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Abstract—This paper presents a new state-space model (SSM)
to represent the four types of currents flowing through a Modular
Multilevel Converter (MMC). In line with the converter topology,
the model itself is modular. In other words, its configuration
adapts itself to the number of AC phases, to the active or
passive nature of the AC-side grid, to the connection between the
AC and DC neutral points, and to the number of submodules.
The model describes the influence of the MMC arm voltages
on the currents using an average behavior of the submodules.
Simulations performed using a software dedicated to electrical
engineering systems demonstrate the value and the accuracy of
the proposed model.

Index Terms—MMC, State-Space Model, Polyphased System,
Modular Model, Current Model

I. INTRODUCTION

A. Modular Multilevel Converters

Multilevel converters have significant advantages over clas-
sical converters for high power applications. They make it
possible to lower the stress on the switching cells as well
as the total harmonic distortion [1]. The modular multilevel
converter (MMC) has a topology that is made of identical
series-connected submodules (SM) [2]. The possibility of
adding submodules gives scalability to the MMC for high-
power and high-voltage applications. Therefore, the converter
has enabled an acceleration of the deployment of HVDC
transmission systems [3]. The more SMs an MMC has, the
more degrees of freedom are available to control the power
flowing trough the MMC.

B. Orientation of the research work

This paper contributes to an overall research objective aimed
to develop control allocation methods for the MMC. The prin-
ciple of this control method is to take advantage of the large
number of redundant control variables to operate the system
optimally [4]. In the case of the MMC, several SM connection
configurations are possible to achieve the same level of voltage
in an arm. Control allocation thus seems particularly suitable
if a state-space model (SSM) can be developed that makes
it possible to fully exploit this redundancy. In the objective
to generalize the method, the model should also be modular,
reflecting the nature of the converter that it represents.

The MMC is characterized by the quantity N of SMs
present in each of its arms and by the number m of phases in
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Fig. 1. Electrical diagram of the MMC with m phases and N SM per arm

the AC network to which it is connected, as shown in Fig.1.
The model is thus modular according to these two quantities
in order to allow the modeling, simulation and control of any
MMC.

C. Assumptions about the submodules

Each SM is itself a DC-DC converter. There is a diversity of
submodule topologies [5], but the principle remains the same:
each SM contains a voltage source in the form of a capacitor
(or capacitors) able to impose a voltage level within the arm
to which the SM belongs. The imposed voltage level can be
modulated by acting on the switches of the SM to connect it to
the arm [6]. The half-bridge (chopper cell) and the full-bridge
cell [5] are the main topologies used in the SMs composing
most MMCs. In these two cases, the equilibrium voltage of a
capacitor is VDC/N , with VDC = vp−vn the DC bus voltage,
[6]. Note that the subscript p refers to the positive pole of the
DC bus and the subscript n to the negative one.

Since each SM contains a capacitor, the impedance encoun-
tered by the current flowing through an arm depends on the
capacitance C of the capacitors. In the approach used here,



the choice is made to work with an average model for the
SMs. Thus, the SMs of an entire arm are modeled by the
equivalent capacitance Ceq = C/N resulting from the series
connection of the N SMs, as is done in [7], [8] using the
principle of average model detailed in [9]. In this approach,
capacitor balancing is assumed to be ensured independently.
As a consequence, the set of SMs of an arm is replaced
by a variable voltage source, as shown in [10]–[12]. The
representation is shown on Fig. 1 as vx,y (x ∈ {p, n} and
y ∈ {y1, . . . , ym}). Note that yk refers to k-th phase on AC-
side.

D. Novelty of the proposed model

From a high-level point-of-view, there are at most four types
of currents that can appear during the operation of the MMC:
the DC source current Is, the AC output currents Io, the
circulating currents between the arms of the MMC Ic, and the
common mode current Im when the AC grid and the DC bus
neutral points are connected. The behavior of these different
currents is determined by the voltage levels in each arm of the
MMC (vx,y , x ∈ {p, n} and y ∈ {y1, . . . , ym}), the DC bus
voltage (represented by vp and vn), and the AC voltages (vy1

to vym
).

Previous works have decoupled the dynamics of these
different current types for three-phase electrical systems like
in [10], [13] where a matrix model is derived. A first novelty
of the present paper is, taking inspiration from these studies
and [14], to derive a non-matrix decoupled model of the
currents extended to the m-phase case. The approaches of
[7], [11], [14] shape a state-space model representing the
dynamics of only three out of the four possible current types.
Compared to [14], the paper presents a more limited, but also
more explicit derivation of the converter model, in addition
to considering the presence of a common mode current. The
novelty of the current developed state-space model is to take
into consideration all four possible current types, the possible
active nature of the AC-side grid and the possible connection
of the AC and DC neutrals, as well as extending it to the m-
phase case. To put it in a nutshell, the interest of the model
introduced here is thus to have a state-space model which
readily adapts to m and N without loss of generality on the
possibilities of the DC bus, the AC network and the connection
between the two.

E. Outline

Throughout the article, attention will be focused on the
high-level model of the MMC. In a first step, the decoupled
current model will be developed, from which the full order
state-space model of the currents will be derived. The proposed
model will then be tested in a parallel simulation using
the PLECS® 1 software with MATLAB® -Simulink® . As
PLECS® is a simulation software that embeds a detailed
description of electrical components, its accuracy has been

1PLECS (Piecewise Linear Electrical Circuit Simulation) is a circuit-based
simulation software for systems in electrical engineering.

proven. It will be considered as the reference allowing us to
evaluate the accuracy of the introduced model.

II. CURRENT STATE-SPACE MODEL

A. Coupled Current Dynamics

In order to explain the polyphase model, Fig. 2 focuses on a
given leg, and thus phase, of the MMC structure. To simplify
the notation, any time variable x(t) will be denoted x and
the derivative operator is replaced by the LAPLACE variable,
s. Applying the Kirchhoff voltage law on the current path
flowing through the positive pole of the DC bus gives the
following equation:

∀y ∈ {y1, . . . , ym} :{
vp = vy + (Ro + Los)iy + (R+ Ls)ip,y

+vp,y + (Rs + Lss)ip + vnAD

(1)

Where vnAD
= vnAC

− vnDC
is the voltage between the DC-

side and AC-side neutral points. Applying the same voltage
law on the path linking to the negative pole of the DC bus
gives:

∀y ∈ {y1, . . . , ym} :{
vn = vy + (Ro + Los)iy + (R+ Ls)in,y

+vn,y + (Rs + Lss)in + vnAD

(2)

Thus, (1) and (2) are summarized by the following equation
to which the name (αx,y) is given:

∀x ∈ {p, n},∀y ∈ {y1, . . . , ym} :

(αx,y) :

{
vy + (Ro + Los) iy + (R+ Ls)ix,y + vx,y
+(Rs + Lss) ix − vx = −vnAD

(3)
Equation (3) brings to light the fact that the variable voltage
sources, represented by vx,y , control different types of current:
is, iy and ix,y . In other words, the behaviors of different
current types are coupled. In the following, current decoupling
will be addressed and the definition of the four types of
current, previously mentionned in paragraph I-D, will be
stated.

B. Current Decomposition

The currents flowing in the MMC can be split as shown in
Fig. 3. Indeed, a first contribution will come from the common
mode current im, a second from the DC bus is, a third from
the currents flowing between the arms icy and a fourth from
the AC side output ioy [13]. According to the orientation
convention of each type of current in the MMC legs, using
the superposition of the four current types in each arm gives
∀y ∈ {y1, . . . , ym}:

ip,y = im + is + icy + ioy (4)
in,y = im − is − icy + ioy (5)

The sum and difference of (4) and (5) yield:

∀y ∈ {y1, . . . , ym},
{
ip,y + in,y = 2(im + ioy )
ip,y − in,y = 2(is + icy )

(6)

From Fig. 3 (c) and (d), applying Kirchhoff’s current law to
the MMC structure implies that the sum of the circulating
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currents is null, as well as the sum of the output currents.
Thus,

∑ym

y=y1
icy = 0 and

∑ym

y=y1
ioy = 0, which, in turn,

applied to the sum of (4) and (5) on all the legs, gives:

ip =

ym∑
y=y1

ip,y = m(im + is) (7)

in =

ym∑
y=y1

in,y = m(im − is) (8)

Therefore, taking the sum and difference of (7) and (8) implies
that:

2mim = ip + in =

ym∑
y=y1

ip,y + in,y (9)

2mis = ip − in =

ym∑
y=y1

ip,y − in,y (10)

Fig. 2 brings another usefull equation. Indeed, the current
flowing towards the AC-side is found, using the Kirchhoff’s
current law, to be:

∀y ∈ {y1, . . . , ym}, iy = ip,y + in,y (11)

Substituting ip,y + in,y from (6), it follows that:

∀y ∈ {y1, . . . , ym}, iy = 2(im + ioy ) (12)

For the upcoming developments, consider the following ex-
pressions:

∀j ∈ [[1;m]],

{
(m− 1)iyj

−
∑m

k 6=j iyk

(m− 1)(ip,yj − in,yj )−
∑m

k 6=j(ip,yk
− in,yk

)
(13)
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Substituting iyj and iyk
in the first of those two expressions

using (12) leads to:

(m−1)iyj
−

m∑
k 6=j

iyk
= (m−1)2(im+ ioyj )−

m∑
k 6=j

2(im+ ioyk )

(14)
Since im does not depend on the sum index, it can be moved
outside of the summation. Note that

∑m
k 6=j only contains m−1

terms:
m∑

k 6=j

2(im + ioyk ) = (m− 1)2im +

m∑
k 6=j

2ioyk (15)

Combining (15) and (14) gives:

(m− 1)iyj −
m∑

k 6=j

iyk
= (m− 1)2ioyj −

m∑
k 6=j

2ioyk (16)

As explained previously, the sum of the entire set of output
currents is null since the electrical current decoupling induces
it. Accordingly:

m∑
k=1

ioyk = 0⇐⇒ ioyj = −
m∑

k 6=j

ioyk (17)

Replacing −
∑m

k 6=j ioyk from this equation in (16) using (17),
results in:

(m− 1)iyj −
m∑

k 6=j

iyk
= (m− 1)2ioyj +2ioyj = 2mioyj (18)

Moving −iyj within the sum reworks the previous equation
into:

miyj
−

m∑
k=1

iyk
= 2mioyj (19)



Now subsituting iyj
thanks to (11) and using the contribution

of (9) gives:

m(ip,yj
+ in,yj

)− (ip + in) = 2m ioyj (20)

Therefore, it is concluded that:

∀y ∈ {y1, . . . , ym}, m(ip,y+in,y)−(ip+in) = 2m ioy (21)

This equation applies to any output current ioy .
The same approach can be followed for the circulating

current. Substituting ip,yj−in,yj and ip,yk
−in,yk

in the second
expression of (13) using (6) leads to:

(m− 1)(ip,yj
− in,yj

)−
∑m

k 6=j(ip,yk
− in,yk

) =

(m− 1)2(is + icyj )−
∑m

k 6=j 2(is + icyk )
(22)

Since is does not depend on the index of the summation, the
term (m− 1)2is is moved out of the sum, giving:

(m−1)2(is+icyj )−
m∑

k 6=j

2(is+icyk ) = (m−1)2icyj−
m∑

k 6=j

2icyk

(23)
Since the sum of the entire set of circulating currents is null,
it follows that:

m∑
k=1

icyk = 0⇐⇒ icyj = −
m∑

k 6=j

icyk (24)

Substituting −
∑m

k 6=j icyk from (24) in (23), results in:

(m− 1)2(is + icyj )−
∑m

k 6=j 2(is + icyk ) =

(m− 1)2icyj + 2icyj = 2micyj
(25)

Combining (22) and (25) yields:

(m− 1)(ip,yj
− in,yj

)−
m∑

k 6=j

(ip,yk
− in,yk

) = 2micyj (26)

Moving −(ip,yj
− in,yj

) in the previous equation results in:

m(ip,yj
− in,yj

)−
m∑

k=1

(ip,yk
− in,yk

) = 2micyj (27)

From the contribution of (10) in (27), one finds:

m(ip,yj
− in,yj

)− (ip − in) = 2m icyj (28)

Consequently, the conclusion is that:

∀y ∈ {y1, . . . , ym}, m(ip,y−in,y)−(ip−in) = 2m icy (29)

Finally, the process followed in this part of the paper
produced four useful equations, one for each type of current,
that will help deriving the decoupled dynamics of all four
currents independently. These useful equations are (9), (10),
(21) and (29). To facilitate the forthcoming derivations, these
equations are copied below. Thus, ∀y ∈ {y1, . . . , ym}:

2m im = ip + in =

ym∑
y=y1

(ip,y + in,y) (30)

2m is = ip − in =

ym∑
y=y1

(ip,y − in,y) (31)

2m ioy = m(ip,y + in,y)− (ip + in) (32)
2m icy = m(ip,y − in,y)− (ip − in) (33)

So as to derive the dynamic behavior of each type of
current one can rely on those four equations. Note that,
in (1) (or (αp,y)), the arm current ip,y appears similarly
to in,y in (2) (or (αn,y))

2. Accordingly, (30) suggests that
in order to extract the dynamics of the common mode
current im, the formula

∑ym

y=y1
((αp,y) + (αn,y)) should be

developed. Following the same logic, (31) suggests that
the dynamics of the DC source current is will be found
from

∑ym

y=y1
((αp,y)− (αn,y)). For the two remaining cur-

rent types, the reasoning will lead to more complex for-
mulas: m ((αp,y) + (αn,y)) −

∑ym

y=y1
((αp,y) + (αn,y)) for

the output current ioy behavior according to (32) and
m ((αp,y)− (αn,y))−

∑ym

y=y1
((αp,y)− (αn,y)) for the circu-

lating current icy according to (33).

C. Decoupled Current Dynamics
1) Common Mode Current: For the common mode current

im, the objective is to expand
∑ym

y=y1
((αp,y) + (αn,y)). In

a first step, using (3) or (1) and (2) gives the following
expression for (αp,y) + (αn,y):

vn + vp = 2vy + [(R+ 2Ro) + (L+ 2Lo)s](ip,y + in,y)
+(Rs + Lss)(ip + in) + 2vnAD

+ (vp,y + vn,y)
(34)

Summing (34) on the entire set of phases gives∑ym

y=y1
((αp,y) + (αn,y)):

m(vn + vp) = 2
∑ym

y=y1
vy

+[(R+ 2Ro) + (L+ 2Lo)s](ip + in)
+m(Rs + Lss)(ip + in)
+2mvnAD

+
∑ym

y=y1
(vp,y + vn,y)

(35)

From (30), ip + in = 2mim. Substituting ip + in in (35) and
dividing by 2m gives:

(vn+vp)
2 = 1

m

∑ym

y=y1
vy

+[(mRs +R+ 2Ro) + (mLs + L+ 2Lo)s]im
+vnAD

+ 1
2m

∑ym

y=y1
(vp,y + vn,y)

(36)
As im is the only current appearing in this equation, (36) is the
differential equation governing the common mode current. A
first decoupled differential equation was obtained. To simplify
the equation, the following definitions are introduced:

Req
m = mRs +R+ 2Ro and Leq

m = mLs + L+ 2Lo

NΣ(m) = 1
m [1, . . . , 1] ∈M1,m(R)

Im = [im]
Vx = [vp, vn]

T

Vy = [vy1
, . . . , vym

]T

VnAD
= [vnAD

] = [vnAC
− vnDC

]

Vp,y = [vp,y1
, . . . , vp,ym

]T

Vn,y = [vn,y1
, . . . , vn,ym

]T

(37)
Using these definitions, (36) becomes:

(Req
m + Leq

ms)Im = − 1
2NΣ(m)

(
Vp,y + Vn,y

)
+
(
NΣ(2)Vx −NΣ(m)Vy −NΣ(1)VnAD

) (38)

2Equation (1) is also named (αp,y) and (2) is also named (αn,y), see (3).



The color of this equation and the upcoming ones correspond
to those of Fig. 3. In the case where the DC and AC neutrals
are disconnected, the common mode current is structurally
forced to zero, transforming the previous equation into:

VnAD
= − 1

2NΣ(m)
(
Vp,y + Vn,y

)
+NΣ(2)Vx −NΣ(m)Vy

(39)

2) Source Current (DC-side): For the source current is,
the objective is to expand

∑ym

y=y1
((αp,y)− (αn,y)). First of

all, using (3) or (1) and (2) gives the following equation for
(αp,y)− (αn,y):

vp − vn = (R+ Ls)(ip,y − in,y)
+(Rs + Lss)(ip − in) + (vp,y − vn,y)

(40)

Summing (40) on the entire set of phases yields∑ym

y=y1
((αp,y)− (αn,y)):

m(vp − vn) = (R+ Ls)(ip − in)
+m(Rs + Lss)(ip − in) +

∑ym

y=y1
(vp,y − vn,y)

(41)
From (31), ip − in = 2mis. Substituting ip − in in (41) and
dividing by 2m implies that:

(vp−vn)
2 = [(mRs +R) + (mLs + L)s]is

+ 1
2m

∑ym

y=y1
(vp,y − vn,y)

(42)

A single type of current (is) appears in equation (42), so that
the second decoupled differential equation has been obtained.
As was done previously for the common mode current, specific
notations are introduced in order to simplify the equation: Req

s = mRs +R and Leq
s = mLs + L

N∆(m) = 1
m [mIm − Jm] ∈Mm(R)

Is = [is]
(43)

Where Im is the identity matrix of size m and Ja,b is the
(a× b) matrix filled with 1′s, which means that Jm = Jm,m.
Using the definitions, (42) becomes:

(Req
s + Leq

s s)Is = − 1
2NΣ(m)

(
Vp,y − Vn,y

)
+
(
[1 0]N∆(2)Vx

) (44)

3) Circulating Current: For the circulating current, the
same reasoning as the one applied for the common mode
current and the source current will be applied. How-
ever, the procedure will be slightly more complex. For
a given circulating current icy , the objective is to trans-
form m ((αp,y)− (αn,y)) −

∑ym

y=y1
((αp,y)− (αn,y)). Since∑ym

y=y1
((αp,y)− (αn,y)) was already developed in (41),

m ((αp,y)− (αn,y)) is expressed using (1) and (2), which
yields the following equation for m((αp,y)− (αn,y)):

m(vp − vn) = m(R+ Ls)(ip,y − in,y)
+m(Rs + Lss)(ip − in) +m(vp,y − vn,y)

(45)

Subtracting
∑ym

y=y1
((αp,y)− (αn,y)) in (41) from

m((αp,y) − (αn,y)) in (45) gives m ((αp,y)− (αn,y)) −∑ym

y=y1
((αp,y)− (αn,y)):

0 = (R+ Ls) (m(ip,y − in,y)− (ip − in))
+
(
m(vp,y − vn,y)−

∑ym

y=y1
(vp,y − vn,y)

) (46)

From (33), m(ip,y − in,y) − (ip − in) = 2micy . Substituting
m(ip,y − in,y)− (ip − in) in (46) and dividing by 2m yields:

0 = (R+ Ls)icy

+ 1
2m

(
m(vp,y − vn,y)−

∑ym

y=y1
(vp,y − vn,y)

) (47)

As was done previously, notations are introduced to simplify
equation (47): {

Req
c = R and Leq

c = L
Ic = [ic1 , . . . , icm ]T

(48)

Since (47) is true for any leg (i.e., any y), the following
equation encapsulates the dynamics of all circulating currents
into a single vector differential equation with m elements:

(Req
c + Leq

c s)Ic = − 1
2N∆(m)

(
Vp,y − Vn,y

)
(49)

4) Output Current (AC-side): For the output current,
the same procedure used for the circulating current is ap-
plied. For a given output current ioy , the objective is
to develop m ((αp,y) + (αn,y)) −

∑ym

y=y1
((αp,y) + (αn,y)).

Since
∑ym

y=y1
((αp,y) + (αn,y)) was already expanded in (35),

m ((αp,y) + (αn,y)) is expressed using (1) and (2):

m(vp + vn) = 2mvy
+m[(R+ 2Ro) + (L+ 2Lo)s](ip,y + in,y)
+m(Rs + Lss)(ip + in)
+2mvnAD

+m(vp,y + vn,y)
(50)

Subtracting
∑ym

y=y1
((αp,y) + (αn,y)) in (35) from

m((αp,y) + (αn,y)) in (50) gives m ((αp,y) + (αn,y)) −∑ym

y=y1
((αp,y) + (αn,y)):

0 = 2
(
mvy −

∑ym

y=y1
vy

)
+[(R+ 2Ro) + (L+ 2Lo)s] (m(ip,y + in,y)− (ip + in))

+
(
m(vp,y + vn,y)−

∑ym

y=y1
(vp,y + vn,y)

)
(51)

From (32), (m(ip,y + in,y)− (ip + in)) = 2mioy . Substitut-
ing (m(ip,y + in,y)− (ip + in)) in (51) and dividing by 2m
gives:

− 1
m

(
mvy −

∑ym

y=y1
vy

)
= [(R+ 2Ro) + (L+ 2Lo)s]ioy

+ 1
2m

(
m(vp,y + vn,y)−

∑ym

y=y1
(vp,y + vn,y)

)
(52)

The following notation is introduced to simplify equation
(52): {

Req
o = R+ 2Ro and Leq

o = L+ 2Lo

Io = [io1 , . . . , iom ]T
(53)

Since (52) is true for any leg (i.e., any y), the following
equation encapsulates the dynamics of all output currents into
a single vector differential equation with m elements:

(Req
o + Leq

o s)Io = − 1
2N∆(m)

(
Vp,y + Vn,y

)
+
(
−N∆(m)Vy

) (54)



At this point, all four types of current have been shown to
satisfy independent differential equations driven by the MMC
arm voltages. Thus, the currents dynamics are decoupled
by current type and are governed by (38) for the common
mode current, by (44) for the DC source current, by (49) for
the circulating currents and by (54) for the AC output currents.

D. Full-Order Current State-Space Model

The state variables of the model are the components of the
currents, so the state vector is:

XHL = [Im, Is, Ic
T , Io

T ]T (55)

Equations (38) and (44) both represent the behavior of a
single current while (49) and (54) describe the dynamics of
m different currents, with a total of 2m + 2 currents. The
state vector XHL contains all these currents, so the order of
the state-space model is 2m + 2 and varies according to the
number of phases of the AC network.

The state-space model is given by the following state
equation:{

ẊHL = AHLXHL +BHLUHL + EHL

YHL = CHLXHL +DHLUHL
(56)

where:

AHL=


−Req

m

Leq
m

−Req
s

Leq
s

−Req
c

Leq
c
Im

−Req
o

Leq
o
Im

∈M2m+2(R)

BHL=− 1
2


NΣ(m)/Leq

m NΣ(m)/Leq
m

NΣ(m)/Leq
s −NΣ(m)/Leq

s

N∆(m)/Leq
c −N∆(m)/Leq

c

N∆(m)/Leq
o N∆(m)/Leq

o

∈M2m+2,2m(R)

CHL=


1

1
Im−1 Om−1,1

Im−1 Om−1,1


∈M2m,2m+2(R)

DHL=
[
O2m,2m

]
∈M2m(R)

UHL= [vp,y1 , . . . , vp,ym , vn,y1 , . . . , vn,ym ]T ∈M2m,1(R)

EHL=


NΣ(2)/L

eq
m

[1 0] ·N∆(2)/Leq
s

0
0

Vx +


−NΣ(m)/Leq

m

0
0

−N∆(m)/Leq
o

Vy
+


−NΣ(1)/L

eq
m

0
0
0

VnAD
∈M2m+2,1(R)

(57)
and Oa,b is the (a × b) null matrix. As the sum of the
circulating currents and the sum of the output currents are

equal to zero, one of the currents is redundant. The same is
true for the output currents. The choice was made to drop the
last circulating current icm out of the output vector YHL, and
the last output current iom . Hence the form taken by CHL.

The control variables are the arm voltages vx,y . It is readily
possible to adapt equations (55)-(57) to the number m of
phases and the equations are independent of N . All together,
they embody the General Polyphased Full Order Current
State-Space Model (GPFOCSSM).

III. MODEL SIMULATION AND TESTING

A. Test Procedure

To ensure that the model developed here properly represents
the behavior of the MMC currents, a verification procedure is
set up using MATLAB® . The state-space model is coded
in Simulink® using a Matlab-Function able to adapt itself
depending on the number of MMC legs and neutral points
connection, as shown in Fig. 4. In parallel, the electrical
diagram of Fig. 1 is also simulated with the PLECS®-Blockset
in Simulink®, as shown in Fig. 5.

The model as well as the electrical circuit are simulated
jointly, and the results are compared as shown on Fig. 6. In the
accuracy tests to follow, the plots will show the four types of
currents, including those computed by the state-space model
as well as those computed by the circuit simulator. Finally,
the plots will highlight the difference between the two sets of
electrical signals.

To verify the model, the most general operating case is
considered. This case is characterized by an active AC grid,
the AC and DC neutrals connected and non-zero control
signals. This is implemented by: ∀y ∈ {y1, . . . , ym}, vy =
V̂AC sin(ωot − ϕy) with ϕyk

= (k − 1)2π/m for having an
active AC grid; by an electrical link in the PLECS® diagram
between the AC and DC neutrals to connect them3; and by
∀x ∈ {p, n},∀y ∈ {y1, . . . , ym}, vx,y 6= 0. The question
then arises as the choice of non-zero control signals vx,y .
In a first approach, the currents are not controlled and the

3Connecting neutrals implies that vnAC = vnDC , thus VnAD = 0 for the
model and the circuit simulator, therefore εVnAD

= 0. This error won’t be
shown in the upcoming curves, thus 4 out of 5 error curves are presented.

Fig. 4. State-space model Matlab Function used in Simulink®



Fig. 5. Electrical circuit built with PLECS® Blockset - here for m = 3
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IoPLECS
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ǫIo

ǫIc

ǫIs

ǫIm

Test Control

Signals Generation

UHL

Fig. 6. Validation principle of the state-space model in Simulink®

direct modulation method is used (as in [15], among others).
Accordingly:

∀y ∈ {y1, . . . , ym},
{
vp,y = VDC

2 [1−M cos(ωot− ϕy)]
vn,y = −VDC

2 [1 +M cos(ωot− ϕy)]
(58)

The the modulation index M is set to 1. The choice of such
control signals is justified by the fact that they make it possible
to sweep the entire voltage range that can be reached by
the MMC arms. However, using directly those control signals
won’t allow all four types of currents to evolve over time.
For example, (36) implies that the common mode current is
governed by

∑ym

y=y1
(vp,y +vn,y), and according to the choice

made in (58), vp,y+vn,y = −VDCM cos(ωot−(k−1)2π/m).
Generally,

∑ym

y=y1
cos(ωot− (k−1)2π/m) = 0, and therefore∑ym

y=y1
(vp,y+vn,y) = 0. In other words, the control signals do

not influence the common mode current. Other control signals
are therefore necessary to fully test the model. A slight update
in the definitions of (58) will enable this feature for all curents:

∀y ∈ {y1, . . . , ym},
{
vp,y = VDC

2 [1−M cos(ωot− ϕy)]
vn,y = −VDC

2

[
1
2 + M

2 cos(ωot− ϕy)
]

(59)

B. Accuracy Assessment of the Model

Simulations were carried out for several operating cases and,
in particular, for several values of the number of m of phases.
To highlight the interest of the model developed here, the
curves obtained for the case where m = 7 are shown. The

TABLE I
MMC SIMULATION PARAMETERS

Meaning Symbol Value
Bus voltage VDC 600 V

Half-bus voltage vp = −vn VDC/2 = 300 V
Bus resistance and inductance Rs, Ls 50 mΩ, 2 mH

Switching frequency and period fs, Ts 2 kHz, 500 µs
Arm resistance and inductance R, L 10 mΩ, 5 mH

AC active voltage V̂AC 230 ·
√

2 ' 325 V
AC grid frequency and period fo, To 50 Hz, 20 ms

AC grid pulsation ωo 2πfo ' 314 rad/s
AC load resistance and inductance Ro, Lo 40 Ω, 5 mH

Simulation time step Tstep Ts/50 = 10 µs
Simulation end time tend 7 · To = 140 ms

parameters of the MMC correspond to those of a converter
available at the LAPLACE laboratory, part of which are given
in [16]. The whole set is listed in Table I.

The control signals defined in (59) were applied in the
simulation for seven phases, resulting in the following current
curves. Note that important circulating currents appear, this
is due to the unusual forms of vp,y and vn,y using different
modulation indexes.

For each type of current, the bottom plot shows the differ-
ence between the current from the state-space model and the
same current from PLECS®. Figs. 7, 8, 9, and 10 show that
the maximum difference between GPFOCSSM and PLECS®
is on the circulating current Ic. The deviation is of the order
of 2.07 ·10−9A which is very low compared to the magnitude
of the current signals. This allows to validate the accuracy of
the state-space model.

IV. CONCLUSIONS

A state-space model of the MMC was derived to describe
the dynamics of the currents with the arm voltages as input
variables. A first feature of the model was the decomposition
into the four independent current components for the general
case of electrical polyphased systems. An important feature of
the model was its modularity both in the number m of phases
and in the number N of submodules. Also, the model was

Fig. 7. Common mode current and difference with PLECS® - m = 7



Fig. 8. Source currents and difference with PLECS® - m = 7

Fig. 9. Circulating current #5 out of 7 and difference PLECS® - m = 7

Fig. 10. Output current #5 out of 7 and difference PLECS® - m = 7

developed to be adaptive to the active or passive nature of
the AC-grid as well as to the connection between the AC and
DC neutrals. The model was evaluated in simulation and the
results were found consistent with a circuit-based simulation
software, thus validating the state-space model’s accuracy.

The model was derived using simplifying assumptions con-
cerning the influence of the capacitors of each submodules. It
could be interesting to remove these assumptions in order to

obtain a more general model.
The first benefit of the developed model is that it enables the

analysis of all four current types flowing throught an MMC
connected to an AC grid having any given number of phases,
for any type of neutral connection and any nature of the AC-
side grid. Thanks to this model it will be possible to design
generic current control algorithms for MMCs. Thus to control
a given MMC it will be sufficient to specify to the algorithm
the parameters of the MMC, of the AC network and of the DC
bus without having to undergo major changes in the control
algorithm structure.
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and H.-P. Nee, “Evaluation of control and modulation methods for mod-
ular multilevel converters,” in The 2010 International Power Electronics
Conference (ECCE ASIA), Jun. 2010, pp. 746–753.

[16] N. Serbia, “Modular multilevel converters for HVDC power stations,”
Ph.D. Thesis, Institut National Polytechnique de Toulouse, 2014.


