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Abstract—We investigate the testing-against-independence
problem over a cooperative MAC with two sensors and a single
detector under an average rate constraint on the sensors-detector
links. For this setup, we design a variable-length coding scheme
that maximizes the achievable type-II error exponent when the
type-I error probability is limited to ε. Similarly to the single-link
result, we show here that the optimal error exponent depends on
ε and that variable-length coding allows to increase the rates over
the optimal fixed-length coding scheme by the factor (1− ε)−1.

Index Terms—Distributed Hypothesis Testing, Cooperative
MAC, Variable-Length Coding, Error Exponent

I. INTRODUCTION

Motivated by the broadly emerging Internet of Things (IoT)
applications, distributed hypothesis testing problems gained
increasing attention recently. In such problems, sensors send
information about their observations to one or multiple de-
cision centers. Then, the decision centers attempt to detect
the joint distributions underlying the data observed at all the
terminals including their own observations.

Our focus is on binary hypothesis testing with a null
hypothesis and an alternative hypothesis. We are interested in
maximizing the exponential decay (in the number of observed
samples) of the probability of error under the alternative
hypothesis, given a constraint on the probability of error under
the null hypothesis. The study of such a Stein setup has a
long history in the information theoretic literature, see e.g.,
[1]–[8] which study point-to-point, interactive, cascaded, and
multi-sensor and/or multi-detector systems. All these works
constrain the maximum rate of communication between termi-
nals, and a fixed-length communication scheme is obviously
optimal. Recently, the authors of [9] proposed to only constrain
the average rate of communication, and they presented a
variable-length coding scheme that under this weaker con-
straint improves the maximum achievable error exponent.
The present work is the first extension of the point-to-point
average-rate scenario in [9] and the corresponding variable-
length coding scheme to systems with multiple sensors.

Specifically, we consider the two-sensors single-detector
system in Fig. 1, where the first sensor communicates over
a shared link to the second sensor and the detector, and after
receiving this message, also the second sensor communicates
with the detector. The two sensors observe the sequences Xn

1

and Xn
2 , respectively, and the detector observes Y n, where

we assume that the following Markov chain holds both under
the null hypothesis H = 0 as well as under the alternative
hypothesis H = 1:

Xn
1 ↔ Xn

2 ↔ Y n (1)

We consider the testing-against-independence scenario where
under the alternative hypothesis H = 1 the observations at
the two sensors are independent of the observations at the
detector. We further assume that the sensors’ observations
Xn

1 , X
n
2 follow the same joint distribution and the decision

center’s observation Y n follows the same marginal distribution
under both hypotheses.

The focus of this paper is on the maximum achievable
error exponents under the alternative hypothesis when the error
probability under the null hypothesis is not allowed to exceed a
given ε > 0, and the rates of communication from the first and
the second sensors are constrained by R1 and R2, respectively.
Under maximum rate constraints, this optimal error exponent
θ∗ε,Fix(R1, R2) was characterized in [10] even without Markov
chain (1) in the limit ε → 0.1 In this paper, we establish the
corresponding strong converse under the Markov chain (1), by
proving the same result on θ∗ε,Fix(R1, R2) for any ε > 0.

The main result of the paper is the maximum achievable
error exponent θ∗ε (R1, R2) under expected rate constraints,
which depends on ε and can be charcterized as:

θ∗ε (R1, R2) = θ∗ε,Fix

(
R1 · (1− ε)−1, R2 · (1− ε)−1

)
. (2)

Thus, through variable-length coding we can increase all
available rates in the network by the factor (1 − ε)−1. A
similar observation was already made for the point-to-point
setup studied in [9]. In this sense, the current paper extends
the conclusion to multiple links, and it shows in particular that
the rate-increase can be attained on all links simultaneously.

Notation: We follow the notation in [11] and [9]. In
particular, we use sans serif font for bit-strings: e.g., m
for a deterministic and M for a random bit-string. We let
string(m) denote the shortest bit-string representation of a
positive integer m, and for any bit-string m we let len(m)

1In the converse proof of [10, Theorem 2], the second line in the
lower bound to R1 relies on the identity H(X1,iX2,i|M1X

i−1
1 Xi−1

2 ) =

H(X1,iX2,i|M1X
i−1
1 Xn

2,i+1) which does not necessarily hold. In fact, the
“=” has to be replaced with “≥” and in some cases the inequality is strict.



and dec(m) denote its length and its corresponding positive
integer. We use hb(·) for the binary entropy function.

II. SYSTEM MODEL

Consider the distributed hypothesis testing problem in Fig. 1
in the special case of testing against independence where

under H = 0 : (Xn
1 , X

n
2 , Y

n) ∼ i.i.d.PX1X2
· PY |X2

; (3)
under H = 1 : (Xn

1 , X
n
2 , Y

n) ∼ i.i.d.PX1X2
· PY . (4)

Fig. 1: Cooperative MAC Setup with 2 transmitters and 1
receiver.

Specifically, the system consists of two transmitters (TX1

and TX2
) and a receiver (RY ). TX1

observes the source
sequence Xn

1 and sends its bit-string message M1 = φ
(n)
1 (Xn

1 )
to both TX2

and RY , where the encoding function is of the
form φ

(n)
1 : Xn1 → {0, 1}? and satisfies the rate constraint

E [len (M1)] ≤ nR1. (5)

TX2
observes the source sequence Xn

2 and with the message
M1 received from TX1

, it computes the bit-string message
M2 = φ

(n)
2 (Xn

2 ,M1) using some encoding function φ
(n)
2 :

Xn2 × {0, 1}? → {0, 1}? satisfying the rate constraint

E [len (M2)] ≤ nR2. (6)

TX2 sends message M2 to RY which decides on the hypothesis
H = {0, 1} based on the messages M1 and M2 and its own
observation Y n. That means, using a decoding function g(n) :
Yn × {0, 1}? × {0, 1}? → {0, 1}, it produces:

Ĥ = g(n) (M1,M2, Y
n) ∈ {0, 1}. (7)

The goal is to design encoding and decision functions such
that their type-I error probability

αn , Pr[Ĥ = 1|H = 0] (8)

stays below a given threshold and the type-II error probability

βn , Pr[Ĥ = 0|H = 1] (9)

decays to 0 exponentially fast.
Definition 1: Error exponent θ ≥ 0 is called ε-achievable

if there exists a sequence of encoding and decision functions
{φ(n)

1 , φ
(n)
2 , g(n)} satisfying

αn ≤ ε, (10)

lim
n→∞

1

n
log

1

βn
≥ θ. (11)

The supremum over all ε-achievable error exponents is called
the optimal error exponent and is denoted θ∗ε (R1, R2).

Remark 1: The setup in [10] is similar to our setup here,
except that it imposes the more stringent constraints

len (Mi) ≤ nRi, i ∈ {1, 2}, (12)

and it allows for a general PY |X1X2
distribution in (3).

III. MAIN RESULTS

Theorem 1: There exist auxiliary random variables U1 and
U2 such that the optimal error exponent is given by:

θ∗ε (R1, R2) = max
PU1|X1

,PU2|U1X2
:

R1≥(1−ε)I(U1;X1)
R2≥(1−ε)I(U2;X2|U1)
U1↔X1↔(X2,Y )

U2↔(X2,U1)↔(X1,Y )

I (U1U2;Y ) (13)

where mutual information quantities are calculated according
to the joint pmf PU1U2X1X2Y ,PU1|X1

PU2|U1X2
PX1X2

PY |X2
.

Proof: Achievability is proved in Section IV and the
converse in Section V.

Lemma 1: In Theorem 1, it suffices to choose U1 and U2

over alphabets of sizes |U1| ≤ |X1|+2 and |U2| ≤ |U1||X2|+1.
Proof: Omitted. It follows by standard applications of

Carathéodory’s theorem, see [11, Appendix C].

A. Comparing Variable-Length with Fixed-Length Coding

For comparison, we also present the optimal error exponent
under fixed-length coding.

Remark 2: Under fixed-length coding, i.e., under rate con-
straints (12), the optimal error exponent θ∗ε,Fix (R1, R2) is:

θ∗ε,Fix (R1, R2) = max
PU1|X1

,PU2|U1X2
:

R1≥I(U1;X1)
R2≥I(U2;X2|U1)
U1↔X1↔(X2,Y )

U2↔(X2,U1)↔(X1,Y )

I (U1U2;Y ) , (14)

where mutual informations are calculated according to
the joint probability mass function (pmf) PU1U2X1X2Y ,
PU1|X1

PU2|U1X2
PX1X2

PY |X2
.

Proof: Achievability can be proved as described in Sec-
tion IV when the set Sn is replaced by an empty set. The
converse can be shown as in Section V if inequality (40),
i.e., H(M̃i) ≤ nRi

∆n

(
1 + hb

(
∆n

nRi

))
, is replaced by the trivial

inequality H(M̃i) ≤ nRi.
We examine the gain provided by variable-length coding on

the cooperative MAC at hand of an example.
Example 1: Let X1, S, T be independent Bernoulli random

variables of parameters pX1
= 0.4, pS = 0.8, pT = 0.8 and set

X2 = X1⊕T and Y = X2⊕S. For this example, Fig. 2 shows
the optimal error exponents of variable-length and fixed-length
coding, θ∗ε (R1, R2) and θ∗ε,Fix(R1, R2), when ε = 0.05 and
both links are of same rates R1 = R2. Fig. 2 also presents
the optimal variable-length error exponent θ∗ε (R1 = 0, R2)
when R1 = 0, i.e., when the first sensor is not present or
cannot communicate. The figure thus illustrates the benefits
of variable length coding (the gap between the solid blue line
and the dash-dotted red line) and of the first sensor TX1 (the
gap between the dashed green line and the solid blue line).
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Fig. 2: Optimal exponents of variable-length and fixed-length
coding for Example 1 when ε = 0.05.

IV. ACHIEVABILITY PROOF

Fix a large blocklength n, a small number µ ∈ (0, ε), and
conditional pmfs PU1|X1

and PU2|U1,X2
such that:

R1 = (1− ε+ µ) (I(U1;X1) + 2µ) (15)

R2 = (1− ε+ µ) (I(U2;X2|U1) + 2µ) (16)

where mutual informations are meant with respect to

PU1U2X1X2Y , PU1|X1
· PU2|U1X2

· PX1X2 · PY |X2
. (17)

Randomly generate a codebook

CU1
,
{
un1 (m1) : m1 ∈

{
1, · · · , 2n(I(U1;X1)+µ)

}}
(18)

by drawing all entries i.i.d. according to the marginal pmf PU1 .
For each codeword un1 (m1), generate a codebook

CU2(m1) ,
{
un2 (m2|m1) : m2∈

{
1,· · ·, 2n(I(U2;X2|U1)+µ)

}}
,

(19)
by drawing the j-th entry of each codeword according to
PU2|U1

. Also choose a set Sn,

Sn ⊆ T (n)
µ (PX1

) : Pr [Xn
1 ∈ Sn] = ε− µ, (20)

with T (n)
µ (PX1) the strongly-typical set [12, Definition 2.8].

Transmitter 1: Assume it observes the sequence Xn
1 =

xn1 . If xn1 /∈ Sn, it looks for indices m1 ≥ 1 satisfying
(un1 (m1), xn) ∈ T nµ (PU1X1

), randomly picks one of these in-
dices, and sends its corresponding bit-string M1 = string(m1)
both to Transmitter 2 and the Receiver. Otherwise, it sends the
single-bit string M1 = [0].

Transmitter 2: Assume it observes the sequence Xn
2 = xn2

and receives the bit-string message M1 = m1 from Transmitter
1. If m1 = [0], then it sends the bit-string message M2 = [0].
Else, if m1 = dec(m1) ≥ 1, it looks for an index m2 ≥ 1
satisfying (un1 (m1), un2 (m2|m1), xn2 ) ∈ T nµ (PU1U2X2

). It ran-
domly picks one of these indices and sends its corresponding
bit-string M2 = string(m2) to the Receiver. Otherwise, it
sends M2 = [0].

Receiver: Assume it observes the sequence Y n = yn and
receives messages M1 = m1 and M2 = m2. If any of
the bit-strings m1 or m2 equals [0], it declares Ĥ = 1.
Else, it sets mi = dec(mi), for i = 1, 2, and checks if
(un1 (m1), un2 (m2|m1), yn) ∈ T nµ (PU1U2Y ). It declares Ĥ = 0

if the condition is verified, and Ĥ = 1 otherwise.
The error probability and message length analysis are omitted
here but can be found in the full version [13]. �

V. CONVERSE PROOF TO THEOREM 1

Notice first that it suffices to show

θ∗ε (R1, R2) ≤ max
p(u1|x1)p(u2|u1,x2):
R1≥(1−ε)I(U1;X1)

R2≥(1−ε)I(U2;X2|U1)
U1↔X1↔(X2,Y )
U2↔(X2,U1)↔Y

I (U1U2;Y ) , (21)

i.e., the Markov chain U2 ↔ (U1, X2) ↔ (X1, Y ) in
Theorem 1 can be replaced by the weaker Markov chain
U2 ↔ (U1, X2) ↔ Y , because the right-hand side of (21)
does not depend on the joint pmf of U2 and X1. A more
formal proof of this sufficiency can be found in [13].

Fix θ < θ∗ε (R1, R2), a sequence of encoding and decision
functions satisfying the type-I and type-II error constraints, a
blocklength n, and a small number η ≥ 0. Define:

Bn(η) , {(xn1 , xn2 ) :

Pr[Ĥ = 0|Xn
1 = xn1 , X

n
2 = xn2 ,H = 0] ≥ η}, (22)

µn , n
− 1

3 , (23)
Dn(η) , Tnµn

(PX1X2
) ∩ Bn(η). (24)

By constraint (10) on the type-I error probability, we have:

1− ε ≤ PXn
1 X

n
2

(Bn(η)) + η(1− PXn
1 X

n
2

(Bn(η))) (25)

⇒ PXn
1 X

n
2

(Bn(η)) ≥ 1− ε− η
1− η

. (26)

Moreover, by [12, Remark to Lemma 2.12],

PnX1X2

(
T (n)
µn

(PX1X2)
)
≥ 1− |X1||X2|

4µ2
nn

, (27)

and thus by (24) and (26),

PXn
1 X

n
2

(Dn(η)) ≥ 1− ε− η
1− η

− |X1||X2|
4µ2

nn
, ∆n. (28)

We define the random variables (M̃1, M̃2, X̃
n
1 , X̃

n
2 , Ỹ

n) as
the restriction of the random variables (M1,M2, X

n
1 , X

n
2 , Y

n)
to (Xn

1 , X
n
2 ) ∈ Dn(η).

The probability distribution of the former tuple is given by:

P M̃1M̃2X̃n
1 X̃

n
2 Ỹ

n(m1,m2, x
n
1 , x

n
2 , y

n) ,

PXn
1 X

n
2 Y

n(xn1 , x
n
2 , y

n) · 1{x
n
1 , x

n
2 ∈ Dn(η)}

PXn
1 X

n
2

(Dn(η))

·1{φ1(xn1 ) = m1} · 1{φ2(xn2 , φ1(xn1 )) = m2}, (29)

leading to the following inequalities:

PM̃1M̃2
(m1,m2) ≤ PM1M2(m1,m2)∆−1

n , (30)



PỸ n(yn) ≤ PnY (yn)∆−1
n , (31)

D(PX̃n
1 X̃

n
2
||PnX1X2

) ≤ log ∆−1
n . (32)

Define the following random variables:

L̃i , len(M̃i), i = 1, 2. (33)

By the rate constraints (5) and (6), we have for i = 1, 2:

nRi ≥ E[Li] ≥ E[Li|(Xn
1 , X

n
2 ) ∈ Dn(η)]PXn

1 X
n
2

(Dn(η))

≥ E[L̃i]∆n, (34)

where the last inequality follows by (28). Moreover, by defi-
nition, L̃i is a function of M̃i, for i = 1, 2, so we can upper
bound the entropy of M̃i as follows:

H(M̃i) = H(M̃i, L̃i) (35)

=
∑
li

Pr[L̃i = li]H(M̃i|L̃i = li) +H(L̃i) (36)

≤
∑
li

Pr[L̃i = li]li +H(L̃i) (37)

= E[L̃i] +H(L̃i) (38)

≤ nRi
∆n

+
nRi
∆n

hb

(
∆n

nRi

)
(39)

=
nRi
∆n

(
1 + hb

(
∆n

nRi

))
, (40)

where (39) holds by (34) and since the maximum possible
entropy of L̃i is obtained by a geometric distribution of mean
E[L̃i], which is further bounded by nRi

∆n
[14, Theorem 12.1.1].

On the other hand, we lower bound the entropy of M̃1 as:

H(M̃1)≥I(M̃1; X̃n
1 X̃

n
2 ) +D(PX̃n

1 X̃
n
2
||PnX1X2

) + log ∆n (41)

=H(X̃n
1 X̃

n
2 ) +D(PX̃n

1 X̃
n
2
||PnX1X2

)

−H(X̃n
1 X̃

n
2 |M̃1) + log ∆n (42)

≥n[H(X̃1,T X̃2,T ) +D(PX̃1,T X̃2,T
||PX1X2

)]

−
n∑
t=1

H(X̃1,tX̃2,t|Ũ1,t) + log ∆n (43)

=n[H(X̃1,T X̃2,T ) +D(PX̃1,T X̃2,T
||PX1X2

)]

−nH(X̃1,T X̃2,T |Ũ1,T , T ) + log ∆n (44)

=n[H(X̃1X̃2) +D(PX̃1X̃2
||PX1X2

)]

−nH(X̃1X̃2|U1) + log ∆n (45)

≥n
[
I(U1; X̃1) +

1

n
log ∆n

]
. (46)

Here, (41) holds by (32); (43) holds by the super-additivity
property in [15, Proposition 1], by the chain rule, and by
defining Ũ1t , (M̃1, X̃

t−1
1 , X̃t−1

2 ); (44) by defining T uniform
over {1, . . . , n} independent of all other random variables; and
(45) by defining U1 , (Ũ1T , T ), X̃1 , X̃1,T , and X̃2 , X̃2,T .

Similarly,

H(M̃2) ≥ I(M̃2; X̃n
1 X̃

n
2 |M̃1) (47)

=

n∑
t=1

I(Ũ2,t; X̃1,tX̃2,t|Ũ1,t) (48)

= nI(Ũ2,TT ; X̃1,T X̃2,T |Ũ1,TT ) (49)

≥ nI(U2; X̃2|U1). (50)

Here, (47) holds since M̃2 is function of X̃n
2 and M̃1; (48)

holds by the chain rule, the definition of Ũ1t, and by defining
Ũ2t , M̃2; and (50) holds by defining U2 , (Ũ2T , T ).

Combining (40) with (46) and (50), yields:

R1 ≥
I(U1; X̃1) + 1

n log ∆n(
1 + hb

(
∆n

nR1

)) ·∆n (51)

R2 ≥
I(U2; X̃2|U1)(
1 + hb

(
∆n

nR2

)) ·∆n. (52)

Define the set

An , {(m1,m2, y
n) : g(n)(m1,m2, y

n) = 0}, (53)

and for each (m1,m2):

An(m1,m2) , {yn : (m1,m2, y
n) ∈ An}. (54)

Define further the Hamming neighborhoods of these sets:

Â`nn (m1,m2) , {ỹn : ∃ yn ∈An(m1,m2)

s.t. dH(yn, ỹn) ≤ `n} (55)

for some real number `n satisfying limn→∞ `n/n = 0 and
limn→∞ `n/

√
n =∞, and

Â`nn ,
⋃

(m1,m2)

{(m1,m2)} × Â`nn (m1,m2), (56)

Since by definitions (22) and (24), for all (xn1 , x
n
2 ) ∈ Dn,

m1 = φ1(xn1 ), and m2 = φ2(xn2 , φ1(xn1 )) :

PỸ n|X̃n
1 X̃

n
2

(
An(m1,m2)

∣∣xn1 , xn2 ) ≥ η, (57)

by the blowing-up lemma [16]:

PỸ n|X̃n
1 X̃

n
2

(
Â`nn (m1,m2)|xn1 , xn2

)
≥ 1− ζn (58)

for a real number ζn > 0 such that limn→∞ ζn = 0. Moreover,
taking expectation of (58) with respect to (X̃n

1 , X̃
n
2 ) we obtain:

PM̃1M̃2Ỹ n

(
Â`nn

)
≥ 1− ζn. (59)

In addition, using (30) and (31), we have the following:

PM̃1M̃2
PỸ n(Â`nn )

≤ PM1M2P
n
Y (Â`nn ) ·∆−2

n (60)

≤ PM1M2
PnY (An) · enhb(`n/n) · p`n · |Y|`n ·∆−2

n (61)
= βn · F `nn ·∆−2

n , (62)

where p , min
y,y′:PY (y′)>0

PY (y)
PY (y′) and F `nn , enhb(`n/n) · p`n ·

|Y|`n . Here, (61) holds by [12, Proof of Lemma 5.1].
By (62) and standard inequalities (see [9, Lemma 1]), we

can upper bound the type-II error exponent as follows:

−log βn

≤ −logPM̃1M̃2
PỸ n(Â`nn ) + `n logFn − 2 log ∆n (63)



≤ 1

1− ζn
(
D
(
PM̃1M̃2Ỹ n ||PM̃1M̃2

PỸ n

)
+ 1
)

+ `n logFn − 2 log ∆n (64)

=
1

1− ζn

(
I(M̃1M̃2; Ỹ n) + 1

)
+ `n logFn − 2 log ∆n. (65)

We further upper-bound the term I(M̃1M̃2; Ỹ n) as follows:

I(M̃1M̃2; Ỹ n) ≤
n∑
t=1

I(M̃1M̃2X̃
t−1
1 X̃t−1

2 Ỹ t−1; Ỹt) (66)

=

n∑
t=1

I(M̃1M̃2X̃
t−1
1 X̃t−1

2 ; Ỹt) (67)

≤ nI(U1U2; Ỹ ), (68)

where (67) holds by the Markov chain Ỹ t−1 ↔
(M̃1M̃2, X̃

t−1
1 X̃t−1

2 ) ↔ Ỹt, (68) follows by the definitions
of Ũ1,t and Ũ2,t and defining Ỹ = ỸT .
We observe the Markov chain Ũ2,t ↔ (Ũ1,t, X̃2,t) ↔ Ỹt for
any t, and thus U2 ↔ (U1, X̃2) ↔ Ỹ . The second desired
Markov chain U1 ↔ X̃1 ↔ (X̃2, Ỹ ) only holds in the limit
as n → ∞. To see this, notice that M̃1 ↔ X̃n

1 ↔ (X̃n
2 , Ỹ

n)
forms a Markov chain and thus:

0=I(M̃1; X̃n
2 Ỹ

n|X̃n
1 ) (69)

≥H(X̃n
2 Ỹ

n|X̃n
1 ) +D(PX̃n

1 X̃
n
2 Ỹ

n ||PnX1X2Y )

+ log ∆n −H(X̃n
2 Ỹ

n|X̃n
1 M̃1) (70)

≥n[H(X̃2,T ỸT |X̃1,T ) +D(PX̃1,T X̃2,T ỸT
||PX1X2Y )]

+ log ∆n −
n∑
t=1

H(X̃2,tỸt|X̃n
1 X̃

t−1
2 Ỹ t−1M̃1) (71)

≥n[H(X̃2,T ỸT |X̃1,T ) +D(PX̃1,T X̃2,T ỸT
||PX1X2Y )]

+ log ∆n −
n∑
t=1

H(X̃2,tỸt|X̃1,tŨ1,t) (72)

=n[I(X̃2,T ỸT ; Ũ1,TT |X̃1,T )

+D(PX̃1,T X̃2,T ỸT
||PX1X2Y )] + log ∆n (73)

≥nI(X̃2Ỹ ;U1|X̃1)+ log ∆n, (74)

where (70) holds by (32) and PỸ n|X̃n
1 X̃

n
2

= PnY |X1X2
; and

(71) holds by the super-additivity property in [15, Proposition
1] and the chain rule. Since 1

n log ∆n → 0 as n → ∞, then
I(X̃2Ỹ ;U1|X̃1)→ 0 as n→∞.

To sum up, we have proved so far in (51), (52), (65), (68),
and (74) that for all n ≥ 1 there exists a joint pmf P (n)

X̃1X̃2Ỹ U1U2

(abbreviated as P (n)) and functions g1(n), g4(n), and g5(n)
tending to 0 and g3(n) tending to 1 as n→∞, and g2(n, η)
tending to (1− ε) as n→∞ and η → 0, so that

P
(n)

X̃1X̃2Ỹ U1U2
= P

(n)

X̃1X̃2Ỹ
· P (n)

U1|X̃1X̃2
· P (n)

U2|U1X̃2
, (75a)

R1 ≥ (IP (n)(U1; X̃1) + g1(n)) · g2(n, η),

(75b)
R2 ≥ IP (n)(U2; X̃2|U1) · g2(n, η), (75c)
θ ≤ g3(n)IP (n)(U1U2; Ỹ ) + g4(n), (75d)

IP (n)(X̃2Ỹ ;U1|X̃1) ≤ g5(n), (75e)

where IP (n) indicates that the mutual information should be
calculated according to the pmf P (n). The pmf P (n)

X̃1X̃2Ỹ U1U2

has almost the same structure as the pmf PX1X2Y U1U2
in

the theorem, except that P (n)

U1|X̃1X̃2
can still depend on the

realization of X̃2. By (75e) and because g5(n)→ 0 as n→∞,
this dependence however vanishes as the blocklength grows.

Applying Carathéodory’s theorem [11, Appendix C], one
can restrict the auxiliary random variables U1 and U2 to
alphabets of sizes

|U1| ≤ |X1| · |X2|+ 3, (76)
|U2| ≤ |U1| · |X2|+ 1. (77)

The proof is then concluded by invoking the Bolzano-
Weierstrass theorem, and by considering a subsequence
P

(nk)

X̃1X̃2Ỹ U1U2
that converges to a limiting pmf P ∗X1X2Y U1U2

.
In fact, by (75) this limiting pmf factorizes as P ∗X1X2Y U1U2

=
P ∗X1X2Y

· P ∗U1|X1
· P ∗U2|U1X2

and satisfies the desired rate-
constraints, and moreover P ∗X1X2Y

= PX1X2
· PY |X1X2

because for any n ≥ 1, P (n)

Ỹ |X̃1X̃2
= PY |X1X2

and |PX̃1X̃2
−

PX1X2 | ≤ µn (since (X̃n
1 , X̃

n
2 ) ∈ T (n)

µn (PX1X2)) with µn → 0
as n→∞. �
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