
HAL Id: hal-03349340
https://hal.science/hal-03349340

Submitted on 20 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Low-rank tensor recovery for Jacobian-based Volterra
identification of parallel Wiener-Hammerstein systems

Konstantin Usevich, Philippe Dreesen, Mariya Ishteva

To cite this version:
Konstantin Usevich, Philippe Dreesen, Mariya Ishteva. Low-rank tensor recovery for Jacobian-based
Volterra identification of parallel Wiener-Hammerstein systems. 19th IFAC Symposium on System
Identification, SYSID 2021, Jul 2021, Padova (virtual), Italy. �hal-03349340�

https://hal.science/hal-03349340
https://hal.archives-ouvertes.fr

Low-rank tensor recovery

for Jacobian-based Volterra identification

of parallel Wiener-Hammerstein systems

Konstantin Usevich ∗ Philippe Dreesen ∗∗ Mariya Ishteva ∗∗∗

∗ Université de Lorraine, CNRS, CRAN, Nancy, France (e-mail:
konstantin.usevich@univ-lorraine.fr).

∗∗ KU Leuven, Dept. Electrical Engineering (ESAT), STADIUS Center
for Dynamical Systems, Signal Processing and Data Analytics, Belgium

(e-mail: philippe.dreesen@gmail.com)
∗∗∗ KU Leuven, Department of Computer Science, ADVISE-NUMA,

campus Geel, Belgium (e-mail: mariya.ishteva@kuleuven.be)

Abstract: We consider the problem of identifying a parallel Wiener-Hammerstein structure
from Volterra kernels. Methods based on Volterra kernels typically resort to coupled tensor
decompositions of the kernels. However, in the case of parallel Wiener-Hammerstein systems,
such methods require nontrivial constraints on the factors of the decompositions. In this paper,
we propose an entirely different approach: by using special sampling (operating) points for the
Jacobian of the nonlinear map from past inputs to the output, we can show that the Jacobian
matrix becomes a linear projection of a tensor whose rank is equal to the number of branches.
This representation allows us to solve the identification problem as a tensor recovery problem.

Keywords: Block structured system identification, parallel Wiener-Hammerstein systems,
Volterra kernels, low-rank tensor recovery, canonical polyadic decomposition

1. INTRODUCTION

Nonlinear identification methods that go beyond the well-
established linear system identification tools (Pintelon
and Schoukens, 2012; Ljung, 1999; Katayama, 2005), are
steadily gaining research attention in recent years. Ad-
vances in nonlinear modeling tools, combined with the ever
increasing computing power allows for the exploration of
nonlinear models that account for nonlinear effects that oc-
cur when pushing systems outside of their linear operating
regions. There is a host of procedures that range from sim-
ple extensions of linear models, over nonlinear state space
modeling (possibly using particle filtering), to variations
on neural network architectures, each of which typically
require tailored nonconvex optimization methods. While
such models may provide satisfactory prediction results,
their internal workings are often hard to assess, which
makes them difficult to use and interpret.

The current paper considers a combination of two promis-
ing nonlinear models (block-oriented models and Volterra
series), and aims at combining their advantages while
avoiding the drawbacks. Block-oriented systems are com-
posed as interconnections of linear time-invariant sys-
tem blocks and static nonlinearities such as the well-
known Wiener, Hammerstein, Wiener-Hammerstein and
Hammerstein-Wiener systems (Giri and Bai, 2010). A
block-oriented system description strikes a balance be-
tween flexibility and model interpretability: the model
accounts for (strong) nonlinearities in its description,
but stays close to the familiar linear world and allows
for a transparent understanding of its workings. Nev-

a1(q)

...

ar(q)

g1(x1)

...

gr(xr)

b1(q)

...

br(q)

+
u(t) y(t)

x1(t)

xr(t)

Fig. 1. Parallel Wiener-Hammerstein system.

ertheless, block-oriented system identification methods
rely on heuristics and nonconvex optimization routines
(Schoukens and Tiels, 2017) to find the parameters, which
may cause difficulties. Volterra series models, on the other
hand, can be viewed as nonlinear extensions of the well-
known convolution operation of the input signal with the
(finite) impulse response: in the Volterra description, the
output is defined as a polynomial function of (delayed)
inputs (as opposed to the output being a linear function
of delayed inputs in the case of linear systems). A major
advantage is that the Volterra model is linear in the param-
eters and its identification can be posed as a least-squares
problem (Birpoutsoukis et al., 2017). Unfortunately, due
to the polynomial structure, the number of coefficients
grows very quickly as the polynomial degree increases.
In addition, the model does not allow for an intuitive
understanding of its internal operation.

In this article, we are interested in identification of
discrete-time parallel Wiener-Hammerstein systems, see
Fig. 1. Each branch of such a system has a Wiener-

Hammerstein structure, i.e., a static nonlinearity sand-
wiched in between two linear time-invariant (LTI) blocks.
Parallel Wiener-Hammerstein models have improved ap-
proximation properties as opposed to single branchWiener-
Hammerstein models (Palm, 1979). However, identifica-
tion of a parallel Wiener-Hammerstein structure is par-
ticularly challenging, see Schoukens and Tiels (2017). For
example, the frequency-domain methods (Schoukens and
Tiels, 2017) suffer from the pole/zero mixing of the Wiener
and Hammerstein filters, and thus require a computation-
ally heavy pole/zero splitting procedure.

The method that we present in this article starts from
estimating Volterra kernels, which can be readily viewed as
higher-order symmetric tensors containing the polynomial
coefficients. Existing methods that aim at finding block-
oriented models from the Volterra kernels resort to coupled
tensor decompositions of Volterra kernels (Kibangou and
Favier, 2007) and require nontrivial constraints on the
factors of the tensor decomposition for parallel Wiener-
Hammerstein case (Dreesen et al., 2017; Westwick et al.,
2017; Dreesen and Ishteva, 2021). In this paper, we pro-
pose an entirely different approach: by choosing special
sampling points, we can show that the Jacobian matrix
becomes a linear projection of a certain low-rank tensor
whose rank is equal to the number of parallel branches
in the model. This representation allows us to solve the
identification problem as a tensor recovery problem, which
may be approached by an alternating least squares (ALS)
solution strategy.

2. PRELIMINARIES

2.1 Tensor and vector notation

In this paper we mainly follow Comon (2014) in what con-
cerns tensor notation (see also Kolda and Bader (2009)).
We use lowercase (a) or uppercase (A) plain font for
scalars, boldface lowercase (a) for vectors, uppercase bold-
face (A) for matrices, calligraphic font (A) for N -D arrays
(tensors) and script (P) for operators. Vectors are, by
convention, one-column matrices. The elements of vec-
tors/matrices/tensors are accessed as ai, Ai,j and Ai1,...,iN

respectively. We use vec{·} for the standard column-major
vectorization of a tensor or a matrix. Operator •p denotes
the contraction on the pth index of a tensor, i.e.,

[A •
1
u]jk =

∑

i

Aijkui.

For a matrix A, AT and A† denotes its transpose and
Moore-Penrose pseudoinverse respectively. The notation
IM is used for the M ×M identity matrix and 0L×K for
the L × K matrix of zeroes. We use the symbol ⊠ for
the Kronecker product of matrices (in order to distinguish
it from the tensor product ⊗), and ⊙ for the (column-
wise) Khatri-Rao product of matrices: i.e, the Khatri-Rao
product of

A = [a1 · · · ar] and B = [b1 · · · br]

is defined as

A⊙B = [a1 ⊠ b1 · · · ar ⊠ br] .

We use the notaion Diag{v} for the diagonal matrix built
from the vector v.

A polyadic decomposition (PD) is a decomposition of a
tensor into a sum of rank-one terms, i.e., for Y ∈ R

I×J×K ,

Y =

r∑

ℓ=1

aℓ ⊗ bℓ ⊗ cℓ (1)

is a polyadic decomposition. It is called canonical polyadic
(CPD) if the number r in (1) is minimal among all possible
PDs of Y ; in that case r is called the tensor rank of Y .

By grouping vectors into matrices

A = [a1 · · · ar] , B = [b1 · · · br] , C = [c1 · · · cr]

we can use a more compact notation

Y = [[A,B,C]], Yijk =

r∑

ℓ=1

AiℓBjℓCkℓ;

for a PD (or a CPD).

Finally, for a (possibly finite) sequence

(. . . , x(1), . . . , x(T), . . .)

its convolution with a vector a ∈ R
K is defined as

(a ∗ x)(t) =

K∑

i=1

x(t− i+ 1)ai.

2.2 Volterra kernels

The Volterra series (Schetzen, 1980) is a classical model for
nonlinear systems, and is similar to the Taylor expansion
for multivariate maps. In the discrete-time case, Volterra
series can be interpreted as a power series expansion of
the output of a system as a function of past inputs:
y(t) = f (0)+
∞∑

s=1

(
∞∑

τ1=0

· · ·

∞∑

τs=0

H(s)(τ1, . . . , τs)u(t− τ1) · · ·u(t− τs)

)
,

where H(s)(·) is the s-th order Volterra kernel. In the
special case when the output depends only on a finite
number L of past inputs, i.e., is defined by f : RL → R

y(t) = f(u(t), u(t− 1), . . . , u(t− L+ 1)), (2)

we can consider truncated the Volterra kernelsH(s) (which
are L× · · · × L tensors). By denoting for convenience the
vector of past inputs as

u = [u(t) u(t− 1) . . . u(t− L+ 1)]
T

(3)

we can write the function expansion as

y(t) = f(u) = f (0) + f (1)(u) + · · ·+ f (d)(u) + · · · , (4)

where the degree-s term is given by

f (s)(u) =

L,...,L∑

i1,...,is=1

H
(s)
i1,...,is

u(t− i1 + 1) · · ·u(t− is + 1),

with
H

(s)
i1,...,is

= H(s)(i1 − 1, . . . , is − 1).

Order-s terms can be compactly expressed using the
multiple contraction

f (s)(u) = H(s) •
1
u •

2
u · · · •

s
u.

2.3 Parallel Wiener-Hammerstein model

In this paper, we consider the case when the LTI blocks in
Fig. 1 are given by finite impulse response (FIR) filters of

lags L1 and L2 respectively. Formally, the output y(t) at
a time instant t of a parallel Wiener-Hammerstein system
is given by a composition of convolutions and univariate
nonlinear transformations:

y =

r∑

ℓ=1

bℓ ∗ zℓ, zℓ = gℓ(xℓ), xℓ = aℓ ∗ u,

where aℓ ∈ RL1 , bℓ ∈ RL2 , gℓ : R → R. In this case, it
is easy to see that the output y(t) of the system depends
only on L = L1 + L2 − 1 past inputs, i.e., u in (3).

In this paper, we also add another simplifying assumption
that each gℓ(t) is a polynomial of degree d. Therefore, the
function f in (2) is a degree-d polynomial and thus the
system is completely characterized by the first d truncated
L × · · · × L Volterra kernels (i.e., by the collection of the
homogeneous terms f (s) up to degree d, see (4)).

3. FIRST-ORDER INFORMATION AND
PROJECTION

3.1 An overview of the proposed approach

Our main idea is to exploit the first-order information in
spirit of the method in Dreesen et al. (2015). The original
method of Dreesen et al. (2015) is designed for decoupling
a static nonlinear function f based on the evaluations of
the first-order derivatives (Jacobians) of f at a chosen
set of operating points u(1), . . . ,u(N), by stacking these
evaluations in a 3rd order tensor and performing its CPD.

Note that in case of a polynomial map (2), the derivatives
can be easily computed from the Volterra kernels thanks
to the following identity for degree-s parts:

∇f (s)(u) = s ·H(s) •
2
u · · · •

s
u. (5)

However, a direct application of the decoupling technique
is not possible in our case due to the following issues:

• the method of Dreesen et al. (2015) does not take into
account the dynamics;
• the method of Dreesen et al. (2015) is not applica-
ble to single-output functions (the Jacobian tensor
becomes a matrix).

Some remedies for these issues were proposed in the litera-
ture. For example, Usevich (2014) reformulated the prob-
lem as structured matrix completion, Hollander (2017)
introduced constraints on the factors of the CPD, while
Dreesen et al. (2018) considered tensors of higher-order
derivatives. However, none of these approaches provide an
out-of-the box solution for our identification problem.

In this paper, we propose an entirely different approach.
We use only the first-order information of f ; however,
we split f into homogeneous parts (4) in the spirit of
Van Mulders et al. (2014). A particular choice of tailored
operating points (see subsection 3.3) allows us to show
that the vector of evaluations of the gradients of the
homogeneous parts can be viewed as a linear projection
(sampling) of a third-order tensor T whose rank is equal
to the number of branches and whose factors give the
coefficients for the filters in the LTI blocks. This allows
us to reformulate the identification problem as a low-rank
tensor recovery problem.

The remainder of this paper is organized as follows. In
the current section, we focus only on the case of a single
branch. We begin by some preliminary observations, fol-
lowed by describing the structure of the tailored operating
points. For such points, we then describe the building
blocks for the projection operator in subsection 3.4 and
show in subsection 3.5 that the vector of gradient eval-
uations is a projection of a rank-one tensor. The overall
algorithm for r branches is presented in section 4, where
an algorithm for tensor recovery is also dicussed. The
numerical experiments are provided in section 5.

3.2 Single branch: preliminary observations

We consider the case of a single branch, with the filters

a = [a1, . . . , aL1
]
T
, b = [b1, . . . , bL2

]
T

and the single (not necessarily homogeneous) nonlinearity
g(t). Then, the output of a single branch is given by (2)
with the nonlinear map

f(u) = b⊤g(V Tu),

where g(·) is defined as

g(x1, . . . , xL1
) = [g(x1) . . . g(xL1

)]
T
,

and V ∈ RL×L2 is the following Toeplitz matrix:

V = [v1 · · · vL2
] =




a1
...

. . .
aL1

a1
. . .

...
aL1



. (6)

By the chain rule (as in Dreesen et al. (2015)), the gradient
of f has the form

∇f(u) = V



g′(vT

1u)
. . .

g′(vT

L2
u)


 b. (7)

Remark 1. Although the function f , the model of the
dynamical system, and the Volterra kernels were initially
defined for real inputs, the expressions in (5) and (7) are
polynomial in u, hence we can formally evaluate them at
complex points u ∈ CL. This is one of the important
features of our approach that allows us to avoid some
numerical issues.

3.3 Tailored operation points

Next, we restrict our attention to homogeneous parts of the
nonlinearity g(x) = cxs. Another key idea of our method is
to use tailored operating points u ∈ CL in order to simplify
the expression in (7). We are going to use Vandermonde-
like operating points parameterized by µ ∈ C:

uµ =
[
1 µ µ2 . . . µL−1

]T
.

In this case, it is not difficult to see that

g′(vT

kuµ) = cs(vT

kuµ)
s−1

= cs(µk−1a(µ))s−1 = csµ(k−1)(s−1)(a(µ))s−1,

where a(µ) = a1 + a2µ + · · · + aL1
µL1−1. Plugging this

expression in (7), we obtain that

∇f (s)(uµ) = (cs(a(µ))s−1)vµ (8)

where the vector vµ ∈ CL is defined as

vµ = V




b1
b2µ

(s−1)

...

bL2
µ(L2−1)(s−1)




=




a1b1
a2b1 + a1b2µ

(s−1)

a3b1 + a2b2µ
(s−1) + a1b3µ

2(s−1)

...

aL1
bL2−1µ

(L2−2)(s−1) + aL1−1bL2
µ(L2−1)(s−1)

aL1
bL2

µ(L2−1)(s−1)




,

where V is defined in (6).

3.4 Gradient as a projection of a rank-one term

We are going to show that vµ from the previous subsec-
tion can be conveniently written as a linear projection
(sampling) of a rank-one matrix. First of all, we introduce
the diagonal summation (“Hankelization”) operator H :
CL1×L2 → CL, which takes the sums on the antidiagonals

H (E) =




E1,1

E2,1 + E1,2

E3,1 + E2,2 + E1,3

...
EL1,L2−1 + EL1−1,L2

EL1,L2



.

Next, it is easy to see that vµ can be obtained by applying
the projection operator Pµ,s : CL1×L2 → CL, which is a
composition of the diagonal summation with the scaling
of columns by powers of µ:

Pµ,s(E) = H (EDiag{
[
1 µ(s−1) · · · µ(L2−1)(s−1)

]
}),

i.e., vµ = Pµ,s(ab
T). After that, we get that the gradient

in (8) can be expressed as follows

∇f (s)(uµ) = Pµ,s((cs(a(µ))
s−1)abT).

Finally, in the next subsections we are going to evaluate
the gradients at different operating points and collect
information from several kernels.

3.5 Combining several kernels and points

Now consider a set of N points in the complex plane

{µ1, . . . , µN} ⊂ C

at which we are evaluating the gradients of the homoge-
neous parts, and collecting them into one single vector:

y =




∇f (1)(u1)

∇f (2)(uµ1
)

...

∇f (2)(uµN
)

...

∇f (d)(uµ1
)

...

∇f (d)(uµN
)




∈ C
((d−1)N+1)L. (9)

Unlike the previous section, we now consider a general
polynomial nonlinearity:

g(t) = c1t+ c2t
2 + · · ·+ cdt

d.

By using the results of the previous subsection, we can
show that y is a projection of a rank-1 tensor:

y = P(T),

where the rank-one tensor is

T = a⊗ b⊗ h,

vectors a, b are as before, and hT =[
c1 2c2a(µ1)·· 2c2a(µN)·· dcd(a(µ1))

d-1 ·· dcd(a(µN))d-1
]
.

The sampling operator is defined as a concatenation of
sampling operators of tensor slices

P(T) =




P1,1(T :,:,1)
Pµ1,2(T :,:,2)

...
PµN ,2(T :,:,1+N)

...
Pµ1,d(T :,:,2+N(d−2))

...
PµN ,d(T :,:,1+N(d−1))




.

4. IDENTIFICATION AS TENSOR RECOVERY

4.1 Several branches and overall algorithm

We saw in the previous section that in the case of a single
branch, the vector of the gradients y evaluated at the
Vandermonde evaluation points uµk

, k = 1, . . . , N , is a
projection of a rank-one tensor. This implies that for a
sum of r branches the vector y is a projection of a tensor
having polyadic decomposition with r terms:

y = P(T), T = [[A,B,H]] =

r∑

ℓ=1

aℓ ⊗ bℓ ⊗ hℓ,

where aℓ, bℓ are the coefficients of the corresponding
filters, and hℓ are the vectors for the nonlinearities con-
structed as previously. Thus the identification problem
can be reformulated as a low-rank tensor recovery of the
tensor T from the samples y. Low-rank tensor recovery is
a generalization of the tensor completion problem to the
case of arbitrary sampling operators (and not just selection
of the elements as in a typical tensor completion problem).

This leads us to the following algorithm.

Algorithm 1. Input: number of branches r, filter sizes
L1, L2, Volterra kernels up to order d.

(1) Choose sampling points µ1, . . . , µN ∈ C.
(2) Evaluate the gradients of the homogeneous parts of f

at uµk
via contractions with the Volterra kernels (see

(5)).
(3) Build y as in (9) by evaluating the gradients via

Volterra kernels.
(4) Find the rank-r tensor T = [[A,B,H]] such that

y ≈P(T).
(5) Recover the filter coefficients from aℓ, bℓ.
(6) Recover the coefficients of the polynomials

gℓ(t) = cℓ,1t+ cℓ,2t
2 + · · ·+ cℓ,dt

d

by solving

hℓ ≈




cℓ,1
2cℓ,2(aℓ(µ1))

...
2cℓ,2(aℓ(µN))

...
dcℓ,d(aℓ(µ1))

d−1

...
dcℓ,d(aℓ(µN))d−1




Remark 2. In order to avoid numerical issues we restrict
the sampling points to the unit circle

T = {µ ∈ C : |µ| = 1}.

Also, in Algorithm 1, we allow for approximations of y
in order to account for modelling errors or noise. While
the estimation of gℓ(t) is a simple least squares problem,
the most difficult part becomes the CPD of a partially
observed tensor, which we detail in the next section.

4.2 Partially observed CPD

In order to find the rank-r tensor from its projection, we
are going to solve the following tensor recovery problem in
the least squares sense:

min
A,B,H

‖P([[A,B,H]])− y‖22,

where P : CL1×L2×L3 → C
M is a sampling operator.

We are going to use a well-known alternating least squares
(block coordinate descent) strategy Kolda and Bader
(2009). This strategy consists in alternate minimization
with respect to each variable with fixing other variables,
and can be summarized in the following algorithm.

Algorithm 2. (Partial ALS). Input: initializationsA0,B0,
H0.

(1) For k=1,2,.... until a stopping criterion is satisfied
(2) Ak ← argminA ‖P([[A,Bk−1,Hk−1]])− y‖22;
(3) Bk ← argminA ‖P([[Ak,B,Hk−1]])− y‖22;
(4) Hk ← argminA ‖P([[Ak,Bk,H]])− y‖22.
(5) End for

Each update in Algorithm 2 is a linear least squares prob-
lem, which explains the name “alternating least squares”.
Note that the overall cost function is nonconvex, and thus
the algorithm may suffer from local minima and other
convergence problems (Comon et al., 2009). However, this
is one of the most popular and practically successful strate-
gies. In what follows, we provide details on implementation
of updates for recovery of partially observed low-rank
tensors, which we did not find in the literature.

We assume that the operator P : CL1×L2×L3 → CM has
the matrix representation P ∈ CM×(L1L2L3), i.e.,

P(T) = P vec{T }.

Then the updates of ALS can be derived as follows:

• Updating A: vec{A} = (ZA)†y, where

ZA = P ((C ⊙B)⊠ IL1
).

• Updating B: vec{B} = (ZB)†y, where

ZB = P [c1 ⊠ IL2
⊠a1 · · · cr ⊠ IL2

⊠ar] .

0 50 100 150 200 250
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

Residual, different realizations

Fig. 2. Evolution of the residual (‖P([[A,B,H]]) − y‖2)
with respect to the number of cycles of ALS.

• Updating C: vec{C} = (ZC)†y, where

ZC = P [IL3
⊠ b1 ⊠a1 · · · IL3

⊠ br ⊠ar] .

For the practical implementation, we take advantage of the
sparsity of the matrix P : an easy inspection reveals that
P is block-diagonal with banded blocks.

5. EXPERIMENTS

Here we present an example that illustrates our approach.
The algorithms were implemented in MATLAB R2019b
on MacBook Air (2014, 1.4 GHz Intel i5, 4GB RAM).

We consider r = 2 branches and filter lengths L1 = 3,
L2 = 3 with the following coefficients:

A =

[
0.3 0.6
−0.4 0.2
0.1 0.3

]
, B =

[
0.3 0.2
0.2 0.3
0.1 0.01

]
,

and nonlinearities

g1(x1) = 3x3
1 − x2

1 + 5, g2(x2) = −5x
3
2 + 3x2 − 7. (10)

We use N = 30 operating points generated randomly
on the unit circle. We run Algorithm 1 for 10 different
starting points (i.i.d. Gaussian distributed), maximum 250
iterations, and show the convergence plots in Fig. 2. We
see that the algorithm converges linearly for all but one
initialization, which is reasonable due to nonconvexity of
the problem. For one of the realizations, the final residual
is ‖P([[A,B,H]]) − y‖2 = 8.48 · 10−9, and the estimated

factor Â is (with the first row normalized to 1 and shown
with 4 fractional digits of the mantissa),

Â =




1 1
−1.3333− i0.8305 · 10−8 0.3333 + i0.4203 · 10−9

0.3333− i0.2210 · 10−8 0.4999 + i0.7007 · 10−10


 ,

which is complex-valued, but recovers quite accurately the
true A (the same holds for B, not shown here).

In order to illustrate the reconstruction of the nonlin-
earities, instead of solving the least squares problem in
Algorithm 1, we apply the idea similar the visualization of
nonlinearities in Dreesen et al. (2015). In fact, the elements
of H can be combined in such a way to yield the values of
the derivatives of gℓ(· · ·) at the points a(µk). We perform
polynomial regression for degree 2, take the real parts and

obtain the following polynomials (with leading coefficient
normalized to 1), rounded to the 4 fractional digits

h1(t) = t2 − 0.2222t, h2(t) = t2 − 0.2.

after inspecting (10), we obtain that these are (up to
numerical errors) the derivatives of the original nonlin-
earities, (i.e., h1(t) = αg′1(t), h2(t) = αg′2(t) with α = 9).

6. CONCLUSION

We developed a novel promising algorithm for identifica-
tion of Wiener-Hammerstein systems from Volterra ker-
nels. Our approach has the following advantages:

• It is based on tensor recovery, rather than CPD with
structured factors, and can be solved with a simple
alternating least squares scheme.
• It does not need all the coefficients of the Volterra
kernels to be estimated: we just need to compute
contractions with Vandermonde-structured vectors
for a fixed number of operating points.

Furthermore, we believe that our method may have an
interesting interpretation from the frequency-domain iden-
tification perspective. Note that the operating points that
we use are typically taken on the unit circle, i.e., an
operating point is chosen as µk = e2πiωk . Viewed from a
frequency-domain point of view (Pintelon and Schoukens,
2012), contraction of Volterra kernels with Vandermonde-
structured vectors is somewhat similar to an “excitation”
of the first-order derivative at a frequency ωk. However,
for such an interpretation, we would potentially need to
consider the framework of the Volterra kernel identification
with complex valued inputs (Bouvier et al., 2019).

ACKNOWLEDGEMENTS

This research was supported by the ANR (Agence Na-
tionale de Recherche) grant LeaFleT (ANR-19-CE23-
0021); KU Leuven start-up-grant STG/19/036 ZKD7924;
KU Leuven Research Fund; Fonds Wetenschappelijk On-
derzoek - Vlaanderen (EOS Project 30468160 (SeLMA),
SBO project S005319N, Infrastructure project I013218N,
TBM Project T001919N, Research projects G028015N,
G090117N, PhD grants SB/1SA1319N, SB/1S93918, and
SB/151622); Flemish Government (AI Research Program);
European Research Council under the European Union’s
Horizon 2020 research and innovation programme (ERC
AdG grant 885682). P. Dreesen is affiliated to Leuven.AI
– KU Leuven institute for AI, Leuven, Belgium. Part of
this work was performed while P. Dreesen and M. Ishteva
were with Dept. ELEC of Vrije Universiteit Brussel, and
P. Dreesen was with CoSys-lab at Universiteit Antwerpen,
Belgium. The authors would like to thank the three anony-
mous reviewers for their useful comments that helped to
improve the presentation of the results.

REFERENCES

Birpoutsoukis, G., Marconato, A., Lataire, J., and
Schoukens, J. (2017). Regularized nonparametric
Volterra kernel estimation. Automatica, 82, 324–327.

Bouvier, D., Hélie, T., and Roze, D. (2019). Phase-
based order separation for Volterra series identifi-
cation. International Journal of Control. doi:
10.1080/00207179.2019.1694175.

Comon, P. (2014). Tensors : A brief introduction. IEEE
Signal Processing Magazine, 31(3), 44–53.

Comon, P., Luciani, X., and De Almeida, A.L. (2009).
Tensor decompositions, alternating least squares and
other tales. Journal of Chemometrics, 23(7-8), 393–405.

Dreesen, P. and Ishteva, M. (2021). Parameter estimation
of parallel Wiener-Hammerstein systems by decoupling
their Volterra representations. In 19th IFAC Symposium
on System Identification (SYSID 2021).

Dreesen, P., Ishteva, M., and Schoukens, J. (2015). De-
coupling multivariate polynomials using first-order in-
formation and tensor decompositions. SIAM Journal
on Matrix Analysis and Applications, 36(2), 864–879.

Dreesen, P., Westwick, D.T., Schoukens, J., and Ishteva,
M. (2017). Modeling Parallel Wiener-Hammerstein Sys-
tems Using Tensor Decomposition of Volterra Kernels,
volume 10169 of Lecture Notes on Computer Science,
16–25. Springer International Publishing, Cham.

Dreesen, P., De Geeter, J., and Ishteva, M. (2018). Decou-
pling multivariate functions using second-order informa-
tion and tensors. In Y. Deville, S. Gannot, R. Mason,
M.D. Plumbley, and D. Ward (eds.), Latent Variable
Analysis and Signal Separation, 79–88. Springer Inter-
national Publishing, Cham.

Giri, F. and Bai, E. (2010). Block-oriented Nonlinear
System Identification. Lecture Notes in Control and
Information Sciences. Springer.

Hollander, G. (2017). Multivariate polynomial decoupling
in nonlinear system identification. Ph.D. thesis, Vrije
Universiteit Brussel.

Katayama, T. (2005). Subspace Methods for System Iden-
tification. Springer.

Kibangou, A. and Favier, G. (2007). Toeplitz–
Vandermonde matrix factorization with application to
parameter estimation of Wiener–Hammerstein systems.
IEEE Signal Processing Letters, 14, 141–144.

Kolda, T. and Bader, B. (2009). Tensor decompositions
and applications. SIAM Review, 51(3), 455–500.

Ljung, L. (1999). System identification. Wiley.
Palm, G. (1979). On representation and approximation of
nonlinear systems. Biological Cybernetics, 34(1), 49–52.

Pintelon, R. and Schoukens, J. (2012). System Identi-
fication: A Frequency Domain Approach. Wiley, 2nd
edition.

Schetzen, M. (1980). The Volterra and Wiener Theories
of Nonlinear Systems. Wiley, New York.

Schoukens, M. and Tiels, K. (2017). Identification of
block-oriented nonlinear systems starting from linear
approximations: A survey. Automatica, 85, 272–292.

Usevich, K. (2014). Decomposing multivariate polynomi-
als with structured low-rank approximation. In 21th
International Symposium on Mathematical Theory of
Networks and Systems (MTNS 2014).

Van Mulders, A., Vanbeylen, L., and Usevich, K.
(2014). Identification of a block-structured model
with several sources of nonlinearity. In 2014 Eu-
ropean Control Conference (ECC), 1717–1722. doi:
10.1109/ECC.2014.6862455.

Westwick, D., Ishteva, M., Dreesen, P., and Schoukens, J.
(2017). Tensor factorization based estimates of parallel
Wiener Hammerstein models. In Proc. 20th IFAC
World Congress (IFAC 2017), volume 50(1) of IFAC-
PapersOnLine, 9468–9473. Toulouse, France.

