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INTRODUCTION

Nonlinear identification methods that go beyond the wellestablished linear system identification tools [START_REF] Pintelon | System Identification: A Frequency Domain Approach[END_REF][START_REF] Ljung | System identification[END_REF][START_REF] Katayama | Subspace Methods for System Identification[END_REF], are steadily gaining research attention in recent years. Advances in nonlinear modeling tools, combined with the ever increasing computing power allows for the exploration of nonlinear models that account for nonlinear effects that occur when pushing systems outside of their linear operating regions. There is a host of procedures that range from simple extensions of linear models, over nonlinear state space modeling (possibly using particle filtering), to variations on neural network architectures, each of which typically require tailored nonconvex optimization methods. While such models may provide satisfactory prediction results, their internal workings are often hard to assess, which makes them difficult to use and interpret.

The current paper considers a combination of two promising nonlinear models (block-oriented models and Volterra series), and aims at combining their advantages while avoiding the drawbacks. Block-oriented systems are composed as interconnections of linear time-invariant system blocks and static nonlinearities such as the wellknown Wiener, Hammerstein, Wiener-Hammerstein and Hammerstein-Wiener systems [START_REF] Giri | Block-oriented Nonlinear System Identification[END_REF]. A block-oriented system description strikes a balance between flexibility and model interpretability: the model accounts for (strong) nonlinearities in its description, but stays close to the familiar linear world and allows for a transparent understanding of its workings. Nev-a 1 (q) . . . ar(q) g 1 (x 1 ) . . .

gr(xr)

b 1 (q) . . .

br(q)

+ u(t) y(t)

x 1 (t)

xr(t)
Fig. 1. Parallel Wiener-Hammerstein system.

ertheless, block-oriented system identification methods rely on heuristics and nonconvex optimization routines [START_REF] Schoukens | Identification of block-oriented nonlinear systems starting from linear approximations: A survey[END_REF]) to find the parameters, which may cause difficulties. Volterra series models, on the other hand, can be viewed as nonlinear extensions of the wellknown convolution operation of the input signal with the (finite) impulse response: in the Volterra description, the output is defined as a polynomial function of (delayed) inputs (as opposed to the output being a linear function of delayed inputs in the case of linear systems). A major advantage is that the Volterra model is linear in the parameters and its identification can be posed as a least-squares problem [START_REF] Birpoutsoukis | Regularized nonparametric Volterra kernel estimation[END_REF]. Unfortunately, due to the polynomial structure, the number of coefficients grows very quickly as the polynomial degree increases.

In addition, the model does not allow for an intuitive understanding of its internal operation.

In this article, we are interested in identification of discrete-time parallel Wiener-Hammerstein systems, see Fig. 1. Each branch of such a system has a Wiener-Hammerstein structure, i.e., a static nonlinearity sandwiched in between two linear time-invariant (LTI) blocks. Parallel Wiener-Hammerstein models have improved approximation properties as opposed to single branch Wiener-Hammerstein models [START_REF] Palm | On representation and approximation of nonlinear systems[END_REF]. However, identification of a parallel Wiener-Hammerstein structure is particularly challenging, see [START_REF] Schoukens | Identification of block-oriented nonlinear systems starting from linear approximations: A survey[END_REF]. For example, the frequency-domain methods [START_REF] Schoukens | Identification of block-oriented nonlinear systems starting from linear approximations: A survey[END_REF] suffer from the pole/zero mixing of the Wiener and Hammerstein filters, and thus require a computationally heavy pole/zero splitting procedure.

The method that we present in this article starts from estimating Volterra kernels, which can be readily viewed as higher-order symmetric tensors containing the polynomial coefficients. Existing methods that aim at finding blockoriented models from the Volterra kernels resort to coupled tensor decompositions of Volterra kernels [START_REF] Kibangou | Toeplitz-Vandermonde matrix factorization with application to parameter estimation of Wiener-Hammerstein systems[END_REF] and require nontrivial constraints on the factors of the tensor decomposition for parallel Wiener-Hammerstein case [START_REF] Dreesen | Modeling Parallel Wiener-Hammerstein Systems Using Tensor Decomposition of Volterra Kernels[END_REF][START_REF] Westwick | Tensor factorization based estimates of parallel Wiener Hammerstein models[END_REF][START_REF] Dreesen | Parameter estimation of parallel Wiener-Hammerstein systems by decoupling their Volterra representations[END_REF]. In this paper, we propose an entirely different approach: by choosing special sampling points, we can show that the Jacobian matrix becomes a linear projection of a certain low-rank tensor whose rank is equal to the number of parallel branches in the model. This representation allows us to solve the identification problem as a tensor recovery problem, which may be approached by an alternating least squares (ALS) solution strategy.

PRELIMINARIES

Tensor and vector notation

In this paper we mainly follow [START_REF] Comon | Tensors : A brief introduction[END_REF] in what concerns tensor notation (see also [START_REF] Kolda | Tensor decompositions and applications[END_REF]).

We use lowercase (a) or uppercase (A) plain font for scalars, boldface lowercase (a) for vectors, uppercase boldface (A) for matrices, calligraphic font (A) for N -D arrays (tensors) and script (P) for operators. Vectors are, by convention, one-column matrices. The elements of vectors/matrices/tensors are accessed as a i , A i,j and A i1,...,iN respectively. We use vec{•} for the standard column-major vectorization of a tensor or a matrix. Operator • p denotes the contraction on the pth index of a tensor, i.e.,

[A • 1 u] jk = i A ijk u i .
For a matrix A, A T and A † denotes its transpose and Moore-Penrose pseudoinverse respectively. The notation I M is used for the M × M identity matrix and 0 L×K for the L × K matrix of zeroes. We use the symbol ⊠ for the Kronecker product of matrices (in order to distinguish it from the tensor product ⊗), and ⊙ for the (columnwise) Khatri-Rao product of matrices: i.e, the Khatri-Rao product of

A = [a 1 • • • a r ] and B = [b 1 • • • b r ] is defined as A ⊙ B = [a 1 ⊠ b 1 • • • a r ⊠ b r ] .
We use the notaion Diag{v} for the diagonal matrix built from the vector v.

A polyadic decomposition (PD) is a decomposition of a tensor into a sum of rank-one terms, i.e., for

Y ∈ R I×J×K , Y = r ℓ=1 a ℓ ⊗ b ℓ ⊗ c ℓ (1)
is a polyadic decomposition. It is called canonical polyadic (CPD) if the number r in (1) is minimal among all possible PDs of Y; in that case r is called the tensor rank of Y.

By grouping vectors into matrices

A = [a 1 • • • a r ] , B = [b 1 • • • b r ] , C = [c 1 • • • c r ] we can use a more compact notation Y = [[A, B, C]], Y ijk = r ℓ=1 A iℓ B jℓ C kℓ ;
for a PD (or a CPD).

Finally, for a (possibly finite) sequence (. . . , x(1), . . . , x(T ), . . .) its convolution with a vector a ∈ R K is defined as

(a * x)(t) = K i=1 x(t -i + 1)a i .

Volterra kernels

The Volterra series [START_REF] Schetzen | The Volterra and Wiener Theories of Nonlinear Systems[END_REF]) is a classical model for nonlinear systems, and is similar to the Taylor expansion for multivariate maps. In the discrete-time case, Volterra series can be interpreted as a power series expansion of the output of a system as a function of past inputs:

y(t) = f (0) + ∞ s=1 ∞ τ1=0 • • • ∞ τs=0 H (s) (τ 1 , . . . , τ s )u(t -τ 1 ) • • • u(t -τ s ) ,
where H (s) (•) is the s-th order Volterra kernel. In the special case when the output depends only on a finite number L of past inputs, i.e., is defined by

f : R L → R y(t) = f (u(t), u(t -1), . . . , u(t -L + 1)), (2) 
we can consider truncated the Volterra kernels

H (s) (which are L × • • • × L tensors)
. By denoting for convenience the vector of past inputs as

u = [u(t) u(t -1) . . . u(t -L + 1)]
T

(3) we can write the function expansion as

y(t) = f (u) = f (0) + f (1) (u) + • • • + f (d) (u) + • • • , (4)
where the degree-s term is given by

f (s) (u) = L,...,L i1,...,is=1 H (s) i1,...,is u(t -i 1 + 1) • • • u(t -i s + 1), with H (s) i1,...,is = H (s) (i 1 -1, .
. . , i s -1). Order-s terms can be compactly expressed using the multiple contraction

f (s) (u) = H (s) • 1 u • 2 u • • • • s u.

Parallel Wiener-Hammerstein model

In this paper, we consider the case when the LTI blocks in Fig. 1 are given by finite impulse response (FIR) filters of lags L 1 and L 2 respectively. Formally, the output y(t) at a time instant t of a parallel Wiener-Hammerstein system is given by a composition of convolutions and univariate nonlinear transformations:

y = r ℓ=1 b ℓ * z ℓ , z ℓ = g ℓ (x ℓ ), x ℓ = a ℓ * u, where a ℓ ∈ R L1 , b ℓ ∈ R L2 , g ℓ : R → R.
In this case, it is easy to see that the output y(t) of the system depends only on L = L 1 + L 2 -1 past inputs, i.e., u in (3).

In this paper, we also add another simplifying assumption that each g ℓ (t) is a polynomial of degree d. Therefore, the function f in ( 2) is a degree-d polynomial and thus the system is completely characterized by the first d truncated L × • • • × L Volterra kernels (i.e., by the collection of the homogeneous terms f (s) up to degree d, see ( 4)).

FIRST-ORDER INFORMATION AND PROJECTION

An overview of the proposed approach

Our main idea is to exploit the first-order information in spirit of the method in [START_REF] Dreesen | Decoupling multivariate polynomials using first-order information and tensor decompositions[END_REF]. The original method of [START_REF] Dreesen | Decoupling multivariate polynomials using first-order information and tensor decompositions[END_REF] is designed for decoupling a static nonlinear function f based on the evaluations of the first-order derivatives (Jacobians) of f at a chosen set of operating points u (1) , . . . , u (N ) , by stacking these evaluations in a 3rd order tensor and performing its CPD.

Note that in case of a polynomial map (2), the derivatives can be easily computed from the Volterra kernels thanks to the following identity for degree-s parts:

∇f (s) (u) = s • H (s) • 2 u • • • • s u. (5) 
However, a direct application of the decoupling technique is not possible in our case due to the following issues:

• the method of [START_REF] Dreesen | Decoupling multivariate polynomials using first-order information and tensor decompositions[END_REF] does not take into account the dynamics; • the method of [START_REF] Dreesen | Decoupling multivariate polynomials using first-order information and tensor decompositions[END_REF] is not applicable to single-output functions (the Jacobian tensor becomes a matrix).

Some remedies for these issues were proposed in the literature. For example, Usevich (2014) reformulated the problem as structured matrix completion, Hollander (2017) introduced constraints on the factors of the CPD, while [START_REF] Dreesen | Decoupling multivariate functions using second-order information and tensors[END_REF] considered tensors of higher-order derivatives. However, none of these approaches provide an out-of-the box solution for our identification problem.

In this paper, we propose an entirely different approach.

We use only the first-order information of f ; however, we split f into homogeneous parts (4) in the spirit of [START_REF] Van Mulders | Identification of a block-structured model with several sources of nonlinearity[END_REF]. A particular choice of tailored operating points (see subsection 3.3) allows us to show that the vector of evaluations of the gradients of the homogeneous parts can be viewed as a linear projection (sampling) of a third-order tensor T whose rank is equal to the number of branches and whose factors give the coefficients for the filters in the LTI blocks. This allows us to reformulate the identification problem as a low-rank tensor recovery problem.

The remainder of this paper is organized as follows. In the current section, we focus only on the case of a single branch. We begin by some preliminary observations, followed by describing the structure of the tailored operating points. For such points, we then describe the building blocks for the projection operator in subsection 3.4 and show in subsection 3.5 that the vector of gradient evaluations is a projection of a rank-one tensor. The overall algorithm for r branches is presented in section 4, where an algorithm for tensor recovery is also dicussed. The numerical experiments are provided in section 5.

Single branch: preliminary observations

We consider the case of a single branch, with the filters

a = [a 1 , . . . , a L1 ] T , b = [b 1 , . . . , b L2 ]
T and the single (not necessarily homogeneous) nonlinearity g(t). Then, the output of a single branch is given by ( 2) with the nonlinear map

f (u) = b ⊤ g(V T u), where g(•) is defined as g(x 1 , . . . , x L1 ) = [g(x 1 ) . . . g(x L1 )]
T , and V ∈ R L×L2 is the following Toeplitz matrix:

V = [v 1 • • • v L2 ] =        a 1 . . . . . . a L1 a 1 . . . . . . a L1        . (6) 
By the chain rule (as in [START_REF] Dreesen | Decoupling multivariate polynomials using first-order information and tensor decompositions[END_REF]), the gradient of f has the form

∇f (u) = V    g ′ (v T 1 u) . . . g ′ (v T L2 u)    b. ( 7 
)
Remark 1. Although the function f , the model of the dynamical system, and the Volterra kernels were initially defined for real inputs, the expressions in ( 5) and ( 7) are polynomial in u, hence we can formally evaluate them at complex points u ∈ C L . This is one of the important features of our approach that allows us to avoid some numerical issues.

Tailored operation points

Next, we restrict our attention to homogeneous parts of the nonlinearity g(x) = cx s . Another key idea of our method is to use tailored operating points u ∈ C L in order to simplify the expression in (7). We are going to use Vandermondelike operating points parameterized by µ ∈ C:

u µ = 1 µ µ 2 . . . µ L-1 T . In this case, it is not difficult to see that g ′ (v T k u µ ) = cs(v T k u µ ) s-1 = cs(µ k-1 a(µ)) s-1 = csµ (k-1)(s-1) (a(µ)) s-1 , where a(µ) = a 1 + a 2 µ + • • • + a L1 µ L1-1 . Plugging this expression in (7), we obtain that ∇f (s) (u µ ) = (cs(a(µ)) s-1 )v µ (8)
where the vector v µ ∈ C L is defined as

v µ = V      b 1 b 2 µ (s-1) . . . b L2 µ (L2-1)(s-1)      =          a 1 b 1 a 2 b 1 + a 1 b 2 µ (s-1) a 3 b 1 + a 2 b 2 µ (s-1) + a 1 b 3 µ 2(s-1)
. . .

a L1 b L2-1 µ (L2-2)(s-1) + a L1-1 b L2 µ (L2-1)(s-1) a L1 b L2 µ (L2-1)(s-1)         
, where V is defined in (6).

Gradient as a projection of a rank-one term

We are going to show that v µ from the previous subsection can be conveniently written as a linear projection (sampling) of a rank-one matrix. First of all, we introduce the diagonal summation ("Hankelization") operator H : C L1×L2 → C L , which takes the sums on the antidiagonals

H (E) =         E 1,1 E 2,1 + E 1,2 E 3,1 + E 2,2 + E 1,3 . . . E L1,L2-1 + E L1-1,L2 E L1,L2         .
Next, it is easy to see that v µ can be obtained by applying the projection operator P µ,s : C L1×L2 → C L , which is a composition of the diagonal summation with the scaling of columns by powers of µ:

P µ,s (E) = H (E Diag{ 1 µ (s-1) • • • µ (L2-1)(s-1) }),
i.e., v µ = P µ,s (ab T ). After that, we get that the gradient in ( 8) can be expressed as follows ∇f (s) (u µ ) = P µ,s ((cs(a(µ)) s-1 )ab T ). Finally, in the next subsections we are going to evaluate the gradients at different operating points and collect information from several kernels.

Combining several kernels and points

Now consider a set of N points in the complex plane {µ 1 , . . . , µ N } ⊂ C at which we are evaluating the gradients of the homogeneous parts, and collecting them into one single vector:

y =                ∇f (1) (u 1 ) ∇f (2) (u µ1 ) . . . ∇f (2) (u µN ) . . . ∇f (d) (u µ1 ) . . . ∇f (d) (u µN )                ∈ C ((d-1)N +1)L . ( 9 
)
Unlike the previous section, we now consider a general polynomial nonlinearity:

g(t) = c 1 t + c 2 t 2 + • • • + c d t d
. By using the results of the previous subsection, we can show that y is a projection of a rank-1 tensor: y = P(T ), where the rank-one tensor is

T = a ⊗ b ⊗ h,
vectors a, b are as before, and

h T = c 1 2c 2 a(µ 1 )•• 2c 2 a(µ N )•• dc d (a(µ 1 )) d-1 •• dc d (a(µ N )) d-1 .
The sampling operator is defined as a concatenation of sampling operators of tensor slices

P(T ) =              
P 1,1 (T :,:,1 ) P µ1,2 (T :,:,2 ) . . . P µN ,2 (T :,:,1+N ) . . .

P µ1,d (T :,:,2+N (d-2) ) . . . P µN ,d (T :,:,1+N (d-1) )              
.

IDENTIFICATION AS TENSOR RECOVERY

Several branches and overall algorithm

We saw in the previous section that in the case of a single branch, the vector of the gradients y evaluated at the Vandermonde evaluation points u µ k , k = 1, . . . , N , is a projection of a rank-one tensor. This implies that for a sum of r branches the vector y is a projection of a tensor having polyadic decomposition with r terms:

y = P(T ), T = [[A, B, H]] = r ℓ=1 a ℓ ⊗ b ℓ ⊗ h ℓ ,
where a ℓ , b ℓ are the coefficients of the corresponding filters, and h ℓ are the vectors for the nonlinearities constructed as previously. Thus the identification problem can be reformulated as a low-rank tensor recovery of the tensor T from the samples y. Low-rank tensor recovery is a generalization of the tensor completion problem to the case of arbitrary sampling operators (and not just selection of the elements as in a typical tensor completion problem).

This leads us to the following algorithm. Algorithm 1. Input: number of branches r, filter sizes L 1 , L 2 , Volterra kernels up to order d.

(1) Choose sampling points µ 1 , . . . , µ N ∈ C.

(2) Evaluate the gradients of the homogeneous parts of f at u µ k via contractions with the Volterra kernels (see (5)).

(3) Build y as in (9) by evaluating the gradients via Volterra kernels. (4) Find the rank-r tensor T = [[A, B, H]] such that y ≈ P(T ). ( 5) Recover the filter coefficients from a , b ℓ . (6) Recover the coefficients of the polynomials

g ℓ (t) = c ℓ,1 t + c ℓ,2 t 2 + • • • + c ℓ,d t d by solving h ℓ ≈               c ℓ,1 2c ℓ,2 (a ℓ (µ 1 )) . . . 2c ℓ,2 (a ℓ (µ N )) . . . dc ℓ,d (a ℓ (µ 1 )) d-1 . . . dc ℓ,d (a ℓ (µ N )) d-1              
Remark 2. In order to avoid numerical issues we restrict the sampling points to the unit circle

T = {µ ∈ C : |µ| = 1}.
Also, in Algorithm 1, we allow for approximations of y in order to account for modelling errors or noise. While the estimation of g ℓ (t) is a simple least squares problem, the most difficult part becomes the CPD of a partially observed tensor, which we detail in the next section.

Partially observed CPD

In order to find the rank-r tensor from its projection, we are going to solve the following tensor recovery problem in the least squares sense: min

A,B,H P([[A, B, H]]) -y 2 2 ,
where P : C L1×L2×L3 → C M is a sampling operator.

We are going to use a well-known alternating least squares (block coordinate descent) strategy [START_REF] Kolda | Tensor decompositions and applications[END_REF]. This strategy consists in alternate minimization with respect to each variable with fixing other variables, and can be summarized in the following algorithm. Algorithm 2. (Partial ALS). Input: initializations A 0 , B 0 , H 0 .

(1) For k=1,2,.... until a stopping criterion is satisfied (2)

A k ← arg min A P([[A, B k-1 , H k-1 ]]) -y 2 2 ; (3) B k ← arg min A P([[A k , B, H k-1 ]]) -y 2 2 ; (4) H k ← arg min A P([[A k , B k , H]]) -y 2 2 .
(5) End for Each update in Algorithm 2 is a linear least squares problem, which explains the name "alternating least squares". Note that the overall cost function is nonconvex, and thus the algorithm may suffer from local minima and other convergence problems [START_REF] Comon | Tensor decompositions, alternating least squares and other tales[END_REF]. However, this is one of the most popular and practically successful strategies. In what follows, we provide details on implementation of updates for recovery of partially observed low-rank tensors, which we did not find in the literature.

We assume that the operator P : C L1×L2×L3 → C M has the matrix representation P ∈ C M×(L1L2L3) , i.e., P(T ) = P vec{T }. Then the updates of ALS can be derived as follows:

• Updating A: vec{A} = (Z A ) † y, where with respect to the number of cycles of ALS.

Z A = P ((C ⊙ B) ⊠ I L1 ). • Updating B: vec{B} = (Z B ) † y, where Z B = P [c 1 ⊠ I L2 ⊠ a 1 • • • c r ⊠ I L2 ⊠ a r ] .
• Updating C: vec{C} = (Z C ) † y, where

Z C = P [I L3 ⊠ b 1 ⊠ a 1 • • • I L3 ⊠ b r ⊠ a r ] .
For the practical implementation, we take advantage of the sparsity of the matrix P : an easy inspection reveals that P is block-diagonal with banded blocks.

EXPERIMENTS

Here we present an example that illustrates our approach. The algorithms were implemented in MATLAB R2019b on MacBook Air (2014, 1.4 GHz Intel i5, 4GB RAM).

We consider r = 2 branches and filter lengths L 1 = 3, L 2 = 3 with the following coefficients: 

A = 0.
1 (x 1 ) = 3x 3 1 -x 2 1 + 5, g 2 (x 2 ) = -5x 3 2 + 3x 2 -7. ( 10 
) We use N = 30 operating points generated randomly on the unit circle. We run Algorithm 1 for 10 different starting points (i.i.d. Gaussian distributed), maximum 250 iterations, and show the convergence plots in Fig. 2. We see that the algorithm converges linearly for all but one initialization, which is reasonable due to nonconvexity of the problem. For one of the realizations, the final residual is P([[A, B, H]])y 2 = 8.48 • 10 -9 , and the estimated factor A is (with the first row normalized to 1 and shown with 4 fractional digits of the mantissa),

A =   1 1 -1.3333 -i0.8305 • 10 -8 0.3333 + i0.4203 • 10 -9 0.3333 -i0.2210 • 10 -8 0.4999 + i0.7007 • 10 -10   ,
which is complex-valued, but recovers quite accurately the true A (the same holds for B, not shown here).

In order to illustrate the reconstruction of the nonlinearities, instead of solving the least squares problem in Algorithm 1, we apply the idea similar the visualization of nonlinearities in [START_REF] Dreesen | Decoupling multivariate polynomials using first-order information and tensor decompositions[END_REF]. In fact, the elements of H can be combined in such a way to yield the values of the derivatives of g ℓ (• • • ) at the points a(µ k ). We perform polynomial regression for degree 2, take the real parts and obtain the following polynomials (with leading coefficient normalized to 1), rounded to the 4 fractional digits h 1 (t) = t 2 -0.2222t, h 2 (t) = t 2 -0.2. after inspecting (10), we obtain that these are (up to numerical errors) the derivatives of the original nonlinearities, (i.e., h 1 (t) = αg ′ 1 (t), h 2 (t) = αg ′ 2 (t) with α = 9).

CONCLUSION

We developed a novel promising algorithm for identification of Wiener-Hammerstein systems from Volterra kernels. Our approach has the following advantages:

• It is based on tensor recovery, rather than CPD with structured factors, and can be solved with a simple alternating least squares scheme. • It does not need all the coefficients of the Volterra kernels to be estimated: we just need to compute contractions with Vandermonde-structured vectors for a fixed number of operating points.

Furthermore, we believe that our method may have an interesting interpretation from the frequency-domain identification perspective. Note that the operating points that we use are typically taken on the unit circle, i.e., an operating point is chosen as µ k = e 2πiω k . Viewed from a frequency-domain point of view [START_REF] Pintelon | System Identification: A Frequency Domain Approach[END_REF], contraction of Volterra kernels with Vandermondestructured vectors is somewhat similar to an "excitation" of the first-order derivative at a frequency ω k . However, for such an interpretation, we would potentially need to consider the framework of the Volterra kernel identification with complex valued inputs [START_REF] Bouvier | Phasebased order separation for Volterra series identification[END_REF].

Fig. 2 .

 2 Fig. 2. Evolution of the residual ( P([[A, B, H]])y 2 )with respect to the number of cycles of ALS.
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