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An infrared image processing to analyse the calori®c eects accompanying strain localisation

This paper presents an infrared data processing developed to analyse the calori®c manifestations accompanying elastoplastic transformation during tensile tests. The surface temperature images are provided by an experimental set-up essentially made of a testing machine coupled with an infrared camera equipped with a home-made numerizer. The `inverse' passage from temperatures to heat sources is detailed in the case of ¯at and thin parallelepipedic samples. The infrared image processing, based on FourierÕs techniques, was checked using spectral solutions of the heat equation in the case of realistic examples close to experiments. Numerical simulations are shown which attest coherence and eciency of the method for several heat source distributions and dierent sets of noisy data. The method is then applied to experimental data ®les coming from tensile tests on mild steels at the room temperature. Sudden dissipative eects due to the propagation of the L uders bands during the plastic plateau can be observed. Then, during the strain hardening, gradual and precocious concentrations of dissipation are shown; they herald the local necking of the sample. Finally, the interest of such experimental results is brie¯y discussed by referring to the specialised literature dealing with localisation phenomena and behaviour identi®cation.

Introduction

The thermal and calori®c eects associated with deformation processes have been observed for a long time by the experimenters. The ®rst experiments in thermoelasticity were done by Lord Kelvin [START_REF] Lord | On the thermo-elastic and thermo-magnetic properties of matter[END_REF][START_REF] Kelvin | On the thermo-elastic and thermo-magnetic properties of matter[END_REF]. The pioneering calorimetric tests, performed by Taylor and Quinney [START_REF] Taylor | The latent energy remaining in a metal after cold working[END_REF], marked the beginning of works on thermoplasticity. Of course, many authors have worked and continue to work today on the tricky problem of estimating, from temperature information, the heat evolved during materials deformation. Most of energy evaluations have been done by metallurgists. One must remember that by using energy balances, metallurgists like to draw up models capable of estimating the evolution of microstructural parameters such as dislocation density, dislocation cell size, etc. [START_REF] Williams | A deformation calorimeter[END_REF][START_REF] Williams | The stored energy of copper at 24°C[END_REF]. An important work of synthesis on this subject was published by Christian et al. [START_REF] Bever | The stored energy of cold work[END_REF]. However, the exploitation of energy data at the continuum scale is still nowadays relatively rare. For some, the use of a thermodynamic framework for constructing the behavioural constitutive equations is not yet a systematic attitude. For others, this `phenomenological' approach of the materials behaviour is already judged old-fashioned, such authors generally prefer to develop multi-scales models within a purely mechanical framework.

However, we have to acknowledge that in the case of quasi-static tests, the temperature variations of solids often remain small and the theorist is naturally tempted to consider the deformation process as isotherm. This position, although natural from a strictly thermal viewpoint, at the same time deprives of any energy check of the behaviour modelling. Neglecting temperature variations induced by the deformation processes, it eliminates the possibility of establishing complete energy balances. Workers like Mandel and Bui had already underlined in [START_REF] Mandel | Energie elastique et travail dissip e dans les mod eles[END_REF] the great interest of combining mechanical and energy aspects of the same deformation phenomenon.

In this paper, we present an experimental set-up capable of storing the thermal images on the surface of thin and ¯at samples. These thermal images are used to estimate the heat source distributions by using the heat conduction equation. If a homogeneous mechanical test can reasonably be supposed, complete energy balances can be performed by linking the evolved heat estimations to the deformation energy deduced from the loading cell and from the extensometer signals (see [8±12]). In this paper, the thermal data are rather used to observe and analyse the calori®c eects translating the localisation phenomena that occur during monotone and quasistatic tensile tests at constant room temperature.

In a ®rst part, the thermomechanical framework used to interpret the experiment is reminded. The `generalised standard material' formalism let us to introduce energy balance for thermoelastoplastic materials. After having brie¯y presented the main characteristics of the experimental arrangement, the infrared data processing is widely detailed and illustrated by several numerical examples developed to check its consistency. In a last part, experiments performed on mild steels are analysed. In particular, they show an inception of energy eects associated with the local necking a long time before the maximum force supported by the sample is reached.

Thermomechanical framework

Concepts and results of classical thermodynamics of irreversible processes (CTIP) are used [START_REF] Callen | Thermodynamics and an Introduction to Thermostatistics[END_REF][START_REF] Germain | [END_REF]. At each instant t of a quasi-static process, a thermodynamic equilibrium state of a homogeneous volume element is characterised by a set of n 1 state variables a 0 Y a 1 Y F F F Y a n .

As it is classically done in solid mechanics, we shall take as state variables: T T a 0 , the absolute temperature, e e a 1 , a strain tensor and a j j 2Y F F F Y n, the components of a vector a of n À 1 internal variables completing the description of the thermodynamic state. If w and s denote the speci®c Helmholtz free energy and the speci®c entropy, respectively, the Clausius±Duhem inequality that is derived from the local form of the second principle of thermodynamics, allows de®ning the dissipation d as d r X D À qw Ye X e À qw Ya Á a À q T Á grad T P 0Y 2X1

where r is the Cauchy stress tensor, D the Eulerian strain rate tensor, q the mass density, q the heat in¯ux vector. The dot stands for the material time derivative. The thermodynamicists often introduce the irreversible entropy source de®ned by r s daT . The equality r s 0 (i.e. d 0) then characterises reversible thermodynamic processes. Classically, the intrinsic (mechanical) dissipation d 1 and the thermal dissipation d 2 are supposed to be separately positive and are respectively de®ned by

d 1 r X D À qw Ye X e À qw Ya Á a P 0 and d 2 À q T Á grad T P 0X 2X2
Per unit volume, the intrinsic dissipation d 1 is the dierence between the anelastic energy rate w H a r X D À qw Ye X e and the stored energy rate w H s qw Ya Á a. Deduced from both principles of thermodynamics, the local heat conduction equation reads

qC eYa T div q d 1 qT w YTYe X e qT w YTYa Á a r e Y 2X3
where C eYa denotes the speci®c heat capacity at e and a constant while r e symbolises the external heat supply. The intrinsic dissipation d 1 and the thermomechanical coupling terms qT w YTYe X e and qT w YTYa Á a have been gathered in the right-hand member of (2.3). For metallic materials considered here, the `KelvinÕs' term qT w YTYe X e represents the volume heat rate due to thermoelastic couplings. Taking into account an isotropic conduction of heat (q Àk grad T ), we underline that the left-hand member of (2.3) can be interpreted as a partial derivative operator applied to the temperature.

Experimental arrangement

An original characteristic of the experimental set-up is the simultaneous recording of thermal and mechanical data: surface temperature, load applied to the sample, and elongation of its gauge part. This set-up (see Fig. 1) consists of a computerised uniaxial testing machine (1, 2) and an infrared thermography device [START_REF] Williams | A deformation calorimeter[END_REF][START_REF] Williams | The stored energy of copper at 24°C[END_REF][START_REF] Bever | The stored energy of cold work[END_REF]. This latter is made of an infrared camera (4), a display unit (5) and a home-made numerizer (6) allowing storage and processing of the thermal images in a second microcomputer [START_REF] Mandel | Energie elastique et travail dissip e dans les mod eles[END_REF].

The camera (Agema 880) is an infrared scanning system, with a single short wave detector InSb ([2±5.6] lm), liquid nitrogen cooled. The thermosignal in isothermal unity (IU), proportional to the thermal radiation, is digitised (DL), and then converted in temperature in Celcius degree (°C) after a calibration operation. The numerisation system was initially conceived by [START_REF] Chezeaux | Application de la radiom etrie infrarouge a l' etude des structures m ecaniques: num erisation et acquisition de l'image thermique de la cam era AGA SW 780[END_REF], developed and improved by [START_REF] Bouc | M ethodes et r esultats en thermographie infrarouge des solides[END_REF]. The temperature images are matrices of 256 lines per 180 columns digitised on 12 bits. Moreover, the numerizer allows recording at the beginning of each line of a thermal image, by the means of (3), the corresponding load and elongation signals and four other electric signals like the thermal level and thermal range characterising the state of the camera.

Toward simpli®ed heat diusion problems

As mentioned above, the main object of the experimental data processing is to deduce from the surface temperature measurements the distribution of heat amounts evolved in the volume corresponding to the gauge length of the sample. For a real 3D medium, this operation, that belongs to the realm of `inverse' problems, is tricky indeed, and even impossible to accomplish without any information on the source distributions to be quanti®ed [START_REF] Capitana | Algorithms and convergence results for an inverse problem[END_REF]. In what follows, the case, speci®c but important in practice, of thin and ¯at parallelepipedic samples will be considered. For such a `simple' geometry, the heat sources and the temperatures are assumed to be homogeneously depth-wise distributed. On the sample surface, the sources will be locally determined by estimating a partial derivative operator applied to the temperature (the left-hand member of Eq. (2.3) being itself depth-wise averaged). Strictly speaking, this is no longer an inverse problem to solve insofar as the temperature ®eld is, under such an assumption, completely known.

Moreover, in the case of the experimental conditions of our tests, the following hypotheses are done:

• the speci®c heat capacity C eYa and the isotropic conduction coecient k are material constants independent of the internal (hardening) state; 6) numerizer (12 bits), [START_REF] Mandel | Energie elastique et travail dissip e dans les mod eles[END_REF] storage and processing of thermal image.

• the external heat supply r e is time independent;

• for quasi-static processes, the convective terms of the material time derivative are negligible;

• in the case of elastoplastic materials, couplings between temperature and hardening variables are neglected so that qT w YaY T Á a % 0. These hypotheses are reasonable for many classical situations; they may become widely unsound when strong anisotropy pre-exists or develops during work-hardening, when ®rst or second order phase transitions occur, or when the thermomechanical loading leads to dynamic instabilities.

One-dimensional thermal diusion problems

For the sake of simplicity, a ®rst data processing can be performed on a heat conduction equation averaged on a sample cross-section to get a 1D thermal diusion problem (see Fig. 2(a)). Such an attitude can be compared to the one adopted in mechanics of curvilinear media. The following notations will be used as long as the gauge part of the sample remains a parallelepipedic structure: feY lY Lg denotes the current geometrical parameters, fe 0 Y l 0 Y L 0 g being the initial depth, width, and length, respectively. We also note fx i g i1Y2Y3 the Eulerian coordinates.

The averaged temperature variations " hx 3 Y t and heat source " sx 3 Y t for any cross-section S e Á l are then de®ned by:

" hx 3 Y t 1 S e 0 la2 Àla2 T x 1 Y x 2 Y x 3 Y t À T 0 x 1 Y x 2 Y x 3 Y t dx 1 dx 2 Y 4X1 " sx 3 Y t 1 S e 0 la2 Àla2 w H ch dx 1 dx 2 Y 4X2
where T 0 x 1 Y x 2 Y x 3 Y t is the (initial) equilibrium temperature ®eld verifying ÀkDT 0 r e , and where Near thermal equilibrium, the thermal boundary conditions are well modelled by linear relations [18]. For the `back' and `front' boundary conditions we will suppose that

w H ch d 1 qT o 2 w oT oe X eX 4X3
oT eY x 2 Y x 3 Y t ox 1 À oT 0Y x 2 Y x 3 Y t ox 1 Y 4X4a Àk oT eY x 2 Y x 3 Y t ox 1 h 1 e e 0 T x 1 Y x 2 Y x 3 Y t ÀT 0 x 1 Y x 2 Y x 3 Y t dx 1 X 4X4b 
The constant h 1 represents the lateral heat exchange coecient between the surrounding air and the sample. The ®rst equation assumes the symmetry of the thermal losses while the next one expresses the continuity of the heat ¯ux. Assumption (4.4a) is reasonable as long as the heat sources are uniformly distributed along the little thickness of a homogeneous ¯at sample. In Eq. (4.4b), the losses by convection are assumed to be proportional to the mean thermal disequilibrium (see Fig. 2(b)), what is also fair as far as the temperature variations remain small.

To get, at all costs, a 1D analysis tool, the same kind of hypotheses can be adopted for the lateral boundaries x 2 AEla2:

oT x 1 Y la2Y x 3 Y t ox 2 À oT x 1 Y Àla2Y x 3 Y t ox 2 Y 4X5a Àk oT x 1 Y la2Y x 3 Y t ox 2 h 1 l la2 Àla2 T x 1 Y x 2 Y x 3 Y t À T 0 x 1 Y x 2 Y x 3 Y tdx 2 X 4X5b
Naturally, in this Ox 2 direction, the validity of Eqs. (4.5a) and (4.5b) can be more easily at fault. But in the applications, it is of interest and often sucient to do a simple analysis of thermo-pro®les. The longitudinal boundary condition is written as

Àk oT x 1 Y x 2 Y AELa2Y t ox 3 AEh 2 T x 1 Y x 2 Y AE L 2 Y t À T 0 x 1 Y x 2 Y AE L 2 Y t Y 4X6
where h 2 stands for the heat exchange coecient between the grips of the testing machine and the sample. During the transformation, the exchange coecients are assumed to be constant. The constant k À1 2 kah 2 is a characteristic length of the longitudinal heat losses. The mean value on a cross-section of the material time derivative of the temperature can be deduced from the Leibniz rule and from the Gauss theorem in the case of an incompressible medium. In such a case, we get for any cross-section:

e 0 la2 Àla2 d dt T x 1 Y x 2 Y x 3 Y t dx 1 dx 2 d dt e 0 la2 Àla2 T x 1 Y x 2 Y x 3 Y t dx 1 dx 2 X 4X7
With the use of this set of hypotheses and notations, a 1D dierential problem can be expressed in the following form as soon as the convective terms of the material time derivative are neglected:

qC eYa o " hx 3 Y t ot 2h 1 e l S " hx 3 Y t À k o 2 " hx 3 Y t ox 2 3 " sx 3 Y tY 4X8a " hx 3 Y 0 0Y 4X8b k 2 " h AE L 2 Y t AE o " h AE L 2 Y t 0 ox 3 0X 4X8c 
The most questionable hypothesis is certainly introduced in Eq. (4.5b). This relation implicitly admits that the mean width-wise temperature is a good representative of what happens along a line pro®le of the camera. This is obviously not always true. For instance, important lateral heat exchange characterised by very small k À1 1 (DirichletÕs condition) can lead to strong thermal gradient oT aox 2 and invalidates Eq. (4.5b). In such cases, it is preferable to consider the following 2D approach.

Two-dimensional thermal diusion problems

The extension to two dimensions thermal diusion problems is simply realised averaging only depth-wise the temperature ®eld. In order to lighten notations, we keep for this new averaging operation the same symbols as in Section 4.1. The averaged temperature variations " hxY t and heat source " sxY t at any point x fx 2 Y x 3 g on the gauge part of the sample surface are now de®ned by:

" hxY t 1 e e 0 T x 1 Y x 2 Y x 3 Y t ÀT 0 x 1 Y x 2 Y x 3 Y t dx 1 Y 4X12 " sxY t 1 e e 0 w H ch x 1 Y x 2 Y x 3 Y t dx 1 X 4X13
We also keep the `back' and `front' boundary conditions (4.4a), (4.4b) and the longitudinal boundary conditions (4.6) and the lateral boundary conditions becomes now

Àk oT x 1 Y AEla2Y x 3 Y t ox 2 AEh 1 T x 1 Y AEla2Y x 3 Y t À T 0 x 1 Y AE la2Y x 3 Y tX 4X14
By analogy with the 1D situation, the constant k À1 1 kah 1 is the characteristic length of the lateral heat losses. The use of this new set of hypotheses leads us to de®ne a 2D diusion problem. It can be expressed in the following form when convective terms are neglected:

qC eYa o " hxY t ot 2h 1 e " hxY t À kD " hxY t " sxY tY 4X15a " hxY 0 0Y 4X15b k 1 " h AE l 2 Y x 3 Y t AE o " h AE l 2 Y x 3 Y t 0 ox 2 0Y 4X15c k 2 " h x 2 Y AE L 2 Y t AE o " h x 2 Y AE L 2 Y t 0 ox 3 0Y 4X15d 
where D symbolises the 2D Laplacian operator.

Infrared image processing

The tricky goal of the thermal data processing is to deduce, from infrared images, the distributions of heat sources on the surface of the sample. Even if the temperature ®eld is known, the passage to the mean heat sources " sx 3 Y t or " sxY t is numerically strongly unstable because of the regularising eects of the heat diusion mechanisms. The local heat sources evaluation is based on an estimate of the partial derivative operators constituting the left-hand member of Eqs. (4.8a) or (4.15a). This challenge is not obvious because thermal images are discrete, noisy, non-periodic and have a limited sampling rate. The image processing tools, used in what follows, are essentially founded on properties of the discrete Fourier transform (DFT) and on the properties of the Fourier series (FS). We will recall in what follows the conditions for which, the coecients of the FS of a continuous signal are identical to those of the TFD of the corresponding sampled signal. This link between FS and TFD then allows the estimate of the derivative operators by using discrete data. The approximation of a FS by a TFD works only when the signal is periodic, bandlimited and without noise. In practice, operations of periodic extension and ®ltering will allow to tend towards this ideal situation. To lighten the presentation of the developed imaging techniques, we recall hereafter classical notations, de®nitions and main properties of the signals Fourier analysis.

Brief reminder

Let us consider an analog signal h of one variable u, standing for time or space as soon as a map to map correspondence exists between time and space. Let 0Y a be the record length. In such a situation, the signal is mathematically represented by a real function of real values. Generally, such a physical signal is termed `®nite energy' signal inasmuch as a 0 jhuj 2 du `I 5X1

and belongs, by de®nition, to the so-called functional space L 2 0Y a.

Fourier transform of signals

A Fourier transform H of the signal h can be de®ned by extending its de®nition domain considering that hu huY Vu P 0Y a, and hu 0 if x `0 or x b a, so that

Hm I ÀI hue À2ipmu du a 0 hue À2ipmu duX 5X2
In practice, it is very often impossible to work with analog (continuous) signals and the use of sampled data (digital signal) is inevitable. At this point, it is usual to interpret data as distributions so that if we consider now a regular sampling of h using a sampling step s e aaN À 1 to get a number N of data on 0Y a, the sampled `function' h s e u can be written as:

h s e u I nÀI hns e du À ns e Y 5X3
where du is DiracÕs distribution or the impulse function. The so-called `DiracÕs comb' is made of a sequence of equal distant impulse functions and plays a great role in signal processing inasmuch as Fourier transform of distributions can also be realised. DiracÕs comb and its Fourier transform are de®ned by:

c s e u I nÀI du À ns e Y 5X4 C m e m m e I nÀI dm À nm e Y 5X5
where m e 1as e is the sampling frequency. The sampling operation and the Fourier transform corresponding to the sampled signal can be formally rewritten as

h s e u hu  c s e uY 5X6 H m e m H m à C m e mY 5X7
where the star * symbolises the convolution product. Note that H m e is a continuous and periodic function with period m e . In accordance with these properties, it is possible to derive the de®nition of the DFT well adapted to digital machine computation. An inverse Fourier transform of the sampled spectrum, realised at the sampling rate m a 1aa m e aN, leads to a periodic extension of the discrete motif associated to h de®ned on 0Y a. Linear relationships can be established between N values on a period of the sampled function h n h s e a n hns e and N values extracted from a period in the frequency domain H n H m a m e n H m e nm a . These are the famous relations de®ning the DFT and the discrete inverse Fourier transform (DIFT). They can be written as

h k N À1 n0 H n exp 2ipn k N k 0Y 1Y F F F Y N À 1Y H n 1 N NÀ1 k0 h k exp À 2ipn k N n 0Y 1Y F F F Y N À 1X

5X8

In what follows, we will note F d and F À1 d these both operations, respectively, so that we will formally write H F d h and h F À1 d H .

Fourier series and waveform sampling

Another classical attitude for extending the continuous function h is to consider its periodic extension, rippling its waveform motif. A new function h a with period a is then de®ned by h a u huY Vu P 0Y a and h a u na huY Vu P 0Y aY n P Z. The periodicity property allows expressing h a as a Fourier series

h a u p 0 2 I n1 p n cos 2pnm a u q n sin 2pnm a uY 5X9
where m a is the fundamental frequency equals to 1aa. The coecients of the sinusoids p n and q n are classically given by the integrals

p n 2 a aa2 Àaa2 h a u cos 2pnm a u duY n 0Y 1Y 2Y 3Y F F F Y q n 2 a aa2 Àaa2 h a u sin2pnm a u duY n 1Y 2Y 3Y F F F X 5X10 If a n 1a2p n À iq n Y n 0Y AE1Y AE2Y F F F,
denote the complex coecients of the Fourier series, h a may be written in exponential form as

h a u I nÀI a n exp 2ipn u a X 5X11
Let us recall that an important relationship between the coecients H n of the DFT and the coecients a n of the Fourier series can be established. For 0 6 n `N , we can write

H n À a n qT 0 a nqN Y q P ZX
Such a result shows that the more rapidly the coecients of the Fourier series tend to zero, the better is the approximation H n % a n for 0 6 n `N . In other words, the more regular the function h a is, the more the sum Á Á Á a À2N n a ÀN n a N n a 2N n Á Á Á j j is negligible and the better the DFT approximates a Fourier series [START_REF] Gasquet | Analyse de Fourier et Applications[END_REF].

For instance, if h a is a trigonometric polynomial, the discrete Fourier transform coecients are equal to the ones of the Fourier series as soon as the number N of data (related to the sampling rate) is twice as big as the degree of the polynomial. Conversely, if the periodic function h a presents discontinuities, the approximation can become bad. It is the case as soon as h0 T ha, what happens quasi systematically with the thermal images.

Image processing constraints

Sampling constraint

In practice, the choice of the sampling rate m e is of major importance. Upper limited by the digitizer (performances of the analog-digital converter, storage rate capacity, etc.), the sampling frequency must however be suciently high to avoid the famous aliasing eect. To illustrate the potentialities of Fourier analysis, let us recall that the sampling theorem (the Shannon theorem) states that if the spectrum of an analog signal h is band-limited at the frequency m c and if the sampling frequency veri®es m e P 2m c , then the analog signal hu can be uniquely determined from a knowledge of its sampled values

hu s e nI nÀI h n sin2pm c u À ns e pu À ns e X 5X12
Unfortunately, the presence of noise on the thermal data does not make it possible to exactly know if the thermal signal is band-limited. However, the use of a low-pass convolutive ®lter allows avoiding an aliasing eect even if it involves a possible vanishing of the high part of the thermal signal frequencies.

Periodic extension of analog signals

To get a development in the Fourier series of an analog signal that is time-limited, or spacelimited as well, a natural attitude is to consider its periodic extension. If h a is such that h a 0 T h a a, the rippling reveals sharp discontinuities that induce apparition of new frequency components in the Fourier series. These additional frequency components can be mixed with those of noise and make the ®ltering problem more complicated. This classical phenomenon is often termed leakage eect in the specialised literature [START_REF] Brigham | The Fast Fourier Transform[END_REF]. To reduce this leakage, a regular extension of the signal h from a to a H b a can be planned to de®ne a new periodic waveform h a H such that h a H a H h a H 0. Note that several extension on aY a H can be proposed like folding (mirror image) about ordinate axis, polynomial extensions, etc. The better the extension is, the more the signal is band-limited. Note also that zero-padding nearly always oered in signal processing toolboxes is not a very ecacious method to settle this leakage problem. Moreover in our case, the in¯uence of the parasitic frequencies due to the non-periodicity of images is strongly ampli®ed by the presence of the Laplacian operator during the heat sources evaluation. We shall see in Section 5.4 that a periodic extension of images were planned before evaluating the heat sources.

Thermal noise characteristics

Digitised thermal data are always noisy. This noise has several origins: it comes from the infrared detector itself (InSb detector, liquid nitrogen cooled), from the digitizer (electronic components, sampling and quantization of data) and ®nally from the parasitic re¯ections on the surface of the observed object. A global study of the temperature noise was performed to calculate the thermal resolution (the noise equivalent temperature dierence ± NETD) and the noise characteristics (mean value, standard deviation, F F F). Both are useful to guide in the choice of an image processing method. To extract the noise, images were recorded during a stationary thermal scene (camera lens sealed by a mask, a black body in thermal equilibrium with surrounding).

Examples of noise pro®les are presented in Fig. 3(a) and (b). The data analysis shows that the thermosignal is disrupted by a white noise characterised by a Gaussian probability distribution of mean 0 (Fig. 3(c)). Its power spectrum is approximately uniform (Fig. 3(d)). This last result unfortunately implies that the numerical ®lter, whatever its characteristics, is unable to eliminate completely the parasitic frequencies. That is the reason why the eciency of the data processing was checked by using numerical tests close to experiments.

Heat sources evaluation

To estimate the distribution of heat sources on the surface of the specimen, we ®rst use a parabolic extension of images. The ®rst and the second order space derivatives of the temperature are estimated along the image sides by using least-square approximations. For the 1D analysis, the extension is such that the extended pro®le has 2 n points (n P N ) to be allowed to use the fast Fourier transform (FFT) algorithms. Typically, n is about 8. In the case of images analysis, we arbitrarily decided to take an extension size corresponding with the image width. The data ®ltering and the space derivatives estimates are performed using a Gaussian ®lter. The kernel corresponding to the discrete ®lter can expressed as

/r m c p p expÀm 2 c Á r 2 Y 5X13
where m c is related to the cut-o frequency and where r x 3 or r kxk for the 1D and 2D problems, respectively. To estimate the Laplacian of the ®ltered temperature, the second derivatives of the continuous kernel were classically used [START_REF] Chrysochoos | An infra-red set-up for continuum thermomechanics[END_REF]. They read:

D/r 4m 5 c p p expÀm 2 c Á r 2 Á r 2 À 1 2m 2 c 1DY 5X14a 
D/r 4m 6 c p p expÀm 2 c Á r 2 Á r 2 À 1 m 2 c 2DX 5X14b 
These operations were traditionally realised using FFT or DFT to limit the computational time [START_REF] Gasquet | Analyse de Fourier et Applications[END_REF]. The ®ltered temperature data " h f and the ®ltered temperature Laplacian D " h f can be formally written as

" h f Re F À1 d N F d " h Á F d / h i Y 5X15 D " h f Re F À1 d N F d " h Á F d D/ h i Y 5X16
where N is the number of data of the extended pro®le or extended image while Re stands for the real part of the complex data. The time derivative of the temperature can also be estimated by using a time convolutive ®ltering or, more directly, by using a ®nite dierences approximation. If we note " h f this estimate, on the basis of Eqs. (4.8a), (4.15a)±(5.16), the heat sources is locally determined by the relation

qC eYa " h f 2 " h f s th 3 À kD " h f " sY 5X17 
where s th symbolises a time constant related to the heat losses. In the 1D problem, using Eq. (4.8a), this constant reads

s 1D th qC eYa S 2he l 5X18
and characterises the lateral heat exchanges between the sample and the surrounding air. For 2D problem, using Eq. (4.15a), the constant becomes

s 2D th qC eYa e 2h X 5X19
This constant is related to the heat losses perpendicular to the specimen surface.

Checking the image processing

To check the eciency of the data processing, numerical simulations are performed in cases where analytical solutions exist. For all examples shown below, a heat source distribution is ®rst chosen. Then, using either (4.8a)±(4.8c) or (4.15a)±(4.15d) partial derivative problem, the analytical solutions are derived from a spectral resolution. The solution " hx 3 Y t (or " hxY t) is expressed in the spectral base of the spatial partial derivative operator, composed by the eigen functions that are compatible with the boundary conditions (4.8b) or (4.15b) and (4.15c). The reader, interested in the mathematical background of this approach, can consult [START_REF] Soize | M ethodes Math ematiques en Analyse du Signal[END_REF]. A noise is then added to the temperature, either by using a random function to simulate noisy experimental data, or more directly, by using experimental noised images. A heat source distribution can ®nally be deduced from such a data set by the mean of Eq. (5.17), and compared to the given initial distribution. The space±time discretisation steps, the thermophysical parameters and the heat exchange coecients are chosen, of course, close to the ones of the experimental tests.

Examples of 1D thermal diusion problem

A non-homogeneous case

Under certain regularity and `projectability' conditions, the heat source " sx 3 Y t and the temperature variations " hx 3 Y t can be written in the case of Eqs. (4.8a)±(4.8c) as

" sx 3 Y t I p0 s p t cos x p x 3 À Á Â S p t sin X p x 3 À ÁÃ Y 6X1 " hx 3 Y t I p0 h p t cos x p x 3 À Á Â H p t sin X p x 3 À ÁÃ Y 6X2
where the functions cos x p x 3 and sinX p x 3 for p 0Y 1Y F F F Y I represent the eigen functions base. The eigen pulsations x p and X p are respectively deduced from the roots r p and R p of the following equations derived from the boundary conditions:

tanpr p À k 1 L 2pr p 0Y tan pR p À 2pR p k 1 L 0Y 6X3
by relations

x p 2pr p L Y X p 2pR p L X
The classical literature gives many examples of thermal problems solved by spectral methods [START_REF] Carslaw | Conduction of Heat in Solids[END_REF]. In our situation, we can nevertheless notice some slight originality: in the framework of ®nite transformations of solids, the length L of the sample must be considered as a function of time. The eigen pulsations also become time dependent. During strain-controlled tensile test, the length Lt is given, the values x p t k and X p t k at any instant t k can then be deduced. The functions s p t, S p t, h p t and H p t are the projections of " sx 3 Y t and " hx 3 Y t on the eigen functions respectively

s p t h" sx 3 Y t cos x p tx 3 À Á i cos x p tx 3 À Á cos x p tx 3 À Á Y S p t h" sx 3 Y t sin X p tx 3 À Á i sin X p tx 3 À Á sin X p tx 3 À Á Y 6X4 h p t h " hx 3 Y t cos x p tx 3 À Á i h cos x p tx 3 À Á cos x p tx 3 À Á i Y H p t h " hx 3 Y t sin X p tx 3 À Á i h sin X p tx 3 À Á sin X p tx 3 À Á i Y 6X5
where the scalar product huxjvxi is de®ned by La2 ÀLa2 unvn dn. If we note: where st is the vector of components s p t while St is the vector of components S p t.

A pYq t x 3 sin x p tx 3 À Á cos x p tx 3 À Á cos x p tx 3 À Á cos x p tx 3 À Á x p Y 6X6 B pYq t x 3 cos X p tx 3 À Á sin x p tx 3 À Á sin x p tx 3 À Á sin x p tx 3 À Á X p Y
The choice of the heat source distribution " sx 3 Y t was motivated by the three following goals: • determining semi-analytic solutions of problem (4.8a)±(4.8c) to compute, with a great accuracy, a temperature ®eld related to a given distribution of heat sources; • checking the eciency of the data processing when a localisation of the dissipated energy occurs; • testing the in¯uence of the thermal noise on the heat source detection. Numerous examples were analysed. Hereafter, we present a penalising case that shows the robustness of the image processing. To get a ®rst and simple insight of the numerical results, pro®les of heat sources have been gathered in a 1D space±time chart. To further simplify the ®gure interpretation, contour plots have been chosen to quickly visualise the data. The level curves are numbered, note that the heat sources have been divided by the volume heat capacity so that the unit becomes (°C s À1 ). The dierent coecients used in this example are gathered in Table 1.

During the ®rst part of the test, (see Figs. 4 and9, curve a), the chosen heat sources distribution has a triangle shape that moves along a segment representing the length of the sample. This triangle keeps a constant form and its displacement velocity has a sinusoidal evolution. This academic example has been chosen to simulate the case of a heat sources localisation. Conversely, during the second part of the simulation, the heat sources distribution remains spatially uniform to test more particularly the boundary eects. The level curves mark the displacement of the localised triangular source and then indicates a homogeneous evolution of the heat sources. The corresponding temperature chart is plotted in Fig. 5.

A ®rst check of the data processing was performed on the calculated temperatures derived from the spectral solution. The result is shown in Fig. 6 and it is now possible to compare this new heat sources distribution with the given initial one. The quality of this inverse passage can also be checked in Fig. 9 by comparing curves a and b. The curve b shows the eect of the low-pass convolutive ®ltering on the heat source determination. Even if no thermal noise disturbs the data, a ®nite sampling rate leads to a ®nite cut-o frequency for the discrete ®lter. This implies an attenuation of the heat sources intensity and a spreading out of the zones where they concentrate.

It is then possible to superimpose a Gaussian noise on the calculated temperature data. In this example, the chosen noise amplitude reaches up to 0.3°C of temperature variation. The noisy thermopro®le corresponding to the axis A±B±C de®ned in Fig. 5 is plotted in Fig. 7.

Using these noisy data, a second check of the image processing was performed. The chart of heat sources is drawn in Fig. 8. To avoid any numerical instability during the image processing, the cut-o frequency of the ®lter was reduced. As previously, we observed an attenuation of the intensity of the localised heat sources compared to the initial data as well as a spreading out of the zones where they concentrate. However, in spite of the noise we estimate that the results are satisfactory (see Fig. 9). 

A particularly important case: the uniform distribution of sources

If the heat sources are assumed to be uniform, the data processing can be considerably sim-pli®ed. For instance, let us take the following example where the homogeneous heat source " s theo t Fig. 9. Heat sources pro®les corresponding to the time evolution at the pixel 150. The curve a is associated with the distribution given. The curve b represents data directly deduced from the analytic solution of the temperature. The curve c corresponds to data deduced from the noisy temperatures. Naturally, the curves were shifted to facilitate their comparison. Fig. 8. Space-time distribution of heat sources deduced from the noisy temperature data. The time evolution of the source along the pro®le A±B±C corresponds to the curve c of Fig. 9. Fig. 7. Calculated and noisy thermopro®les corresponding to the axis de®ned in Fig. 5. The noise is chosen here three times as big as the experimental one. For 1D thermal diusion problem, the noise on data is naturally reduced because the thermopro®le is averaged along the sample width. is a deadened sine: " s theo t sin pa5t  expÀta10. Keeping the same symmetric and linear boundary conditions and the same geometrical parameters as in the previous example (Table 1), we observe that almost all the temperature signal is concentrated on the ®rst eigen function cos x 0 x 3 . Fig. 10 shows the strong decrease of the h p s amplitudes, the Hs vanishing for even temperature solutions. Such an approximation yields thermal conduction losses directly proportional to the temperature variations.

As a consequence, the convolutive ®ltering step of the Laplacian operator is no longer to do. The heat source distribution can be directly estimated by

s x 3 Y t qC eYa x 0 L sin x 0 L 4 sin x 0 La2 cos x 0 x 3 Á hx 3 Y t 2 hx 3 Y t s eq 3 X 6X11
®rst term of the right-hand member of Eq. (6.11) is a factor close to 1 while x 0 L ( 1. This factor recti®es the approximation done by considering the ®rst eigen function. The equivalent time constant s eq is de®ned by

s eq 1 s th d th x 2 0 À1 X 6X12
In Fig. 11, the evolution of the sources, evaluated in the middle and at one extremity of the sample, can be compared with the theoretical sources. Using the ®ltered temperature pro®le and the Eq. ( 6.11), we ®nd a homogeneous distribution of sources again. In order to be convinced, the absolute error between theoretical and calculated solutions is also plotted.

Example of 2D thermal diusion problem

In this section, the method is extended to 2D diusion problems. As previously, under certain regularity and `projectability' conditions, in the case of problem (4.15), the heat source " sxY t and the temperature variations " hxY t can be written as: Fig. 10. If the heat source distribution is spatially uniform and when boundary conditions are symmetric and linear, the amplitude of eigen functions decreases rapidly with p as shown above for p 0Y 1Y 2.

" sxY t pYq s 1 pq t cos x p x 2 cos w q x 3 Â s 2 pq t cosx p x 2 sin W q x 3 Ã pYq s 3 pq t sin X p x 2 cosw q x 3 Â s 4 pq t sinX p x 2 sinW q x 3 Ã Y 6X13 " hxY t pYq h 1 pq t cos x p x 2 cosw q x 3 Â h 2 pq t cos x p x 2 sin W q x 3 Ã pYq h 3 pq t sin X p x 2 cos w q x 3 Â h 4 pq t sin X p x 2 sin W q x 3 Ã Y 6X14
where the functions

V 1 pq x cos x p x 2 cos w q x 3 Y V 2 pq x cos x p x 2 sin W q x 3 Y V 3 pq x sin X p x 2 cos w q x 3 Y V 4 pq x sin X p x 2 sinW q x 3 Y
for pY q 0Y 1Y F F F Y I constitute the eigen functions base. The eigen pulsations x p Y X p Y w q and W q are deduced from the roots q p Y P p Y r q and R q of the following equations, respectively:

tanpq p À k 1 l 2pq p 0Y tan pP p À 2pP p k 1 l 0Y 6X15 tanpr q À k 2 L 2pr q 0Y tanpR q À 2pR q k 2 L 0 6X16
by the relations x p 2pq p a1Y X p 2pP p alY w q 2pr q aL and W q 2pR q aL. Fig. 11. The evolution of heat sources is plotted for two particular points: one is placed in the middle of the pro®le while the second is at one extremity. These evolutions can be compared to the theoretical solution. The dierence between theoretical and calculated data is also plotted. Of course, the dierent curves were shifted for a better comparison.

For the sake of simplicity we shall assume, in what follows, the small perturbation hypothesis. In such a situation, Eulerian con®guration is mixed up with that of Lagrange and the eigen pulsation can be considered as time constants.

The functions s i pq t and h i pq t for i 1Y F F F Y 4 are respectively the projections of " sxY t and " hxY t on the eigen functions V i pq x:

s i pq t h" sxY t V i pq x i hV i pq x V i pq x i Y h i pq t h " hxY t V i pq x i hV i pq x V i pq x i Y 6X17
where the scalar product huxjvxi is de®ned by

uxjvx h i la2 Àla2 La2 ÀLa2 ux Á vx dn dvX 6X18 
Now, if we note:

X 2 1 pq x 2 p w 2 q Y 6X19a X 2 2 pq x 2 p W 2 q Y 6X19b X 2 3 pq X 2 p w 2 q Y 6X19c X 2 4 pq X 2 p W 2 q Y 6X19d
then, each function h i pq t veri®es the following dierential equation

h i pq t d th X 2 i pq 1 s th Á h i pq t s i pq t 6X20
with h i pq 0 0. The distribution of the heat sources, chosen to illustrate the method, takes a pyramidal form (2D extension of the preceding case). In the course of time, the pyramid keeps a constant form and moves on a plan. With this distribution, spatially heterogeneous (the pyramid), one superimposes a spatially homogeneous but non stationary heat source (the plan). The dierent coecients used in this example are gathered in Table 2.

An illustration of the results obtained by image processing is proposed in Fig. 12. One considers the moment corresponding to the image 12. From the given distribution of sources (Fig. 12), one deduces by spectral method the temperatures charts (Fig. 13). For this example, 20 Â 20 eigen vectors were used. Then, the estimate of the ®rst member of the Eq. (5.17) by DFT makes it possible to rebuild a ®eld of sources. The results obtained for three levels of noise (Fig. 14) are shown in Figs. 15±18. Some light dierences can be noticed between analytic solution of heat sources and those deduced from temperature maps determined by spectral method. These dierences develop very quickly with the noise amplitude. As previously, the errors come mainly from the presence of the Laplacian in the equation of heat. To limit these errors, it is necessary to decrease the cut-o frequency of the ®lter, on the other hand, one observes, as it should be, a fall of the sources intensity, and a spreading out of the zones where the sources concentrate (elimination of the high spatial frequencies). 

Application to strain localisation

When a structure is mechanically loaded, its deformation passes more or less suddenly from a diuse mode characterised by regular strain ®elds to localised modes de®ned by zones where the strains develop and concentrate. The research ®elds related to localisation phenomena are very active. Many authors have worked and still work today on the experimental, theoretical and numerical aspects of such deformation mechanisms. In the bibliography references, we have mentioned just a small part of the very large diversity of scienti®c approaches proposed in the literature. In the particular case of the plastic or viscoplastic materials, the studies have tried to take account of the large variety of loading and have naturally focused on the kinematic aspects of the localisation. Let us mention for instance the works of Consid ere [START_REF] Consid Ere | LÕemploi du fer et de lÕacier dans les constructions[END_REF], Hill [START_REF] Hill | A general theory of uniqueness and stability in elastic-plastic solids[END_REF], Mandel [START_REF] Mandel | Condition de stabilit e et postulat de Dr ucker, Rh eologie et M ecanique des sols[END_REF], Hart [START_REF] Hart | Theory of tensile test[END_REF], Rice [START_REF] Rice | The localisation of plastic deformation[END_REF], and more recently, in France, Benallal [START_REF]On localization phenomena in thermo-elasto-plasticity[END_REF] and Fressengeas and Molinari [START_REF] Fressengeas | Inertia and thermal eects on the localization of plastic ¯ow[END_REF]. When the material behaviour is time-independent, the localisation phenomenon is to appear as soon as a bifurcated solution to the linearised problem exist. This bifurcation can then be physically translated by a spatial discontinuity of the strain rate ®eld. If the behaviour is timedependent, a perturbation analysis of the linearised problem is often proposed. In such a case, the localisation is related to an instability, the perturbation amplitude does not diminish but on the contrary increases. Other works as those done by Estrin [START_REF] Estrin | Plastic instabilities: Classi®cation and physical mechanisms[END_REF], Neuhauser [START_REF] User | Collective micro-shear processes and plastic instabilities in crystaline and amorphous structures[END_REF], Zaizer [START_REF] Zaiser | Oscillatory modes of plastic deformation: theoretical concepts[END_REF], describe the microstructural origins of localisation phenomena that sometimes occur under the form of L uders or PLC bands. Sometimes, authors, like Ferron [START_REF] Ferron | In¯uence of heating generation and conduction on plastic stability under uniaxial tension[END_REF] and Marchand, [START_REF] Marchand | An experimental study of the formation process of adiabatic shear bands in a structural steel[END_REF], give an account of the thermal eects accompanying the localisation processes. In what follows, the aim is to show that the experimental improvements made in the ®eld of quantitative infrared thermography allow observing the dissipative manifestations related to localisation.

Heat evolved during plastic hardening

In the case of elastoplastic material, the following set of state variables is generally chosen: the absolute temperature a 0 T , a large strain tensor a 1 eY and n À 1 internal variables garthered in the vector a characterising the hardening state of the material.

The relative smallness of the thermal dilatability of steels allows to suggest that the heat source due to the thermoelastic couplings becomes rapidly negligible when compared with the intrinsic dissipation d 1 developed during the elastoplastic transformation. That gives

qT w YTYe X e ( d 1 r X D À qw Ye Á e À qw Ya Á aX 7X1
In addition, we can reasonably admit that the small temperature variations induced by the deformation process have no in¯uence on the hardening state. As a consequence, the heat sources related to the coupling terms between temperature and the hardening variables can also be neglected

qT w YTYa Á a % 0X 7X2 
Let us recall that this assertion becomes false as soon as a ®rst order phase transformation occurs insofar as qT w YTYa Á a represents the latent heat rate [START_REF] Chrysochoos | Vers une reformulation des transition de phase du premier ordre[END_REF]. For instance, if a stress-induced martensite transformation occurs, Eq. (7.2) is no longer admissible [START_REF] Louche | Analyse par thermographie infrarouge des eets dissipatifs de la localisation dans des aciers[END_REF].

Experimental results

Quasi-static and monotone tensile tests were performed on standard thin and ¯at samples (2.5 mm ´12.5 mm ´50 mm) [37±39]. The experiments are displacement-controlled and the room temperature is kept constant (300 K). Several shades of steel, frequently used in metal forming, were chosen. Their European names are S355MC, HR55, DD14. The passage from dissipation to dissipated energy is possible while the displacement ®elds of the transformation are known as it is the case in the framework of small perturbations (negligible displacement) or homogeneous tension tests (uniform strain ®elds). In order not to prejudge homogeneity of the sample response, we prefer to present the temporal evolution of the dissipation distribution. Kinematics measurements, carried out using speckle images, supported this careful attitude [START_REF] Wattrisse | etude cin ematique des ph enom enes de localisation dans un acier par intercorr elation dÕimages[END_REF][START_REF] Wattrisse | Etude cin ematique de localisation dans les aciers par intercorr elation dÕimages de granularit e[END_REF]. The normalised evolution of the load were systematically plotted to enable the reader to make a correspondence between the usual and global response of the sample and the local measurements. The maximal amplitude of load is systematically told in the ®gure legends.

When a plastic plateau exists, a ®rst mode of localisation is observed between the bounds A and B. In such cases, one (Fig. 19) or more (Fig. 20) dissipative `waves' propagate at a constant velocity along the gauge part of the sample. Energetic and kinematic eects have naturally been associated with L uders band propagation. The angle between the loading axis and the band front during its movement is around 70°. The waves break when strain hardening starts.

At the beginning of the strain hardening (stage B±D), the dissipation ®eld remains approximately uniform, then, stronger dissipation zones with high strain rate appear and concentrate progressively until the maximum of load is reached (stage D±E). During the strain softening (stage E±F), the dissipative and kinematic eects of localisation increase rapidly. In the particular case of S355MC steel, the dissipation chart corresponding to each step previously mentioned is drawn in Fig. 21.

Remember that infrared and speckle tests are for the moment separately performed. As a consequence, energetic and kinematic results are not obtained with the same sample. The loci where necking takes place may naturally be dierent from one sample to another.

Note that the DD14 load-elongation curve does not present a plastic plateau (Fig. 22); as mentioned above, no band eect has been observed. The kinematic and dissipative phenomena related to band propagation are illustrated in detail in Fig. 23 for S355MC steel by plotting several lengthwise pro®les between points A and B.

Discussion

This paper aimed to show that thermography techniques could be used with bene®t to observe the calori®c eects accompanying the localisation phenomena. These techniques propose to pass from temperature information given by the infrared camera to a distribution of heat sources on surface of the steel samples. Sudden and violent manifestations occurring during the plastic plateau have been related to L uders band propagation, whereas early and progressive features arising during the strain hardening have been interpreted as heraldic signs of the local necking. The main information given by such experimental analyses seems to be the precocity of the heterogeneity development in the macroscopic ®elds of thermomechanical variables. The gauge part of the sample must be considered as a structure and no longer as an elementary material volume uniformly strained and stressed. This unpalatable fact is currently dicult to reconcile with the theoretical views of localisation since classical formalisms are based on the subtle knowledge of the constitutive equations of the material. These equations are in fact identi®ed on the basis of a range of tests, such as the classical tensile test, for which the existence of homogeneous strain and stress ®elds is very often implicitly assumed. For the moment, only the pioneering Consid ere criterion will be brie¯y evoked here [START_REF] Consid Ere | LÕemploi du fer et de lÕacier dans les constructions[END_REF] because it concerns the whole specimen. This criterion claims that the necking starts in tension as soon as the maximal load supported by the sample is reached. To make the classical Consid ere construction the uniaxial `true' stress is de®ned as the load divided by the instantaneous sample section which is deduced from the initial section assuming isovolumic and homogeneous transformation. This last assertion is obviously not in agreement with the results shown here. The localisation develops during the hardening of the structure and sometimes just after the yield load. 

Fig. 1 .

 1 Fig. 1. Experimental set-up: (1) testing machine (DARTEC 9500), (2) control computer, (3) recording of global load and displacement, (4) infrared camera (AGEMA 880 SW), (5) display unit, (6) numerizer (12 bits),[START_REF] Mandel | Energie elastique et travail dissip e dans les mod eles[END_REF] storage and processing of thermal image.

Fig. 2 .

 2 Fig. 2. (a) Basic sketch of an half sample; (b) illustration of the Fourier boundary conditions.

Fig. 3 .

 3 Fig. 3. (a) and (b) longitudinal and transversal noise pro®les; (c) histogram showing, for an image, the probability density of noise (digitised level); (d) amplitude spectrum for a column of noise: white noise.

Fig. 4 .

 4 Fig.4. Space-time distribution of heat sources for a 1D data processing. The X-axis is related to time (image number) and the Y-axis to the sample length (pixel). The heat sources are divided by the volume heat capacity. The time evolution of the source along the pro®le A±B±C corresponds to the curve a of Fig.9.

Fig. 5 .Fig. 6 .

 56 Fig. 5. Temperature chart corresponding to Fig. 4. Because of the heat diusion, the decomposition of the test in two parts is no longer obvious. The space evolution of the temperature along the pro®le A±B±C is plotted in Fig. 7.

Fig. 12 .

 12 Fig.[START_REF] Peyroux | Thermomechanical couplings and pseudoelasticity of shape memory alloys[END_REF]. Graph of analytic distribution of heat sources corresponding to image 12. Divided by the volume heat capacity, the unit of the heat sources becomes (°C s À1 ).

Fig. 13 .

 13 Fig.[START_REF] Callen | Thermodynamics and an Introduction to Thermostatistics[END_REF]. Graph of the analytic temperature solution corresponding to image 12. The unit is °C. A longitudinal pro®le A±B±C is also plotted. It has been chosen in Fig.14to visualise the dierent noise levels, the thermal gradients and the curvatures intensities.

Fig. 14 .Fig. 15 .Fig. 16 .

 141516 Fig. 14. Increasing noise levels shown on the A±B±C pro®le de®ned in Fig. 13 (left). Corresponding heat sources (right): (a) std 0°C; (b) std 0.2°C; (c) std 0.4°C; (d) std 0.6°C. For the three levels of noise the mean value equals zero and std stands for the standard deviation.

Fig. 18 .

 18 Fig. 18. Graph of the heat sources distribution related to image 12 for noise of type d.

Fig. 17 .

 17 Fig. 17. Graph of the heat sources distribution related to image 12 for noise of type c.

Fig. 19 .

 19 Fig.[START_REF] Brigham | The Fast Fourier Transform[END_REF]. S355MC steel; lengthwise pro®les of the intrinsic dissipation (left) and of the longitudinal component of the Green-Lagrange strain tensor rate (right: after[START_REF] Louche | Analyse thermodynamique de la localisation de la d eformation dans des aciers par thermographie infrarouge[END_REF]). The dissipation unit is W cm À3 ; the strain rate unit is 10 À2 s À1 . The maximum load is F max 16X2 kN.

Fig. 20 .

 20 Fig. 20. HR55 steel; lengthwise pro®les of the intrinsic dissipation (left) and of the longitudinal component of the Green-Lagrange strain rate tensor (right: after [39]). F max 24X5 kN.

Fig. 22 .

 22 Fig. 22. DD14 steel; lengthwise pro®le evolution of the intrinsic dissipation (left) and of the longitudinal component of the Green±Lagrange strain rate tensor (right: after [39]). F max 13X5 kN.

Fig. 21 .

 21 Fig. 21. Dissipation charts in the case of the S355MC steel. The axes are taken respectively in the direction x 2 and x 3 of the width and length. Charts (a) and (b) evidence the band propagation. Charts (c)±(f) illustrate the progressive concentration of strong dissipation zones.

Fig. 23 .

 23 Fig. 23. S355MC Steel; Thermomechanical manifestations related to a L uders band propagation: (a) temperature, (b) intrinsic dissipation, (c) longitudinal displacement, (d) longitudinal component pro®les of the Lagrangian strain rate. Pro®les nos. 36, 44 and 52 have been selected from the infrared approach and pro®les nos. 8, 11 and 14 from the speckle one.

Table 1

 1 

	Geometric and thermophysical constants used in the 1D simulations	
	Geometry Material	L 0 50X10 À3 m q 7860 kg m À3	l 0 10X10 À3 m C eYa 472 J kg À1 C À1	e 0 21X10 À4 m k 63 W m À1 C À1
	Thermal	k 2 20 m À1	s 1D th 19 s	100 Eigen vectors

Table 2

 2 Geometric and thermophysical constants used in the 2D simulations

	Geometry Material	L 0 33X10 À3 m q 7860 kg m À3	l 0 22X10 À3 m C eYa 480 J kg À1 C À1	e 0 2X10 À3 m k 60 W m À1 C À1
	Thermal	k 1 0X2 m À1	k 2 20 m À1	s 2D th 314 s