PENTIUM MMX 166 MHz WITH CZ= 20 PIXELS:
(a) FINE-GRID AND LARGE RESEARCH ZONE, (b) COARSE-GRID AND LARGE RESEARCH ZONE AND

(c) FINE-GRID AND SMALL RESEARCH ZONE

(@) (b) ()
n=10* Points n =102 Points n=10* Points
RZ= 103 Pixels RZ =103 Pixels RZ = 4 Pixels
CPU Time (s) 22227 222 42
Differentiation of the Displacement Field OP
1
Local Approximation Technique O }-"2 (
To achieve high-precision measurements of strain and g | % P!
strain rate, the noisy displacement data have to be filtered g |
before computing time and space differentiation. Filtering Q O p2 !
methods often rely on the spectral decomposition of the sig- S E i
nal to be filtered (using fast Fourier transform algorithms) 2 i E
provided the signal is regularly sampled.!”-!¥ When local- = E i
ization occurs, the strong evolution of the surface aspect may i E
be responsible for “bad” correlation computation giving inco- . E E
herent amplitude and orientation of the displacement vector. » i !
In our experimental conditions, less than 0.5 percent of the g - Space or
points are concerned by this bad correlation. Because we i AZl | i time
chose to ignore these points, Fourier filtering methods were * 7‘: i
eliminated. We implemented a method based on a local least o AZZ .

squares approximation of the displacement field to process
irregularly sampled data. For the sake of simplicity, this
method is illustrated hereafter in the one-dimensional case.

The displacement field is locally fitted within an approx-
imation zone AZ. The approximation function g is selected
according to the differential operator applied. For space dif-
ferentiation, we chose a linear approximation function corre-
sponding to a uniform strain along the approximation zone,
whereas for time differentiation, we chose a quadratic ap-
proximation function corresponding to a locally constant ac-
celeration. Each differential operator is directly applied to
its approximation function. Repeating this computation for
all points of the grid, the strain fields can be constructed.

Choice of AZ

The parameter AZ corresponds to a fixed number of
nearby points used to compute the local fit. Naturally, its size
affects the level of smoothing and, thus, the error on the deter-
mined strain. The choice of AZ corresponds to acompromise
between smoothing and accuracy: large approximation zones
reduce the standard deviation on the strain measurement. So,
in the case of 2 homogeneous strain distribution, large values
of AZ can be used to increase the accuracy of the strain com-
putation, whereas in the case of a strain localization, large
AZ tends to make the strain field uniform.

Continuity Extension at the Boundary

A continuity extension of the displacement field is per-
formed at the image boundary in order to keep each point of
the grid in the center of its approximation zone. The con-
struction of the extended data is schematically illustrated in
Fig. 1. First, the approximation function g is determined ina
neighborhood A Z; of P;. Then, the locus of a first extended
point p$** is chosen on the other side of the boundary; the
distance between p$** and the boundary is taken equal to the

averaged grid step within AZ;. The displacement at p$* is

Fig. 1—Continuity extension of the displacement field at the
boundary

then calculated using g;. This calculation is reiterated us-
ing these extended data, and the extension process is stopped
once AZ /2 points are created.

Checking the Data Processing

The validity check of the displacement calculation be-
comes experimentally very difficult to carry out as soon as
the displacement field is no longer that of a rigid body. It
is impossible to experimentally impose a given strain field
on a real structure. Therefore, the algorithms of correlation
and differentiation were tested on several analytic examples
based on numerically deformed images. The image /; may
be either virtual or real.

Interpolated Real Images

The initial image is taken under normal shooting condi-
tions. It is interpolated by a bicubic spline and resampled on
a deformed grid. The deformation of the grid is related to
the image deformation. Naturally, this interpolation is only
valid if the variations of light intensity of the original image
remain relatively regular.

With this method, it is very difficult to impose or to change
the image characteristics (spectral content). To easily modify
these characteristics, we developed a digital image creation
technique.

Computer-generated Speckle Images

The virtual images correspond to a distribution of lu-
minous spots on the surface. Each spot is represented by
a Gaussian-shaped function. The location (xk, yx), “size”
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Fig. 2—(a) Experimental and (b) computer-generated 140 x
140 pixel speckle images

(R%, RY) and intensity () of a particular spot (for instance,
the kth spot) are randomly chosen. The superposition of these
N; spots gives the following analytic definition 7 (x, y) of the
computer-generated speckle image:

sz Y ¥=y, 8
I(x,y) = il,?e—(iﬁkk) e_(—kzk) ; 5)
k=1

By sampling this analytic function on a regularly spaced
grid corresponding to the CCD detector, we obtain a
computer-generated digital image. Because the analytic defi-
nition of this function is known, it can be transformed in vari-
ous ways: translation, rotation or deformation. Of course, the
images are generated so as to obtain histograms and Fourier
spectra similar to the real ones. Figure 2 shows an example
of real and virtual speckle images.

Checking In-plane Displacement Measurements

Translation motions applied to computer-generated
speckle images show that the mean error on the displace-
ment measurement (&,) depends on the imposed displace-
ment (imp). It is defined by

- mean :
ey = (u:;amp e uimp) ’ (6)

where ul,,, is the computed displacement at the ith point.
The systematic error is approximately sinusoidal, and the pe-
riod is 1 pixel (see Fig. 3). This result is consistent with
previous experimental studies.!*!9 Henceforth, &, will be
referred to as the systematic error (€sys; = €,). Thus, in the
one-dimensional case, the error on the displacement mea-
surement at the ith point (e;,) is written as

C’j‘ = esyst (#imp) + eiand’ )

where ei ana 18 the random component of the error at point i.

Naturally, we have checked that e, , was indeed a ran-
dom error and that its characteristics (mean value, standard
deviation) did not depend on the displacement applied (see
Fig. 3). Figure 4 shows the normal distribution of the random
error with a zero mean value and a standard deviation of 1.2
10~2 pixels. We also observed that ey, does not depend
on the value of CZ, whereas ¢!, does: the higher CZ, the

. ran
!
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Fig. 3—Evolution of the error on the displacement measure-
ment versus the imposed displacement corresponding to

a direct correlation computation (CZ = 20 pixels, n = 102
points)
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Fig. 4—Density probability function of the random error on
the displacement measurements corresponding to a direct
correlation computation (CZ = 20 pixels, n=2.10° points)
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By using different spot sizes, we show that the amplitude
of the systematic error depends on the speckle properties
(see Fig. 5 and Table 2): the larger the spots, the smaller
the systematic error amplitude, whereas e, , , is not sensibly
affected by spot size.

The systematic error is not only due to the chosen way to
perform the correlation. We verified that the use of Fourier
techniques also leads to similar features. Calculations in the
frequency space produce not only a systematic error but also
a drift that increases linearly with the imposed displacement
(see Fig. 6).

An explanation for the occurrence of the drift is given in
Ref. 20. The spectra of two translated images are not exactly
the same. On one side of the correlation zone, spots arrive,
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Fig. 5—Systematic error corresponding to a direct correlation
computation (CZ= 20 pixels, n= 102 points). The size of large
spots is around 10 x 10 pixels, and the size of small spots is
2 x 2 pixels

TABLE 2—-MAXIMUM SYSTEMATIC ERROR AND STAN-
DARD DEVIATION FOR VARIOUS MEASUREMENT METH-
ODS ON SMALL-SPOT SPECKLE IMAGES: (a) DIRECT
CORRELATION COMPUTATION, (b) DIRECT ITERATIVE
CORRELATION COMPUTATION, (c) RANDOM-SHIFTING DI-
RECT CORRELATION COMPUTATION AND (d) FOURIER IT-
ERATIVE CORRELATION COMPUTATION

Standard CPU Time
max (esyst) Deviation (arbitrary
(pixel (pixel) units)
(a) 5.1072 2.1072 1
(b) 3.10~2 2.1072 3
(©) 102 6.1072 1
(@ 10-3 6.1073 20
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Fig. 6—Systematic error plus drift corresponding to a direct
Fourier correlation computation (CZ = 20 pixels, n = 10?
points)

whereas on the other side, some of those that were initially
present leave the zone. This (small) difference induces an
error in the measurement of the displacement that increases
with the spots’ “flux.” A convenient way to remove this drift
is to resort to iterative calculations.20

Simulations using computer-generated speckle images
show that the systematic error stems from the combination
of two factors: the numerical integration error deriving from
calculating the correlation and the use of the subpixel poly-
nomial interpolation of the intercorrelation function.

By contrast with the random error, the systematic error
cannot be easily removed by standard filtering techniques.
However, several methods can be used to reduce its influence.

How to Remove egyg

With iterative methods,'>20 the correlation computation
converges gradually toward autocorrelation (zero displace-
ment). As a consequence, these methods suppress, by con-
struction, the systematic error but remain time consuming.

A faster method, developed by in Refs. 14 and 19, is based
on an approximation of the systematic error by a sinusoidal-
shaped function. These works correct the displacement mea-
surement by the value of the corresponding modeled system-
atic error. However, this method does not take into account
the dependence of the systematic error on speckle properties.

Our proposal is to use some characteristics of the system-
atic error to get rid of this error: 1-pixel periodicity and null
average over one period (see Figs. 4 and 5). The aim of this
technique is to convert the systematic error into a random
one to suppress it by a subsequent filtering. To that end, the
correlation zone of each point of the final image is numeri-
cally translated by a 1-pixel-amplitude random displacement
(! ang) Using a bilinear interpolation of the image. The com-
puted displacement of the ith point can thus be written as

i _ i i i i i
Ucomp = (uimp * urand) + Esyst (uimp + urand) 2 €rand*

®

Because it depends on a random displacement, the sys-
tematic error computed at each point will become indepen-
dent of that computed for its neighbors; it is randomly re-
distributed throughout the whole image (see Fig. 7). Then,
Ul g 18 subtracted to uL,,,, and, using the property of null
average, it is possible to greatly reduce the amplitude of the
superimposed random error ey; (u}m - d) using the
smoothing method described earlier.

Figure 7 shows the displacement profile along the sam-~
ple axis between two homogeneously deformed images, ob-
tained using direct correlation (#girec;) Or random shifting
(Urand.shift) computations. We can observe the influence of
the systematic error on the displacement measurements and
the efficiency of the random shifting method. Figure 8 gives
the strain profiles related to Fig. 7. We can also observe that
the maximum error for strain has been considerably reduced.

Table 2 shows the comparative performances of the dif-
ferent measurement techniques that we implemented. In the
case of translation motions, the most efficient but most time-
consuming method is the Fourier iterative computation (d).
Direct methods (a, b, ¢) are much faster, and the random-
shifting direct correlation computation (c) gives a good com-
promise between speed and accuracy.
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The order of magnitude of the CPU time consumption is
given in arbitrary units. With a Pentium MMX 166 MHz, and
for CZ = 20pixelsand RZ = 3 pixels, this unit achieves 238
subsets per second. Note that direct correlation and random-
shifting direct correlation algorithms have similar CPU time
consumption. This stems from the shifting operation, which
is much faster than the subsequent correlation computation.

Sensitivity to Rotation Motions

Direct correlation computations can give only the local
translation components at any point of the grid. They are
not able to determine the local rotation of CZ. Nevertheless,
this can be estimated, provided the rotation angle between
two images remains small. We studied the sensitivity of the

correlation computation with regard to rotation movements
using numerically rotated images. Imposed incremental ro-
tation angles were taken between 0 deg and 20 deg. We
noticed that the variations of the intercorrelation function ¢
were strongly affected by rotation motions. For instance,
Figs. 9(a) and 9(b) show the variations of ¢ in the vicinity of
M (ip, jo) using the same RZ in the case of a translation mo-
tion and of a 20 deg rotational movement, respectively. We
can clearly see that there is only one correlation peak within
RZ for the translation, whereas several peaks can coexist in
the rotation case. Besides, the peak that corresponds to the
rotational movement is not necessarily the highest. To find
the right peak, we compute a first estimate of the displace-
ment field using small values of RZ.

The choice of a small RZ allows only for the calculation of
small displacements, which correspond here to points located
in the vicinity of the rotation center. Far from this center, the
data processing does not provide correct values of displace-
ments. Once the rotation angle is determined, the same low
value of RZ can be used for the whole image, providing a sin-
gle correlation peak within the research zone. This method
gave correct results for incremental rotation less than 20 deg.

InFig. 10, the evolution of the error was plotted for angles
varying from O deg to 20 deg. Note that an angle of 20 deg
between two consecutive images can still be found with an
approximate mean error of 0.1 deg and a local accuracy of
1 deg.

Checking Out-of-plane Displacement Component

The computational procedure providing the out-of-plane
displacement component is checked experimentally by
recording images of a steel sample mechanically loaded until
localized necking occurs. The sample was then unloaded and
removed from the testing machine, and its dimensions were
measured using a three-axis measurement machine (Renault
Automation, resolution approximately 1 wm). The temporal
evolution of the out-of-plane displacement component was
computed using eq (4). The elastic strain being neglected
compared with the plastic strain, the final computed geome-
try was then compared to the measured one. Figure 11 shows
the comparison between the computed and measured thick-
nesses of the sample along its longitudinal axis. Results are
in good agreement and show the global consistency of the
hypotheses made throughout data processing.

Checking Strain Measurements

As mentioned earlier, we decided to distinguish situa-
tions in which the deformation is homogeneous from cases
in which it is heterogeneous. The differential operators are
estimated with noisy displacement data and can be compared
with analytic results. The strain resolution mainly depends
on the parameter AZ, the number of approximation points
within AZ, the incremental strain between two images and,
for a cumulative computation, the number of strain incre-
ments. Because we choose to work with a fixed grid step
(typically, GS = 5 pixels), the number of approximation
points is given by the value of the parameter AZ.

For images deformed in a homogeneous way, the reso-
lution on the strain measurement increases with the use of
higher values of parameter A Z (see Fig. 12). The mean error
is the difference between the imposed strain increment and its
mean measured values. The standard deviation of the local
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strain error is given. Figure 12 also shows that the CPU time
consumption varies approximately with the square of AZ.
Figure 13 illustrates the dependence of the strain measure-
ment error at fixed AZ according to the incremental strain
(Ag) between the two homogeneously deformed images. The
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Fig. 12—Strain measurement between homogeneously de-
formed images (n = 8500 points, CZ = 20 pixels, A¢ = 0.2
percent)
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Fig. 13—Evolution of the error on strain measurement
according to the incremental strain between the two images
(CZ =20 pixels, AZ = 50 pixels, n = 10* points)

mean error remains small (i.e., 2.10™%) even for Ae = 30 per-
cent, whereas the amplitude of the local error increases from
2.10* at Ae = 0.5 percent to 5.1073 at Ae = 35 percent.
Figure 14 illustrates a penalizing case corresponding to the
existence of a narrow localization zone (size of around 200
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Fig. 14—Strain resolution for the case of a heterogeneous
strain field (CZ = 20 pixels)

pixels). As expected, we verify that increasing AZ tends to
enlarge the size of the localization zone and to underestimate
the maximum strain, which leads to an increase of the strain
measurement error.

Using this kind of example, we found that AZ values rang-
ing from 25 to 50 pixels are a good compromise between
precision and CPU time, whether or not the strain field is
homogeneous.

The accuracy of the strain measurements is also related to
the number of displacement increments. This dependence is
illustrated in Fig. 15. The strain is computed by cumulating
the incremental displacement vectors while the strain incre-
ment between two consecutive images is equal to 0.5 percent.
We can see that the mean error remains small (< 2.10~%)
whichever the number of increment. We also observe that
the local error decreases at first, then increases due to the
accumulation of incremental errors. However, the standard
deviation reached for an imposed deformation of 35 percent
is lower for the case of an incremental calculation compared
with the case of a direct one.

Experimental Arrangement

The experimental setup uses a 100 kN tension-
compression, servomechanic testing machine. The eight-bit
digital images are recorded during the test by a CCD cam-
era positioned in front of the sample. The lens axis of the
camera is kept fixed with reference to the frame of the test-
ing machine and remains perpendicular to the surface of the
sample. We used a Kodak MegaPlus high-resolution camera
1317 x 1035, 6.8 x 6.8 wm square pixels and a Nikon lens
(Micro-Nikkor, fo = 55 mm). The distance between the
camera and the sample is around 1 m.

Concerning the lighting mode, we prefer white light to
coherent light because its use is less sensitive to out-of-plane
movements and to the increase of the surface roughness due to
strain hardening that both disturb the data analysis. Of course,
for natural lighting, the sample surface must be contrasted
enough to allow correlation computations. In this work, the
steel samples are artificially speckled using white paint. The
appearance of the sample aspect is illustrated in Fig. 2(a).
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Fig. 15—Evolution of the strain measurement error according
to the number of strain increments (CZ = 20 pixels, AZ = 50
pixels, n = 10* points, A¢ = 0.5 percent)
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Fig. 16—Camera setting

The camera must be set carefully so that the CCD detec-
tor remains parallel to the sample surface, since each out-
of-plane movement (translation or rotation) distorts the im-
ages. In order not to disturb the interpretation of the measure-
ments, it is of great importance to be able to minimize these
distortions.

‘We adopt the following procedure for setting up the cam-
era. After an initial coarse setup—using a three-axis rotation
stage (see Fig. 16) for easy tilt corrections—fine adjustment
is achieved by vertical translation of the sample in front of the
camera using the testing machine. The comparison between
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Fig. 17—Heuristic sketch of the geometrical sample defects

the strain field associated with this rigid-body motion (iden-
tically equal to zero) and the measured strain field enables
us to check and optimize the alignment procedure. The typ-
ical error on the strain measurements, due to the setting up,
is about 1.10™* or 2.10™%. Note that this error corresponds
approximately to the strain measurement resolution.

Examples of Potential Application

The experimental setup is designed to study localization
phenomena in mild steels. To illustrate the capabilities and
the interest of such an approach, we give an ontline of results
obtained during monotone tensile tests performed at constant
cross-head velocity (vey = 0.04 mm.s~'). As long as the
strain field remains homogeneous within the gage part of the
sample, this kind of loading can also be interpreted in terms of
a strain-controlled test (Emacro & 7.10~% s™1). The images
corresponding to the sample gage part contain 250 x 900
pixels (scale factor & 85 wm.pixel~), and the frame rate is
about 0.2 image.s~".

It is well known that initial geometrical defects in the sam-
ple can affect the inception of localization phenomena.® So
we tested samples with and without geometrical defects to
evaluate the sensitivity of our experimental procedure. These
geometrical defects of machining were deliberately created
and correspond to variations of the width along the sample
axis (trapezoid shape). The amplitude of the geometrical
defect is estimated using, once more, the three-axis measure-
ment machine (see Fig. 17).

The amplitude of the geometrical defect being small
(0.2 mm), the macroscopic tensile curves of the two spec-
imens are very similar (see Fig. 18). As expected, the strain
reached before fracture of the sample containing an initial
defect is lower than that of the defect-free sample. Two par-
ticular points named A and B are spotted on the tensile curves.
At the end of this section, they will help us to show that al-
though the macroscopic mechanical responses are initially
similar, the local strain and strain rate distributions are very
different.

Figure 19 shows the three in-plane components of the
Hencky strain tensor (e®) for the sample containing an ini-
tial geometrical defect when the applied macroscopic strain
€macro 18 12 percent (point A, Fig. 18). We can also remark
that the strain state within the sample is coherent with a simple
tension state: shear strain concentrations are observed in the
grip sections of the specimen and are nonmeasurable in the
gage part, whereas the lateral contraction ratio v = —&Z/ /el
is about 0.5. Apart from the grip sections, the strain field
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Fig. 18—Macroscopic tensile curves: nominal stress oy =
F /Sy versus conventional strain €macro = Al/lp, Where F is
the applied load, S is the initial cross section and Al and
are the elongation and the initial gage length, respectively
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Fig. 19—Spatial distributions of the three in-plane compo-
nents of the Hencky strain tensor £, measured on the sam-
ple containing an initial geometrical defect, when the applied
macroscopic strain emqcro is 12 percent

is heterogeneous within the gage part of the sample; g s
higher in the lower end of the sample. Naturally, the strain
heterogeneity is concentrated in the neighborhood of the ge-
ometrical defect where the initial cross section of the sample
is the smallest.

Because the local strain state corresponds to simple ten-
sion, and because the strain distribution is fairly homoge-
neous along the sample width (i.e., Oy-axis), it is possible to
summarize all the available two-dimensional information for
a given loading state into a one-dimensional representation.
For that purpose, we plot only the axial distribution of the
tension component of the strain tensor. Figure 20 represents
the tension component of the Hencky strain tensor (¢£,) of
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Fig. 20—Longitudinal profile sﬁ, when the applied macro-
scopic strain emgacro is 12 percent

the points located along the sample longitudinal axis (i.e.,
Ox-axis). With this representation, we can then compare the
amplitude of strain heterogeneity of the two samples.

Strain-rate measurements will provide information about
the onset and development of the strain localization. We will
adopt the same one-dimensional description of the strain rate
state by plotting the tension component of the Lagrangian
strain rate tensor (Ey,) of the points located along the sample
longitudinal axis. To observe, in the same graph, the time
evolution of the strain rate distribution, the strain rate profiles
are piled in chronological order. In addition, contour plots
are drawn and the strain rate intensity is colored in gray scale
to further simplify the data interpretation. The abscissa axis
stands for time, and the ordinate axis corresponds to space
(see Figs. 21 and 22). The loading curve is superimposed on
the graph to link global and local aspects of the mechanical
response. The horizontal axis (initially time) now stands for
the macroscopic strain, and the vertical axis stand for the
normalized load.

Figure 21 shows the time evolution of the strain rate for
the sample containing a geometrical defect. The strain rate
field gradually concentrates along the sample axis, first giv-
ing rise to a diffuse necking, then to a localized necking. It is
important to note that this concentration takes place early on
during the loading in the sense that a strain rate heterogeneity
appears during the strain hardening long before the maximum
load is reached. Remember that according to some theories,
this maximum, which corresponds to the so-called Considére
strain (gmacro(B) = 26 percent), is associated with the ap-
parition of diffuse necking. At point B, we observe that the
localization, in terms of strain rate, already covers 30 percent
of the gage zone.

During the sample softening, the effects of localization
strongly intensify and, finaily, lead to the sample fracture.

Figure 22 shows the response of a defect-free sample to
the same loading. The onset of the strain rate localization
emerges later on during the loading. A slight heterogene-
ity can be observed onthe lower end of the sample: point
A (€macro(A) = 12 percent). This strain is less than half
of the Considere strain amplitude, for which gmgcro(B) =
27 percent.
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Fig. 21—Time evolution of the longitudinal strain rate
Exx(x,0,1) in s~! for a monotone tensile test performed at

constant strain rate (€macro & 7.10~%s~!) on a sample of steel
containing an initial geometrical defect
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F_ig. 22—Time evolution of the longitudinal strain rate
Exx(x,0,7) in s~! for a monotone tensile test performed at
constant strain rate (;nqcro ~ 7.10“43“) on a sample of steel
without any detectable initial geometrical defect

In all the tests performed, the necking is progressive. The
presence of a defect in the initial geometry of the sample plays
the role of a catalyst and simply brings forward the inception
of the localization.

Concluding Comments

This experimental approach provides the time evolution of
various in-plane kinematic variables (displacement, velocity,
acceleration, strain, strain rate, rate of kinetic energy and so
on). Assuming plastic incompressibility allows the compu-
tation of the out-of-plane components. The validity check
of the data processing shows that correlation techniques pro-
vide results sufficiently accurate to study the inception and
the evolution of the localization phenomena. Furthermore,



we show that direct correlation computations are subject to
a systematic error, which can be efficiently removed using a
technique of random shifting.

Applied to mild steels, the experimental approach pro-
vides results suggesting an early and progressive develop-
ment of the diffuse and localized necking. The experiments
also indicate that the early inception of the diffuse necking is
not solely the consequence of geometrical defects. Animme-
diate implication of this precocity is that the gage part of the
specimen must be considered as a structure and no longer as
a uniformly strained and stressed elementary volume. This
fact is currently difficult to reconcile with theoretical views,
since standard formalisms are based on the subtle knowledge
of the constitutive equations.>~%39 As recalled in the first
section, these phenomenological equations are identified on
the basis of tests, such as the standard tensile test, for which
the existence of homogeneous strain and stress fields is very
often implicitly assumed. The inception of strain localiza-
tion leads to the heterogeneity of the stress field, which no
longer corresponds to that of the so-called simple tensile test.
The knowledge of the load applied to the sample is no longer
sufficient to determine the stresses developed within the sam-
ple. Constructing the normal stress-strain curve may become
hazardous and makes the identification of one-dimensional
constitutive equations more complicated.
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