
HAL Id: hal-03349516
https://hal.science/hal-03349516

Submitted on 20 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

An infrared image processing to analyse the calorific
effects accompanying strain localisation

André Chrysochoos, Hervé Louche

To cite this version:
André Chrysochoos, Hervé Louche. An infrared image processing to analyse the calorific effects
accompanying strain localisation. International Journal of Engineering Science, 2000, 38 (16), pp.1759-
1788. �10.1016/S0020-7225(00)00002-1�. �hal-03349516�

https://hal.science/hal-03349516
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


An infrared image processing to analyse the calori®c e�ects
accompanying strain localisation

Andr�e Chrysochoos *, Herv�e Louche

Laboratoire de M�ecanique et G�enie Civil, Universit�e Montpellier II, UMR 5508 CNRS, CC081, pl. E. Bataillon, 34095

Montpellier Cedex, France

Abstract

This paper presents an infrared data processing developed to analyse the calori®c manifestations ac-
companying elastoplastic transformation during tensile tests. The surface temperature images are provided
by an experimental set-up essentially made of a testing machine coupled with an infrared camera equipped
with a home-made numerizer. The `inverse' passage from temperatures to heat sources is detailed in the case
of ¯at and thin parallelepipedic samples. The infrared image processing, based on FourierÕs techniques, was
checked using spectral solutions of the heat equation in the case of realistic examples close to experiments.
Numerical simulations are shown which attest coherence and e�ciency of the method for several heat
source distributions and di�erent sets of noisy data. The method is then applied to experimental data ®les
coming from tensile tests on mild steels at the room temperature. Sudden dissipative e�ects due to the
propagation of the L�uders bands during the plastic plateau can be observed. Then, during the strain
hardening, gradual and precocious concentrations of dissipation are shown; they herald the local necking of
the sample. Finally, the interest of such experimental results is brie¯y discussed by referring to the spec-
ialised literature dealing with localisation phenomena and behaviour identi®cation. Ó 2000 Elsevier Sci-
ence Ltd. All rights reserved.

1. Introduction

The thermal and calori®c e�ects associated with deformation processes have been observed for
a long time by the experimenters. The ®rst experiments in thermoelasticity were done by Lord
Kelvin [1,2]. The pioneering calorimetric tests, performed by Taylor and Quinney [3], marked the
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beginning of works on thermoplasticity. Of course, many authors have worked and continue to
work today on the tricky problem of estimating, from temperature information, the heat evolved
during materials deformation. Most of energy evaluations have been done by metallurgists. One
must remember that by using energy balances, metallurgists like to draw up models capable of
estimating the evolution of microstructural parameters such as dislocation density, dislocation cell
size, etc. [4,5]. An important work of synthesis on this subject was published by Christian et al. [6].
However, the exploitation of energy data at the continuum scale is still nowadays relatively rare.
For some, the use of a thermodynamic framework for constructing the behavioural constitutive
equations is not yet a systematic attitude. For others, this `phenomenological' approach of the
materials behaviour is already judged old-fashioned, such authors generally prefer to develop
multi-scales models within a purely mechanical framework.

However, we have to acknowledge that in the case of quasi-static tests, the temperature
variations of solids often remain small and the theorist is naturally tempted to consider the
deformation process as isotherm. This position, although natural from a strictly thermal view-
point, at the same time deprives of any energy check of the behaviour modelling. Neglecting
temperature variations induced by the deformation processes, it eliminates the possibility of
establishing complete energy balances. Workers like Mandel and Bui had already underlined in
[7] the great interest of combining mechanical and energy aspects of the same deformation
phenomenon.

In this paper, we present an experimental set-up capable of storing the thermal images on the
surface of thin and ¯at samples. These thermal images are used to estimate the heat source dis-
tributions by using the heat conduction equation. If a homogeneous mechanical test can rea-
sonably be supposed, complete energy balances can be performed by linking the evolved heat
estimations to the deformation energy deduced from the loading cell and from the extensometer
signals (see [8±12]). In this paper, the thermal data are rather used to observe and analyse the
calori®c e�ects translating the localisation phenomena that occur during monotone and quasi-
static tensile tests at constant room temperature.

In a ®rst part, the thermomechanical framework used to interpret the experiment is reminded.
The `generalised standard material' formalism let us to introduce energy balance for thermoel-
astoplastic materials. After having brie¯y presented the main characteristics of the experimental
arrangement, the infrared data processing is widely detailed and illustrated by several numerical
examples developed to check its consistency. In a last part, experiments performed on mild steels
are analysed. In particular, they show an inception of energy e�ects associated with the local
necking a long time before the maximum force supported by the sample is reached.

2. Thermomechanical framework

Concepts and results of classical thermodynamics of irreversible processes (CTIP) are used
[13,14]. At each instant t of a quasi-static process, a thermodynamic equilibrium state of a ho-
mogeneous volume element is characterised by a set of n� 1 state variables �a0; a1; . . . ; an�.

As it is classically done in solid mechanics, we shall take as state variables: T �T � a0�, the
absolute temperature, e �e � a1�, a strain tensor and aj �j � 2; . . . ; n�, the components of a vector
a of nÿ 1 internal variables completing the description of the thermodynamic state.



If w and s denote the speci®c Helmholtz free energy and the speci®c entropy, respectively, the
Clausius±Duhem inequality that is derived from the local form of the second principle of ther-
modynamics, allows de®ning the dissipation d as

d � r : Dÿ qw;e : _eÿ qw;a � _aÿ q

T
� gradT P 0; �2:1�

where r is the Cauchy stress tensor, D the Eulerian strain rate tensor, q the mass density, q the
heat in¯ux vector. The dot stands for the material time derivative. The thermodynamicists often
introduce the irreversible entropy source de®ned by rs � d=T . The equality rs � 0 (i.e. d � 0) then
characterises reversible thermodynamic processes. Classically, the intrinsic (mechanical) dissipa-
tion d1 and the thermal dissipation d2 are supposed to be separately positive and are respectively
de®ned by

d1 � r : Dÿ qw;e : _eÿ qw;a � _aP 0 and d2 � ÿ q

T
� gradT P 0: �2:2�

Per unit volume, the intrinsic dissipation d1 is the di�erence between the anelastic energy rate
w0a � r : Dÿ qw;e : _e and the stored energy rate w0s � qw;a � _a.

Deduced from both principles of thermodynamics, the local heat conduction equation reads

qCe;a
_T � divq � d1 � qTw;T;e : _e� qT w;T;a � _a� re; �2:3�

where Ce;a denotes the speci®c heat capacity at e and a constant while re symbolises the external
heat supply. The intrinsic dissipation d1 and the thermomechanical coupling terms
qTw;T;e : _e and qT w;T;a � _a have been gathered in the right-hand member of (2.3). For metallic
materials considered here, the `KelvinÕs' term qT w;T;e : _e represents the volume heat rate due to
thermoelastic couplings. Taking into account an isotropic conduction of heat (q � ÿk gradT ), we
underline that the left-hand member of (2.3) can be interpreted as a partial derivative operator
applied to the temperature.

3. Experimental arrangement

An original characteristic of the experimental set-up is the simultaneous recording of thermal
and mechanical data: surface temperature, load applied to the sample, and elongation of its gauge
part. This set-up (see Fig. 1) consists of a computerised uniaxial testing machine (1, 2) and an
infrared thermography device (4, 5, 6). This latter is made of an infrared camera (4), a display unit
(5) and a home-made numerizer (6) allowing storage and processing of the thermal images in a
second microcomputer (7).

The camera (Agema 880) is an infrared scanning system, with a single short wave detector InSb
([2±5.6] lm), liquid nitrogen cooled. The thermosignal in isothermal unity (IU), proportional to
the thermal radiation, is digitised (DL), and then converted in temperature in Celcius degree (°C)
after a calibration operation. The numerisation system was initially conceived by [15], developed
and improved by [16]. The temperature images are matrices of 256 lines per 180 columns digitised



on 12 bits. Moreover, the numerizer allows recording at the beginning of each line of a thermal
image, by the means of (3), the corresponding load and elongation signals and four other electric
signals like the thermal level and thermal range characterising the state of the camera.

4. Toward simpli®ed heat di�usion problems

As mentioned above, the main object of the experimental data processing is to deduce from the
surface temperature measurements the distribution of heat amounts evolved in the volume cor-
responding to the gauge length of the sample. For a real 3D medium, this operation, that belongs
to the realm of `inverse' problems, is tricky indeed, and even impossible to accomplish without
any information on the source distributions to be quanti®ed [17]. In what follows, the case,
speci®c but important in practice, of thin and ¯at parallelepipedic samples will be considered. For
such a `simple' geometry, the heat sources and the temperatures are assumed to be homogeneously
depth-wise distributed. On the sample surface, the sources will be locally determined by estimating
a partial derivative operator applied to the temperature (the left-hand member of Eq. (2.3) being
itself depth-wise averaged). Strictly speaking, this is no longer an inverse problem to solve insofar
as the temperature ®eld is, under such an assumption, completely known.

Moreover, in the case of the experimental conditions of our tests, the following hypotheses are
done:
· the speci®c heat capacity Ce;a and the isotropic conduction coe�cient k are material constants

independent of the internal (hardening) state;

Fig. 1. Experimental set-up: (1) testing machine (DARTEC 9500), (2) control computer, (3) recording of global load

and displacement, (4) infrared camera (AGEMA 880 SW), (5) display unit, (6) numerizer (12 bits), (7) storage and

processing of thermal image.



· the external heat supply re is time independent;
· for quasi-static processes, the convective terms of the material time derivative are negligible;
· in the case of elastoplastic materials, couplings between temperature and hardening variables

are neglected so that qT w;a; T � _a � 0.
These hypotheses are reasonable for many classical situations; they may become widely unsound
when strong anisotropy pre-exists or develops during work-hardening, when ®rst or second order
phase transitions occur, or when the thermomechanical loading leads to dynamic instabilities.

4.1. One-dimensional thermal di�usion problems

For the sake of simplicity, a ®rst data processing can be performed on a heat conduction
equation averaged on a sample cross-section to get a 1D thermal di�usion problem (see Fig. 2(a)).
Such an attitude can be compared to the one adopted in mechanics of curvilinear media. The
following notations will be used as long as the gauge part of the sample remains a parallelepipedic
structure: fe; l;Lg denotes the current geometrical parameters, fe0; l0;L0g being the initial depth,
width, and length, respectively. We also note fxigi�1;2;3 the Eulerian coordinates.

The averaged temperature variations �h�x3; t� and heat source �s�x3; t� for any cross-section
S � e � l are then de®ned by:

�h�x3; t� � 1

S

Z e

0

Z l=2

ÿl=2

T �x1; x2; x3; t�� ÿ T0�x1; x2; x3; t��dx1 dx2; �4:1�

�s�x3; t� � 1

S

Z e

0

Z l=2

ÿl=2

w0ch dx1 dx2; �4:2�

where T0�x1; x2; x3; t� is the (initial) equilibrium temperature ®eld verifying ÿkDT0 � re, and where

w0ch � d1 � qT
o2w
oT oe

: _e: �4:3�

Fig. 2. (a) Basic sketch of an half sample; (b) illustration of the Fourier boundary conditions.



Near thermal equilibrium, the thermal boundary conditions are well modelled by linear relations
[18]. For the `back' and `front' boundary conditions we will suppose that

oT �e; x2; x3; t�
ox1

� ÿ oT �0; x2; x3; t�
ox1

; �4:4a�

ÿk
oT �e; x2; x3; t�

ox1

� h1

e

Z e

0

T �x1; x2; x3; t�� ÿ T0�x1; x2; x3; t��dx1: �4:4b�

The constant h1 represents the lateral heat exchange coe�cient between the surrounding air and
the sample. The ®rst equation assumes the symmetry of the thermal losses while the next one
expresses the continuity of the heat ¯ux. Assumption (4.4a) is reasonable as long as the heat
sources are uniformly distributed along the little thickness of a homogeneous ¯at sample. In
Eq. (4.4b), the losses by convection are assumed to be proportional to the mean thermal
disequilibrium (see Fig. 2(b)), what is also fair as far as the temperature variations remain small.

To get, at all costs, a 1D analysis tool, the same kind of hypotheses can be adopted for the
lateral boundaries �x2 � �l=2�:

oT �x1; l=2; x3; t�
ox2

� ÿ oT �x1;ÿl=2; x3; t�
ox2

; �4:5a�

ÿk
oT �x1; l=2; x3; t�

ox2

� h1

l

Z l=2

ÿl=2

�T �x1; x2; x3; t� ÿ T0�x1; x2; x3; t��dx2: �4:5b�

Naturally, in this Ox2 direction, the validity of Eqs. (4.5a) and (4.5b) can be more easily at fault.
But in the applications, it is of interest and often su�cient to do a simple analysis of thermo-
pro®les. The longitudinal boundary condition is written as

ÿk
oT �x1; x2;�L=2; t�

ox3

� �h2 T x1; x2;

��
� L

2
; t
�
ÿ T0 x1; x2;

�
� L

2
; t
��

; �4:6�

where h2 stands for the heat exchange coe�cient between the grips of the testing machine and the
sample. During the transformation, the exchange coe�cients are assumed to be constant. The
constant kÿ1

2 � k=h2 is a characteristic length of the longitudinal heat losses. The mean value on a
cross-section of the material time derivative of the temperature can be deduced from the Leibniz
rule and from the Gauss theorem in the case of an incompressible medium. In such a case, we get
for any cross-section:Z e

0

Z l=2

ÿl=2

d

dt
T �x1; x2; x3; t�dx1 dx2 � d

dt

Z e

0

Z l=2

ÿl=2

T �x1; x2; x3; t�dx1 dx2: �4:7�

With the use of this set of hypotheses and notations, a 1D di�erential problem can be expressed in
the following form as soon as the convective terms of the material time derivative are neglected:



qCe;a
o�h�x3; t�

ot
� 2h1�e� l�

S
�h�x3; t� ÿ k

o2 �h�x3; t�
ox2

3

� �s�x3; t�; �4:8a�

�h�x3; 0� � 0; �4:8b�

k2
�h

�
� L

2
; t
�
� o�h

�
� L

2
; t
��

ox3 � 0: �4:8c�

The most questionable hypothesis is certainly introduced in Eq. (4.5b). This relation implicitly
admits that the mean width-wise temperature is a good representative of what happens along a
line pro®le of the camera. This is obviously not always true. For instance, important lateral heat
exchange characterised by very small kÿ1

1 (DirichletÕs condition) can lead to strong thermal gra-
dient oT=ox2 and invalidates Eq. (4.5b). In such cases, it is preferable to consider the following 2D
approach.

4.2. Two-dimensional thermal di�usion problems

The extension to two dimensions thermal di�usion problems is simply realised averaging only
depth-wise the temperature ®eld. In order to lighten notations, we keep for this new averaging
operation the same symbols as in Section 4.1. The averaged temperature variations �h�x; t� and
heat source �s�x; t� at any point x � fx2; x3g on the gauge part of the sample surface are now
de®ned by:

�h�x; t� � 1

e

Z e

0

T �x1; x2; x3; t�� ÿ T0�x1; x2; x3; t��dx1; �4:12�

�s�x; t� � 1

e

Z e

0

w0ch�x1; x2; x3; t�dx1: �4:13�

We also keep the `back' and `front' boundary conditions (4.4a), (4.4b) and the longitudinal
boundary conditions (4.6) and the lateral boundary conditions becomes now

ÿk
oT �x1;�l=2; x3; t�

ox2

� �h1 T �x1;� � l=2; x3; t� ÿ T0�x1;� l=2; x3; t��: �4:14�

By analogy with the 1D situation, the constant kÿ1
1 � k=h1 is the characteristic length of the lateral

heat losses. The use of this new set of hypotheses leads us to de®ne a 2D di�usion problem. It can
be expressed in the following form when convective terms are neglected:

qCe;a
o�h�x; t�

ot
� 2h1

e
�h�x; t� ÿ kD�h�x; t� � �s�x; t�; �4:15a�



�h�x; 0� � 0; �4:15b�

k1
�h

�
� l

2
; x3; t

�
� o�h

�
� l

2
; x3; t

��
ox2 � 0; �4:15c�

k2
�h x2;

�
� L

2
; t
�
� o�h x2;

�
� L

2
; t
��

ox3 � 0; �4:15d�

where D symbolises the 2D Laplacian operator.

5. Infrared image processing

The tricky goal of the thermal data processing is to deduce, from infrared images, the distri-
butions of heat sources on the surface of the sample. Even if the temperature ®eld is known, the
passage to the mean heat sources �s�x3; t� or �s�x; t� is numerically strongly unstable because of the
regularising e�ects of the heat di�usion mechanisms. The local heat sources evaluation is based on
an estimate of the partial derivative operators constituting the left-hand member of Eqs. (4.8a) or
(4.15a). This challenge is not obvious because thermal images are discrete, noisy, non-periodic and
have a limited sampling rate. The image processing tools, used in what follows, are essentially
founded on properties of the discrete Fourier transform (DFT) and on the properties of the
Fourier series (FS). We will recall in what follows the conditions for which, the coe�cients of the
FS of a continuous signal are identical to those of the TFD of the corresponding sampled signal.
This link between FS and TFD then allows the estimate of the derivative operators by using
discrete data. The approximation of a FS by a TFD works only when the signal is periodic, band-
limited and without noise. In practice, operations of periodic extension and ®ltering will allow to
tend towards this ideal situation. To lighten the presentation of the developed imaging techniques,
we recall hereafter classical notations, de®nitions and main properties of the signals Fourier
analysis.

5.1. Brief reminder

Let us consider an analog signal h of one variable u, standing for time or space as soon as a map
to map correspondence exists between time and space. Let �0; a� be the record length. In such a
situation, the signal is mathematically represented by a real function of real values. Generally,
such a physical signal is termed `®nite energy' signal inasmuch asZ a

0

jh�u�j2 du < �1 �5:1�

and belongs, by de®nition, to the so-called functional space L2�0; a�.



5.1.1. Fourier transform of signals
A Fourier transform H of the signal h can be de®ned by extending its de®nition domain

considering that ~h�u� � h�u�; 8u 2 �0; a�, and ~h�u� � 0 if x < 0 or x > a, so that

H�m� �
Z �1

ÿ1
~h�u�eÿ2ipmu du �

Z a

0

h�u�eÿ2ipmu du: �5:2�

In practice, it is very often impossible to work with analog (continuous) signals and the use of
sampled data (digital signal) is inevitable. At this point, it is usual to interpret data as distributions
so that if we consider now a regular sampling of ~h using a sampling step se � a=�N ÿ 1� to get a
number N of data on �0; a�, the sampled `function' hse

�u� can be written as:

hse
�u� �

X�1
n�ÿ1

~h�nse�d�uÿ nse�; �5:3�

where d�u� is DiracÕs distribution or the impulse function. The so-called `DiracÕs comb' is made of
a sequence of equal distant impulse functions and plays a great role in signal processing inasmuch
as Fourier transform of distributions can also be realised. DiracÕs comb and its Fourier transform
are de®ned by:

cse
�u� �

X�1
n�ÿ1

d�uÿ nse�; �5:4�

Cme
�m� � me

X�1
n�ÿ1

d�mÿ nme�; �5:5�

where me � 1=se is the sampling frequency. The sampling operation and the Fourier transform
corresponding to the sampled signal can be formally rewritten as

hse
�u� � ~h�u� � cse

�u�; �5:6�

Hme
�m� � H�m� � Cme

�m�; �5:7�

where the star * symbolises the convolution product. Note that Hme
is a continuous and periodic

function with period me. In accordance with these properties, it is possible to derive the de®nition
of the DFT well adapted to digital machine computation. An inverse Fourier transform of the
sampled spectrum, realised at the sampling rate ma � 1=a � me=N , leads to a periodic extension of
the discrete motif associated to h de®ned on �0; a�. Linear relationships can be established between
N values on a period of the sampled function hn � �hse

a �n � h�nse� and N values extracted from a
period in the frequency domain Hn � �H ma

me
�n � Hme

�nma�. These are the famous relations de®ning
the DFT and the discrete inverse Fourier transform (DIFT). They can be written as



hk �
XNÿ1

n�0

Hn exp 2ipn
k
N

� �
k � 0; 1; . . . ;N ÿ 1;

Hn � 1

N

XNÿ1

k�0

hk exp

�
ÿ 2ipn

k
N

�
n � 0; 1; . . . ;N ÿ 1:

�5:8�

In what follows, we will note Fd and Fÿ1
d these both operations, respectively, so that we will

formally write H �Fd�h� and h �Fÿ1
d �H�.

5.1.2. Fourier series and waveform sampling
Another classical attitude for extending the continuous function h is to consider its periodic

extension, rippling its waveform motif. A new function ha with period a is then de®ned by
ha�u� � h�u�; 8u 2 �0; a� and ha�u� na� � h�u�; 8u 2 �0; a�; n 2 Z. The periodicity property al-
lows expressing ha as a Fourier series

ha�u� � p0

2
�
X1
n�1

pn cos�2pnmau�� � qn sin�2pnmau��; �5:9�

where ma is the fundamental frequency equals to 1=a. The coe�cients of the sinusoids pn and qn are
classically given by the integrals

pn � 2

a

Z a=2

ÿa=2

ha�u�cos�2pnmau�du; n � 0; 1; 2; 3; . . . ;

qn � 2

a

Z a=2

ÿa=2

ha�u� sin�2pnmau�du; n � 1; 2; 3; . . . :

�5:10�

If an � 1=2�pn ÿ iqn�; n � 0;�1;�2; . . ., denote the complex coe�cients of the Fourier series, ha

may be written in exponential form as

ha�u� �
X�1

n�ÿ1
an exp 2ipn

u
a

� �
: �5:11�

Let us recall that an important relationship between the coe�cients Hn of the DFT and the co-
e�cients an of the Fourier series can be established. For 06 n < N , we can write

Hn ÿ an �
X
q 6�0

an�qN ; q 2 Z:

Such a result shows that the more rapidly the coe�cients of the Fourier series tend to zero, the
better is the approximation Hn � an for 06 n < N . In other words, the more regular the function



ha is, the more the sum � � � � aÿ2N�n � aÿN�n � aN�n � a2N�n � � � �j j is negligible and the better the
DFT approximates a Fourier series [21].

For instance, if ha is a trigonometric polynomial, the discrete Fourier transform coe�cients are
equal to the ones of the Fourier series as soon as the number N of data (related to the sampling
rate) is twice as big as the degree of the polynomial. Conversely, if the periodic function ha

presents discontinuities, the approximation can become bad. It is the case as soon as h�0� 6� h�a�,
what happens quasi systematically with the thermal images.

5.2. Image processing constraints

5.2.1. Sampling constraint
In practice, the choice of the sampling rate me is of major importance. Upper limited by the

digitizer (performances of the analog-digital converter, storage rate capacity, etc.), the sampling
frequency must however be su�ciently high to avoid the famous aliasing e�ect. To illustrate the
potentialities of Fourier analysis, let us recall that the sampling theorem (the Shannon theorem)
states that if the spectrum of an analog signal h is band-limited at the frequency mc and if the
sampling frequency veri®es me P 2mc, then the analog signal h�u� can be uniquely determined from
a knowledge of its sampled values

h�u� � se

Xn��1
n�ÿ1

hn
sin2pmc�uÿ nse�

p�uÿ nse� : �5:12�

Unfortunately, the presence of noise on the thermal data does not make it possible to exactly
know if the thermal signal is band-limited. However, the use of a low-pass convolutive ®lter allows
avoiding an aliasing e�ect even if it involves a possible vanishing of the high part of the thermal
signal frequencies.

5.2.2. Periodic extension of analog signals
To get a development in the Fourier series of an analog signal that is time-limited, or space-

limited as well, a natural attitude is to consider its periodic extension. If ha is such that
ha�0� 6� ha�a�, the rippling reveals sharp discontinuities that induce apparition of new frequency
components in the Fourier series. These additional frequency components can be mixed with
those of noise and make the ®ltering problem more complicated. This classical phenomenon is
often termed leakage e�ect in the specialised literature [19]. To reduce this leakage, a regular
extension of the signal h from a to a0 > a can be planned to de®ne a new periodic waveform ha0

such that ha0 �a0� � ha0 �0�. Note that several extension on �a; a0� can be proposed like folding
(mirror image) about ordinate axis, polynomial extensions, etc. The better the extension is, the
more the signal is band-limited. Note also that zero-padding nearly always o�ered in signal
processing toolboxes is not a very e�cacious method to settle this leakage problem. Moreover in
our case, the in¯uence of the parasitic frequencies due to the non-periodicity of images is strongly
ampli®ed by the presence of the Laplacian operator during the heat sources evaluation. We shall
see in Section 5.4 that a periodic extension of images were planned before evaluating the heat
sources.



5.3. Thermal noise characteristics

Digitised thermal data are always noisy. This noise has several origins: it comes from the in-
frared detector itself (InSb detector, liquid nitrogen cooled), from the digitizer (electronic com-
ponents, sampling and quantization of data) and ®nally from the parasitic re¯ections on the
surface of the observed object. A global study of the temperature noise was performed to calculate
the thermal resolution (the noise equivalent temperature di�erence ± NETD) and the noise
characteristics (mean value, standard deviation, . . .). Both are useful to guide in the choice of an
image processing method. To extract the noise, images were recorded during a stationary thermal
scene (camera lens sealed by a mask, a black body in thermal equilibrium with surrounding).

Examples of noise pro®les are presented in Fig. 3(a) and (b). The data analysis shows that the
thermosignal is disrupted by a white noise characterised by a Gaussian probability distribution of
mean 0 (Fig. 3(c)). Its power spectrum is approximately uniform (Fig. 3(d)). This last result
unfortunately implies that the numerical ®lter, whatever its characteristics, is unable to eliminate
completely the parasitic frequencies. That is the reason why the e�ciency of the data processing
was checked by using numerical tests close to experiments.

5.4. Heat sources evaluation

To estimate the distribution of heat sources on the surface of the specimen, we ®rst use a
parabolic extension of images. The ®rst and the second order space derivatives of the temperature
are estimated along the image sides by using least-square approximations. For the 1D analysis,
the extension is such that the extended pro®le has 2n points (n 2 N ) to be allowed to use the fast
Fourier transform (FFT) algorithms. Typically, n is about 8. In the case of images analysis,
we arbitrarily decided to take an extension size corresponding with the image width. The data

Fig. 3. (a) and (b) longitudinal and transversal noise pro®les; (c) histogram showing, for an image, the probability

density of noise (digitised level); (d) amplitude spectrum for a column of noise: white noise.



®ltering and the space derivatives estimates are performed using a Gaussian ®lter. The kernel
corresponding to the discrete ®lter can expressed as

/�r� � mc���
p
p exp�ÿm2

c � r2�; �5:13�

where mc is related to the cut-o� frequency and where r � x3 or r � kxk for the 1D and 2D
problems, respectively. To estimate the Laplacian of the ®ltered temperature, the second deriv-
atives of the continuous kernel were classically used [20]. They read:

D/�r� � 4m5
c���
p
p exp�ÿm2

c � r2� � r2

�
ÿ 1

2m2
c

�
�1D�; �5:14a�

D/�r� � 4m6
c���
p
p exp�ÿm2

c � r2� � r2

�
ÿ 1

m2
c

�
�2D�: �5:14b�

These operations were traditionally realised using FFT or DFT to limit the computational time
[21]. The ®ltered temperature data �hf and the ®ltered temperature Laplacian D�hf can be formally
written as

�hf � Re Fÿ1
d NFd��h� �Fd�/�
� �h i

; �5:15�

D�hf � Re Fÿ1
d NFd��h� �Fd�D/�
� �h i

; �5:16�

where N is the number of data of the extended pro®le or extended image while Re stands for the
real part of the complex data.

The time derivative of the temperature can also be estimated by using a time convolutive ®l-
tering or, more directly, by using a ®nite di�erences approximation. If we note _�hf this estimate, on
the basis of Eqs. (4.8a), (4.15a)±(5.16), the heat sources is locally determined by the relation

qCe;a
_�hf

 
�

�hf

sth

!
ÿ kD�hf � �s; �5:17�

where sth symbolises a time constant related to the heat losses. In the 1D problem, using Eq. (4.8a),
this constant reads

s1D
th �

qCe;aS
2h�e� l� �5:18�

and characterises the lateral heat exchanges between the sample and the surrounding air. For 2D
problem, using Eq. (4.15a), the constant becomes



s2D
th �

qCe;ae
2h

: �5:19�

This constant is related to the heat losses perpendicular to the specimen surface.

6. Checking the image processing

To check the e�ciency of the data processing, numerical simulations are performed in cases
where analytical solutions exist. For all examples shown below, a heat source distribution is ®rst
chosen. Then, using either (4.8a)±(4.8c) or (4.15a)±(4.15d) partial derivative problem, the ana-

lytical solutions are derived from a spectral resolution. The solution �h�x3; t� (or �h�x; t�) is expressed
in the spectral base of the spatial partial derivative operator, composed by the eigen functions that
are compatible with the boundary conditions (4.8b) or (4.15b) and (4.15c). The reader, interested
in the mathematical background of this approach, can consult [22]. A noise is then added to the
temperature, either by using a random function to simulate noisy experimental data, or more
directly, by using experimental noised images. A heat source distribution can ®nally be deduced
from such a data set by the mean of Eq. (5.17), and compared to the given initial distribution. The
space±time discretisation steps, the thermophysical parameters and the heat exchange coe�cients
are chosen, of course, close to the ones of the experimental tests.

6.1. Examples of 1D thermal di�usion problem

6.1.1. A non-homogeneous case
Under certain regularity and `projectability' conditions, the heat source �s�x3; t� and the tem-

perature variations �h�x3; t� can be written in the case of Eqs. (4.8a)±(4.8c) as

�s�x3; t� �
X1
p�0

sp�t�cos xpx3

ÿ �� � Sp�t� sin Xpx3

ÿ ��
; �6:1�

�h�x3; t� �
X1
p�0

hp�t�cos xpx3

ÿ �� �Hp�t� sin Xpx3

ÿ ��
; �6:2�

where the functions cos�xpx3� and sin�Xpx3� for p � 0; 1; . . . ;1 represent the eigen functions
base. The eigen pulsations xp and Xp are respectively deduced from the roots rp and Rp of the
following equations derived from the boundary conditions:

tan�prp� ÿ k1L
2prp

� 0; tan�pRp� ÿ 2pRp

k1L
� 0; �6:3�

by relations

xp � 2prp

L
; Xp � 2pRp

L
:



The classical literature gives many examples of thermal problems solved by spectral methods
[23]. In our situation, we can nevertheless notice some slight originality: in the framework of ®nite
transformations of solids, the length L of the sample must be considered as a function of time. The
eigen pulsations also become time dependent. During strain-controlled tensile test, the length L�t�
is given, the values xp�tk� and Xp�tk� at any instant tk can then be deduced. The functions sp�t�,
Sp�t�, hp�t� and Hp�t� are the projections of �s�x3; t� and �h�x3; t� on the eigen functions respectively

sp�t� �
h�s�x3; t� cos xp�t�x3

ÿ ��� i
cos xp�t�x3

ÿ �
cos xp�t�x3

ÿ ���
 � ; Sp�t� �
h�s�x3; t� sin Xp�t�x3

ÿ ��� i
sin Xp�t�x3

ÿ �
sin Xp�t�x3

ÿ ���
 � ; �6:4�

hp�t� �
h�h�x3; t� cos xp�t�x3

ÿ ��� i
hcos xp�t�x3

ÿ �
cos xp�t�x3

ÿ ��� i ; Hp�t� �
h�h�x3; t� sin Xp�t�x3

ÿ ��� i
h sin Xp�t�x3

ÿ �
sin Xp�t�x3

ÿ ��� i ; �6:5�

where the scalar product hu�x�jv�x�i is de®ned by
R L=2

ÿL=2
u�n�v�n�dn. If we note:

Ap;q�t� �
x3 sin xp�t�x3

ÿ �
cos xp�t�x3

ÿ ���
 �
cos xp�t�x3

ÿ �
cos xp�t�x3

ÿ ���
 � xp; �6:6�

Bp;q�t� �
x3 cos Xp�t�x3

ÿ �
sin xp�t�x3

ÿ ���
 �
sin xp�t�x3

ÿ �
sin xp�t�x3

ÿ ���
 � Xp; �6:7�

the components of matrices A and B, respectively, if dth � k=qCe;a and if

dp�t� � 1

sth

� dthxp�t�; Dp�t� � 1

sth

� dthXp�t� �6:8�

denote the diagonal components of matrices d�t� and D�t�, respectively, then, the vectors h�t� of
components hp�t� and H�t� of components Hp�t� are solutions of the following ®rst order dif-
ferential systems:

_h�t� � A�t�� � d�t��h�t� � s�t�;
h�0� � 0;

�6:9�

and

_H�t� � B�t�� �D�t��H�t� � S�t�;
H�0� � 0;

�6:10�

where s�t� is the vector of components sp�t� while S�t� is the vector of components Sp�t�.



The choice of the heat source distribution �s�x3; t� was motivated by the three following goals:
· determining semi-analytic solutions of problem (4.8a)±(4.8c) to compute, with a great accuracy,

a temperature ®eld related to a given distribution of heat sources;
· checking the e�ciency of the data processing when a localisation of the dissipated energy oc-

curs;
· testing the in¯uence of the thermal noise on the heat source detection.
Numerous examples were analysed. Hereafter, we present a penalising case that shows the ro-
bustness of the image processing. To get a ®rst and simple insight of the numerical results, pro®les
of heat sources have been gathered in a 1D space±time chart. To further simplify the ®gure in-
terpretation, contour plots have been chosen to quickly visualise the data. The level curves are
numbered, note that the heat sources have been divided by the volume heat capacity so that the
unit becomes (°C sÿ1). The di�erent coe�cients used in this example are gathered in Table 1.

During the ®rst part of the test, (see Figs. 4 and 9, curve a), the chosen heat sources distribution
has a triangle shape that moves along a segment representing the length of the sample. This
triangle keeps a constant form and its displacement velocity has a sinusoidal evolution. This
academic example has been chosen to simulate the case of a heat sources localisation. Conversely,
during the second part of the simulation, the heat sources distribution remains spatially uniform
to test more particularly the boundary e�ects. The level curves mark the displacement of the
localised triangular source and then indicates a homogeneous evolution of the heat sources. The
corresponding temperature chart is plotted in Fig. 5.

A ®rst check of the data processing was performed on the calculated temperatures derived from
the spectral solution. The result is shown in Fig. 6 and it is now possible to compare this new heat

Table 1

Geometric and thermophysical constants used in the 1D simulations

Geometry L0 � 50:10ÿ3 m l0 � 10:10ÿ3 m e0 � 21:10ÿ4 m

Material q � 7860 kg mÿ3 Ce;a � 472 J kgÿ1 �Cÿ1 k � 63 W mÿ1 �Cÿ1

Thermal k2 � 20 mÿ1 s1D
th � 19 s 100 Eigen vectors

Fig. 4. Space-time distribution of heat sources for a 1D data processing. The X-axis is related to time (image number)

and the Y-axis to the sample length (pixel). The heat sources are divided by the volume heat capacity. The time evo-

lution of the source along the pro®le A±B±C corresponds to the curve a of Fig. 9.



sources distribution with the given initial one. The quality of this inverse passage can also be
checked in Fig. 9 by comparing curves a and b. The curve b shows the e�ect of the low-pass
convolutive ®ltering on the heat source determination. Even if no thermal noise disturbs the data,
a ®nite sampling rate leads to a ®nite cut-o� frequency for the discrete ®lter. This implies an
attenuation of the heat sources intensity and a spreading out of the zones where they concentrate.

It is then possible to superimpose a Gaussian noise on the calculated temperature data. In this
example, the chosen noise amplitude reaches up to 0.3°C of temperature variation. The noisy
thermopro®le corresponding to the axis A±B±C de®ned in Fig. 5 is plotted in Fig. 7.

Using these noisy data, a second check of the image processing was performed. The chart of
heat sources is drawn in Fig. 8. To avoid any numerical instability during the image processing,
the cut-o� frequency of the ®lter was reduced. As previously, we observed an attenuation of the
intensity of the localised heat sources compared to the initial data as well as a spreading out of the
zones where they concentrate. However, in spite of the noise we estimate that the results are
satisfactory (see Fig. 9).

Fig. 5. Temperature chart corresponding to Fig. 4. Because of the heat di�usion, the decomposition of the test in two

parts is no longer obvious. The space evolution of the temperature along the pro®le A±B±C is plotted in Fig. 7.

Fig. 6. Space-time distribution of heat sources deduced from the temperature data plotted in Fig. 5. The time evolution

of the source along the pro®le A±B±C corresponds to the curve b of Fig. 9.



6.1.2. A particularly important case: the uniform distribution of sources
If the heat sources are assumed to be uniform, the data processing can be considerably sim-

pli®ed. For instance, let us take the following example where the homogeneous heat source �stheo�t�

Fig. 9. Heat sources pro®les corresponding to the time evolution at the pixel 150. The curve a is associated with the

distribution initially given. The curve b represents data directly deduced from the analytic solution of the temperature.

The curve c corresponds to data deduced from the noisy temperatures. Naturally, the curves were shifted to facilitate

their comparison.

Fig. 8. Space-time distribution of heat sources deduced from the noisy temperature data. The time evolution of the

source along the pro®le A±B±C corresponds to the curve c of Fig. 9.

Fig. 7. Calculated and noisy thermopro®les corresponding to the axis de®ned in Fig. 5. The noise is chosen here three

times as big as the experimental one. For 1D thermal di�usion problem, the noise on data is naturally reduced because

the thermopro®le is averaged along the sample width.



is a deadened sine: �stheo�t� � sin�p=5t� � exp�ÿt=10�. Keeping the same symmetric and linear
boundary conditions and the same geometrical parameters as in the previous example (Table 1),
we observe that almost all the temperature signal is concentrated on the ®rst eigen function
cos x0x3� �. Fig. 10 shows the strong decrease of the hps amplitudes, the Hs vanishing for even
temperature solutions. Such an approximation yields thermal conduction losses directly pro-
portional to the temperature variations.

As a consequence, the convolutive ®ltering step of the Laplacian operator is no longer to do.
The heat source distribution can be directly estimated by

~s x3; t� �
qCe;a

� x0L� sin�x0L�
4sin�x0L=2�cos�x0x3�

� �
� _~h�x3; t�
 

�
~h�x3; t�

seq

!
: �6:11�

The ®rst term of the right-hand member of Eq. (6.11) is a factor close to 1 while x0L� 1. This
factor recti®es the approximation done by considering the ®rst eigen function. The equivalent time
constant seq is de®ned by

seq � 1

sth

�
� dthx

2
0

�ÿ1

: �6:12�

In Fig. 11, the evolution of the sources, evaluated in the middle and at one extremity of the
sample, can be compared with the theoretical sources. Using the ®ltered temperature pro®le and
the Eq. (6.11), we ®nd a homogeneous distribution of sources again. In order to be convinced, the
absolute error between theoretical and calculated solutions is also plotted.

6.2. Example of 2D thermal di�usion problem

In this section, the method is extended to 2D di�usion problems. As previously, under certain
regularity and `projectability' conditions, in the case of problem (4.15), the heat source �s�x; t� and
the temperature variations �h�x; t� can be written as:

Fig. 10. If the heat source distribution is spatially uniform and when boundary conditions are symmetric and linear, the

amplitude of eigen functions decreases rapidly with p as shown above for p � 0; 1; 2.



�s�x; t� �
X
p;q

s1pq �t�cos�xpx2�cos�wqx3�
� � s2pq �t�cos�xpx2� sin�Wqx3�

�
�
X
p;q

s3pq �t� sin�Xpx2�cos�wqx3�
� � s4pq �t� sin�Xpx2� sin�Wqx3�

�
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�h�x; t� �
X
p;q

h1pq �t�cos�xpx2�cos�wqx3�
� � h2pq �t�cos�xpx2� sin�Wqx3�

�
�
X
p;q

h3pq �t� sin�Xpx2�cos�wqx3�
� � h4pq�t� sin�Xpx2� sin�Wqx3�

�
;
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where the functions

V1pq�x� � cos�xpx2�cos�wqx3�; V2pq�x� � cos�xpx2� sin�Wqx3�;

V3pq�x� � sin�Xpx2�cos�wqx3�; V4pq�x� � sin�Xpx2� sin�Wqx3�;

for p; q � 0; 1; . . . ;�1 constitute the eigen functions base. The eigen pulsations xp;Xp;wq and Wq

are deduced from the roots qp; Pp; rq and Rq of the following equations, respectively:

tan�pqp� ÿ
k1l

2pqp
� 0; tan�pPp� ÿ 2pPp

k1l
� 0; �6:15�

tan�prq� ÿ k2L
2prq

� 0; tan�pRq� ÿ 2pRq

k2L
� 0 �6:16�

by the relations xp � 2pqp=1; Xp � 2pPp=l; wq � 2prq=L and Wq � 2pRq=L.

Fig. 11. The evolution of heat sources is plotted for two particular points: one is placed in the middle of the pro®le

while the second is at one extremity. These evolutions can be compared to the theoretical solution. The di�erence

between theoretical and calculated data is also plotted. Of course, the di�erent curves were shifted for a better com-

parison.



For the sake of simplicity we shall assume, in what follows, the small perturbation hypothesis.
In such a situation, Eulerian con®guration is mixed up with that of Lagrange and the eigen
pulsation can be considered as time constants.

The functions sipq�t� and hipq�t� for i � 1; . . . ; 4 are respectively the projections of �s�x; t�
and �h�x; t� on the eigen functions Vipq�x�:

sipq�t� �
h�s�x; t� Vipq�x�

�� i
hVipq�x� Vipq�x�

�� i ; hipq�t� �
h�h�x; t� Vipq�x�

�� i
hVipq�x� Vipq�x�

�� i ; �6:17�

where the scalar product hu�x�jv�x�i is de®ned by

u�x�jv�x�h i �
Z l=2

ÿl=2

Z L=2

ÿL=2

u�x� � v�x�dndv: �6:18�

Now, if we note:

X2
1pq
� x2

p � w2
q; �6:19a�

X2
2pq
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p �W 2
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X2
3pq
� X2
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q; �6:19c�
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4pq
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q ; �6:19d�

then, each function hipq�t� veri®es the following di�erential equation

_hipq�t� � dthX
2
ipq

�
� 1

sth

�
� hipq�t� � sipq�t� �6:20�

with hipq�0� � 0.
The distribution of the heat sources, chosen to illustrate the method, takes a pyramidal form

(2D extension of the preceding case). In the course of time, the pyramid keeps a constant form and
moves on a plan. With this distribution, spatially heterogeneous (the pyramid), one superimposes
a spatially homogeneous but non stationary heat source (the plan). The di�erent coe�cients used
in this example are gathered in Table 2.

An illustration of the results obtained by image processing is proposed in Fig. 12. One considers
the moment corresponding to the image 12. From the given distribution of sources (Fig. 12), one
deduces by spectral method the temperatures charts (Fig. 13). For this example, 20� 20 eigen
vectors were used. Then, the estimate of the ®rst member of the Eq. (5.17) by DFT makes it
possible to rebuild a ®eld of sources. The results obtained for three levels of noise (Fig. 14) are
shown in Figs. 15±18.



Some light di�erences can be noticed between analytic solution of heat sources and those de-
duced from temperature maps determined by spectral method. These di�erences develop very
quickly with the noise amplitude. As previously, the errors come mainly from the presence of the
Laplacian in the equation of heat. To limit these errors, it is necessary to decrease the cut-o�
frequency of the ®lter, on the other hand, one observes, as it should be, a fall of the sources
intensity, and a spreading out of the zones where the sources concentrate (elimination of the high
spatial frequencies).

Fig. 12. Graph of analytic distribution of heat sources corresponding to image 12. Divided by the volume heat ca-

pacity, the unit of the heat sources becomes (°C sÿ1).

Fig. 13. Graph of the analytic temperature solution corresponding to image 12. The unit is °C. A longitudinal pro®le

A±B±C is also plotted. It has been chosen in Fig. 14 to visualise the di�erent noise levels, the thermal gradients and the

curvatures intensities.

Table 2

Geometric and thermophysical constants used in the 2D simulations

Geometry L0 � 33:10ÿ3 m l0 � 22:10ÿ3 m e0 � 2:10ÿ3 m

Material q � 7860 kg mÿ3 Ce;a � 480 J kgÿ1 �Cÿ1 k � 60 W mÿ1 �Cÿ1

Thermal k1 � 0:2 mÿ1 k2 � 20 mÿ1 s2D
th � 314 s



Fig. 14. Increasing noise levels shown on the A±B±C pro®le de®ned in Fig. 13 (left). Corresponding heat sources

(right): (a) std� 0°C; (b) std� 0.2°C; (c) std� 0.4°C; (d) std� 0.6°C. For the three levels of noise the mean value equals

zero and std stands for the standard deviation.

Fig. 15. Graph of the heat sources distribution related to image 12 when no noise disrupts the temperature ®eld.

Fig. 16. Graph of the heat sources distribution related to image 12 for noise of type b.



7. Application to strain localisation

When a structure is mechanically loaded, its deformation passes more or less suddenly from a
di�use mode characterised by regular strain ®elds to localised modes de®ned by zones where the
strains develop and concentrate. The research ®elds related to localisation phenomena are very
active. Many authors have worked and still work today on the experimental, theoretical and
numerical aspects of such deformation mechanisms. In the bibliography references, we have
mentioned just a small part of the very large diversity of scienti®c approaches proposed in the
literature. In the particular case of the plastic or viscoplastic materials, the studies have tried to
take account of the large variety of loading and have naturally focused on the kinematic aspects of
the localisation. Let us mention for instance the works of Consid�ere [24], Hill [25], Mandel [26],
Hart [27], Rice [28], and more recently, in France, Benallal [29] and Fressengeas and Molinari [30].
When the material behaviour is time-independent, the localisation phenomenon is to appear as
soon as a bifurcated solution to the linearised problem exist. This bifurcation can then be
physically translated by a spatial discontinuity of the strain rate ®eld. If the behaviour is time-
dependent, a perturbation analysis of the linearised problem is often proposed. In such a case, the
localisation is related to an instability, the perturbation amplitude does not diminish but on the

Fig. 18. Graph of the heat sources distribution related to image 12 for noise of type d.

Fig. 17. Graph of the heat sources distribution related to image 12 for noise of type c.



contrary increases. Other works as those done by Estrin [31], Neuhauser [32], Zaizer [33], describe
the microstructural origins of localisation phenomena that sometimes occur under the form of
L�uders or PLC bands. Sometimes, authors, like Ferron [34] and Marchand, [35], give an account
of the thermal e�ects accompanying the localisation processes. In what follows, the aim is to show
that the experimental improvements made in the ®eld of quantitative infrared thermography allow
observing the dissipative manifestations related to localisation.

7.1. Heat evolved during plastic hardening

In the case of elastoplastic material, the following set of state variables is generally chosen: the
absolute temperature a0 � T , a large strain tensor a1 � e; and nÿ 1 internal variables garthered in
the vector a characterising the hardening state of the material.

The relative smallness of the thermal dilatability of steels allows to suggest that the heat source
due to the thermoelastic couplings becomes rapidly negligible when compared with the intrinsic
dissipation d1 developed during the elastoplastic transformation. That gives

qT w;T;e : _e� d1 � r : Dÿ qw;e � _eÿ qw;a � _a: �7:1�
In addition, we can reasonably admit that the small temperature variations induced by the defor-
mation process have no in¯uence on the hardening state. As a consequence, the heat sources related
to the coupling terms between temperature and the hardening variables can also be neglected

qT w;T;a � _a � 0: �7:2�

Let us recall that this assertion becomes false as soon as a ®rst order phase transformation occurs
insofar as qT w;T;a � _a represents the latent heat rate [36]. For instance, if a stress-induced mar-
tensite transformation occurs, Eq. (7.2) is no longer admissible [37].

7.2. Experimental results

Quasi-static and monotone tensile tests were performed on standard thin and ¯at samples (2.5
mm ´ 12.5 mm ´ 50 mm) [37±39]. The experiments are displacement-controlled and the room
temperature is kept constant (300 K). Several shades of steel, frequently used in metal forming,
were chosen. Their European names are S355MC, HR55, DD14. The passage from dissipation to
dissipated energy is possible while the displacement ®elds of the transformation are known as it is
the case in the framework of small perturbations (negligible displacement) or homogeneous
tension tests (uniform strain ®elds). In order not to prejudge homogeneity of the sample response,
we prefer to present the temporal evolution of the dissipation distribution. Kinematics mea-
surements, carried out using speckle images, supported this careful attitude [40,41]. The norma-
lised evolution of the load were systematically plotted to enable the reader to make a
correspondence between the usual and global response of the sample and the local measurements.
The maximal amplitude of load is systematically told in the ®gure legends.

When a plastic plateau exists, a ®rst mode of localisation is observed between the bounds A and
B. In such cases, one (Fig. 19) or more (Fig. 20) dissipative `waves' propagate at a constant ve-
locity along the gauge part of the sample. Energetic and kinematic e�ects have naturally been



associated with L�uders band propagation. The angle between the loading axis and the band front
during its movement is around 70°. The waves break when strain hardening starts.

At the beginning of the strain hardening (stage B±D), the dissipation ®eld remains approxi-
mately uniform, then, stronger dissipation zones with high strain rate appear and concentrate
progressively until the maximum of load is reached (stage D±E). During the strain softening (stage
E±F), the dissipative and kinematic e�ects of localisation increase rapidly. In the particular case of
S355MC steel, the dissipation chart corresponding to each step previously mentioned is drawn in
Fig. 21.

Remember that infrared and speckle tests are for the moment separately performed. As a
consequence, energetic and kinematic results are not obtained with the same sample. The loci
where necking takes place may naturally be di�erent from one sample to another.

Note that the DD14 load-elongation curve does not present a plastic plateau (Fig. 22); as
mentioned above, no band e�ect has been observed.

Fig. 19. S355MC steel; lengthwise pro®les of the intrinsic dissipation (left) and of the longitudinal component of the

Green-Lagrange strain tensor rate (right: after [39]). The dissipation unit is W cmÿ3; the strain rate unit is 10ÿ2 sÿ1. The

maximum load is Fmax � 16:2 kN.

Fig. 20. HR55 steel; lengthwise pro®les of the intrinsic dissipation (left) and of the longitudinal component of the

Green-Lagrange strain rate tensor (right: after [39]). Fmax � 24:5 kN.



Fig. 22. DD14 steel; lengthwise pro®le evolution of the intrinsic dissipation (left) and of the longitudinal component of

the Green±Lagrange strain rate tensor (right: after [39]). Fmax � 13:5 kN.

Fig. 21. Dissipation charts in the case of the S355MC steel. The axes are taken respectively in the direction x2 and x3 of

the width and length. Charts (a) and (b) evidence the band propagation. Charts (c)±(f) illustrate the progressive con-

centration of strong dissipation zones.



The kinematic and dissipative phenomena related to band propagation are illustrated in detail
in Fig. 23 for S355MC steel by plotting several lengthwise pro®les between points A and B.

8. Discussion

This paper aimed to show that thermography techniques could be used with bene®t to observe
the calori®c e�ects accompanying the localisation phenomena. These techniques propose to pass
from temperature information given by the infrared camera to a distribution of heat sources on
surface of the steel samples. Sudden and violent manifestations occurring during the plastic
plateau have been related to L�uders band propagation, whereas early and progressive features
arising during the strain hardening have been interpreted as heraldic signs of the local necking.
The main information given by such experimental analyses seems to be the precocity of the
heterogeneity development in the macroscopic ®elds of thermomechanical variables. The gauge
part of the sample must be considered as a structure and no longer as an elementary material
volume uniformly strained and stressed. This unpalatable fact is currently di�cult to reconcile
with the theoretical views of localisation since classical formalisms are based on the subtle
knowledge of the constitutive equations of the material. These equations are in fact identi®ed on
the basis of a range of tests, such as the classical tensile test, for which the existence of homo-
geneous strain and stress ®elds is very often implicitly assumed. For the moment, only the pio-
neering Consid�ere criterion will be brie¯y evoked here [24] because it concerns the whole
specimen. This criterion claims that the necking starts in tension as soon as the maximal load
supported by the sample is reached. To make the classical Consid�ere construction the uniaxial
`true' stress is de®ned as the load divided by the instantaneous sample section which is deduced
from the initial section assuming isovolumic and homogeneous transformation. This last assertion
is obviously not in agreement with the results shown here. The localisation develops during the
hardening of the structure and sometimes just after the yield load.

Fig. 23. S355MC Steel; Thermomechanical manifestations related to a L�uders band propagation: (a) temperature,

(b) intrinsic dissipation, (c) longitudinal displacement, (d) longitudinal component pro®les of the Lagrangian strain

rate. Pro®les nos. 36, 44 and 52 have been selected from the infrared approach and pro®les nos. 8, 11 and 14 from the

speckle one.



References

[1] Lord Kelvin, On the thermo-elastic and thermo-magnetic properties of matter, Trans. Roy. Soc. Edimb 20 (1853)

161.
[2] L. Kelvin, On the thermo-elastic and thermo-magnetic properties of matter, Math. Phys. Papers 1 (1882) 174.

[3] G.I. Taylor, H. Quinney, The latent energy remaining in a metal after cold working, in: Proceedings of the Royal

Society, London, 1934.
[4] R.O. Williams, A deformation calorimeter, Rev. Sci. Inst. 13 (1960) 12.

[5] R.O. Williams, The stored energy of copper at 24°C, Acta. Met. 13 (1965).

[6] M.B. Bever, D.L. Holt, A.L. Titchener, The stored energy of cold work, in: Christian, Chalmers, Massalski (Eds.),

Progress in Materials Science, vol. 17, Pergamon Press, Oxford, 1975.
[7] J. Mandel, Energie �elastique et travail dissip�e dans les mod�eles, in: H.D. Bui (Ed.), Dissipation d'�energie dans une

d�eformation plastique, Cahiers Francßais de Rh�eologie, I, 1965.

[8] A. Chrysochoos, J.C. Chezeaux, H. Caumon, Analyse thermom�ecanique des lois de comportement par
thermographie infra-rouge, Rev. de Phys. Appl. 24 (1989) 215±225.

[9] A. Chrysochoos, G. Martin, Tensile test microcalorimetry for thermomechanical behaviour analysis, J. Mat. Sci.

Eng. A108 (1989) 25±32.

[10] A. Chrysochoos, F. Belmahjoub, Thermographic analysis of thermo-mechanical couplings, Arch. Mech. 44 (1992)
55±68.

[11] A. Chrysochoos, H. Pham, O. Maisonneuve, Energy balance of thermoelastic martensite transformation under

stress, Nucl. Eng. Design 162 (1996) 1±12.
[12] R. Peyroux, A. Chrysochoos, C. Licht, M. L�obel, Thermomechanical couplings and pseudoelasticity of shape

memory alloys, Int. J. Eng. Sci. 36 (4) (1998) 489±509.

[13] H. Callen, Thermodynamics and an Introduction to Thermostatistics, Wiley, New York, 1985.

[14] P. Germain, M�ecanique, Ellipses Ed., Ecole Polytechnique, T2, 1986.
[15] J.C. Chezeaux, Application de la radiom�etrie infrarouge �a l'�etude des structures m�ecaniques: num�erisation et

acquisition de l'image thermique de la cam�era AGA SW 780, Rapport DGRST No, 79.7, 1981, p. 1535.

[16] R. Bouc, B. Nayroles, M�ethodes et r�esultats en thermographie infrarouge des solides, J. de M�ec. Th�eo. et Appl. 4

(1985) 27±58.
[17] A Capitana, E. Stavre, Algorithms and convergence results for an inverse problem, Institul de Matematica al

Academei Romane, preprint No. 25/1996, ISSN 025 3638, 1996.

[18] A.B. de Vriendt, in: G. Morin (Ed.), Transmission de la chaleur, vol. 1, Tome1 et 2, vol. 2, 1987.
[19] E.O. Brigham, The Fast Fourier Transform, Prentice-Hall, Englewood Cli�s, NJ, 1974, pp. 123±148.

[20] A. Chrysochoos, J.C. Dupre, An infra-red set-up for continuum thermomechanics, in: Quantitative Infrared

Thermography, Proceedings of the Eurotherm Seminar No. 27, Ed. Euro. Thermique et Industrie, 1992, pp. 129±

134.
[21] C. Gasquet, P. Witomski, Analyse de Fourier et Applications, Second ed., Masson, Paris, 1995, pp. 231±305.

[22] C. Soize, M�ethodes Math�ematiques en Analyse du Signal, Masson, Paris, 1993, pp. 163±206.

[23] H.S. Carslaw, J.C. Jeager, Conduction of Heat in Solids, Clarendon Press, Oxford, 1959.
[24] A. Consid�ere, LÕemploi du fer et de lÕacier dans les constructions, Annales des Ponts et Chauss�ees 9 (1885) 574±595.

[25] R. Hill, A general theory of uniqueness and stability in elastic-plastic solids, J. Mech. Phys. Solids 6 (1958) 236±249.

[26] J. Mandel, Condition de stabilit�e et postulat de Dr�ucker, Rh�eologie et M�ecanique des sols, in: Kravtchenko et

Syries (Ed.), IUTAM Symposium, Grenoble, 1964.
[27] E.W. Hart, Theory of tensile test, Acta Metall. 15 (1967) 351±355.

[28] J.R. Rice, The localisation of plastic deformation, J. Theor. Appl. Mech. 1976.

[29] A. Benallal, On localization phenomena in thermo-elasto-plasticity, Arch. Mech. 44 (1) (1992) 15±29.
[30] C. Fressengeas, A. Molinari, Inertia and thermal e�ects on the localization of plastic ¯ow, Acta Metall. 33 (1985)

387±396.

[31] Y. Estrin, L.P. Kubin, Plastic instabilities: Classi®cation and physical mechanisms, Res Mechanica 23 (1988)

197±221.
[32] H. Neuha�user, Collective micro-shear processes and plastic instabilities in crystaline and amorphous structures,

Int. J. Plast. 9 (1993) 421±435.



[33] M. Zaiser, P. H�ahner, Oscillatory modes of plastic deformation: theoretical concepts, Phys. Stat. Sol. B 199 (1997)
267±330.

[34] G. Ferron, In¯uence of heating generation and conduction on plastic stability under uniaxial tension, Mat. Sci.

Eng. 49 (1981) 241±248.
[35] A. Marchand, J. Du�y, An experimental study of the formation process of adiabatic shear bands in a structural

steel, J. Mech. Phys. Solids 36 (3) (1988) 251±283.

[36] A. Chrysochoos, Vers une reformulation des transition de phase du premier ordre, Revue Roumaine des Sciences

Techniques, M�ecanique Appliqu�ee 43 (3), 1999.
[37] H. Louche, Analyse par thermographie infrarouge des e�ets dissipatifs de la localisation dans des aciers, Thesis of

Montpellier University, 1999.

[38] A. Chrysochoos, H. Louche, Analyse thermographique des m�ecanismes de localisation dans des aciers doux, C.R.
Acad. Sci. Paris, t. 326, S�erie II b, 1998, pp. 345±352.

[39] H. Louche, A. Chrysochoos, Analyse thermodynamique de la localisation de la d�eformation dans des aciers par

thermographie infrarouge, Actes Photom�ecanique 98 (1998) 207±215.

[40] B. Wattrisse, M. N�emoz-Gaillard, J.-M. Muracciole, A. Chrysochoos, etude cin�ematique des ph�enom�enes de
localisation dans un acier par intercorr�elation dÕimages, Actes Photom�ecanique 98 (1998) 21±28.

[41] B Wattrisse, Etude cin�ematique de localisation dans les aciers par intercorr�elation dÕimages de granularit�e, Thesis

of Montpellier University, 1999.


