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ICE: Inter-instance Contrastive Encoding for Unsupervised Person Re-identification

Unsupervised person re-identification (ReID) aims at learning discriminative identity features without annotations. Recently, self-supervised contrastive learning has gained increasing attention for its effectiveness in unsupervised representation learning. The main idea of instance contrastive learning is to match a same instance in different augmented views. However, the relationship between different instances has not been fully explored in previous contrastive methods, especially for instance-level contrastive loss. To address this issue, we propose Interinstance Contrastive Encoding (ICE) that leverages interinstance pairwise similarity scores to boost previous classlevel contrastive ReID methods. We first use pairwise similarity ranking as one-hot hard pseudo labels for hard instance contrast, which aims at reducing intra-class variance. Then, we use similarity scores as soft pseudo labels to enhance the consistency between augmented and original views, which makes our model more robust to augmentation perturbations. Experiments on several largescale person ReID datasets validate the effectiveness of our proposed unsupervised method ICE, which is competitive with even supervised methods. Code is made available at https://github.com/chenhao2345/ICE.

Introduction

Person re-identification (ReID) targets at retrieving an person of interest across non-overlapping cameras by comparing the similarity of appearance representations. Supervised ReID methods [28,[START_REF] Hao Chen | Learning discriminative and generalizable representations by spatial-channel partition for person re-identification[END_REF][START_REF] Hao Luo | Bag of tricks and a strong baseline for deep person re-identification[END_REF] use human-annotated labels to build discriminative appearance representations which are robust to pose, camera property and view-point variation. However, annotating cross-camera identity labels is a cumbersome task, which makes supervised methods less scalable in real-world deployments. Unsupervised methods [START_REF] Lin | A bottom-up clustering approach to unsupervised person re-identification[END_REF][START_REF] Lin | Unsupervised person re-identification via softened similarity learning[END_REF][START_REF] Wang | Unsupervised person reidentification via multi-label classification[END_REF] directly train a model on unlabeled data and thus have a better scalability.

Most of previous unsupervised ReID methods [27,[START_REF] Ge | Mutual meanteaching: Pseudo label refinery for unsupervised domain adaptation on person re-identification[END_REF][START_REF] Zhai | Multiple expert brainstorming for domain adaptive person re-identification[END_REF] are based on unsupervised domain adaptation (UDA).

UDA methods adjust a model from a labeled source domain to an unlabeled target domain. The source domain provides a good starting point that facilitates target domain adaptation. With the help of a large-scale source dataset, state-ofthe-art UDA methods [START_REF] Ge | Mutual meanteaching: Pseudo label refinery for unsupervised domain adaptation on person re-identification[END_REF][START_REF] Zhai | Multiple expert brainstorming for domain adaptive person re-identification[END_REF] significantly enhance the performance of unsupervised ReID. However, the performance of UDA methods is strongly influenced by source dataset's scale and quality. Moreover, a large-scale labeled dataset is not always available in the real world. In this case, fully unsupervised methods [START_REF] Lin | A bottom-up clustering approach to unsupervised person re-identification[END_REF][START_REF] Lin | Unsupervised person re-identification via softened similarity learning[END_REF] own more flexibility, as they do not require any identity annotation and directly learn from unlabeled data in a target domain.

Recently, contrastive learning has shown excellent performance in unsupervised representation learning. State-ofthe-art contrastive methods [START_REF] Wu | Unsupervised feature learning via non-parametric instance discrimination[END_REF][START_REF] Chen | A simple framework for contrastive learning of visual representations[END_REF][START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF] consider each image instance as a class and learns representations by matching augmented views of a same instance. As a class is usually composed of multiple positive instances, it hurts the performance of fine-grained ReID tasks when different images of a same identity are considered as different classes. Self-paced Contrastive Learning (SpCL) [13] alleviates this problem by matching an instance with the centroid of the multiple positives, where each positive converges to its centroid at a uniform pace. Although SpCL has achieved impressive performance, this method does not consider interinstance affinities, which can be leveraged to reduce intraclass variance and make clusters more compact. In supervised ReID, state-of-the-art methods [START_REF] Hao Chen | Learning discriminative and generalizable representations by spatial-channel partition for person re-identification[END_REF][START_REF] Hao Luo | Bag of tricks and a strong baseline for deep person re-identification[END_REF] usually adopt a hard triplet loss [START_REF] Hermans | In defense of the triplet loss for person re-identification[END_REF] to lay more emphasis on hard samples inside a class, so that hard samples can get closer to normal samples. In this paper, we introduce Inter-instance Contrastive Encoding (ICE), in which we match an instance with its hardest positive in a mini-batch to make clusters more compact and improve pseudo label quality. Matching the hardest positive refers to using one-hot "hard" pseudo labels.

Since no ground truth is available, mining hardest positives within clusters is likely to introduce false positives into the training process. In addition, the one-hot label does not take the complex inter-instance relationship into consideration when multiple pseudo positives and negatives exist in a mini-batch. Contrastive methods usually use data augmentation to mimic real-world distortions, e.g., occlusion, view-point and resolution variance. After data augmentation operations, certain pseudo positives may become less similar to an anchor, while certain pseudo negatives may become more similar. As a robust model should be invariant to distortions from data augmentation, we propose to use the inter-instance pairwise similarity as "soft" pseudo labels to enhance the consistency before and after augmentation.

Our proposed ICE incorporates class-level label (centroid contrast), instance pairwise hard label (hardest positive contrast) and instance pairwise soft label (augmentation consistency) into one fully unsupervised person ReID framework. Without any identity annotation, ICE significantly outperforms state-of-the-art UDA and fully unsupervised methods on main-stream person ReID datasets.

To summarize, our contributions are: [START_REF] Chen | Deep credible metric learning for unsupervised domain adaptation person re-identification[END_REF] We propose to use pairwise similarity ranking to mine hardest samples as one-hot hard pseudo labels for hard instance contrast, which reduces intra-class variance. [START_REF] Hao Chen | Learning discriminative and generalizable representations by spatial-channel partition for person re-identification[END_REF] We propose to use pairwise similarity scores as soft pseudo labels to enhance the consistency between augmented and original instances, which alleviates label noise and makes our model more robust to augmentation perturbation. (3) Extensive experiments highlight the importance of inter-instance pairwise similarity in contrastive learning. Our proposed method ICE outperforms state-of-the-art methods by a considerable margin, significantly pushing unsupervised ReID to real-world deployment.

Related Work

Unsupervised person ReID. Recent unsupervised person ReID methods can be roughly categorized into unsupervised domain adaptation (UDA) and fully unsupervised methods. Among UDA-based methods, several works [START_REF] Wang | Transferable joint attribute-identity deep learning for unsupervised person re-identification[END_REF][START_REF] Lin | Multi-task mid-level feature alignment network for unsupervised cross-dataset person re-identification[END_REF] leverage semantic attributes to reduce the domain gap between source and target domains. Several works [START_REF] Wei | Person transfer gan to bridge domain gap for person reidentification[END_REF][START_REF] Zhong | Generalizing a person retrieval model hetero-and homogeneously[END_REF]8,[START_REF] Zhong | Invariance matters: Exemplar memory for domain adaptive person re-identification[END_REF][START_REF] Zou | Joint disentangling and adaptation for cross-domain person re-identification[END_REF][START_REF] Hao Chen | Joint generative and contrastive learning for unsupervised person re-identification[END_REF] use generative networks to transfer labeled source domain images into the style of target domain. Another possibility is to assign pseudo labels to unlabeled images, where pseudo labels are obtained from clustering [27,[START_REF] Fu | Self-similarity grouping: A simple unsupervised cross domain adaptation approach for person re-identification[END_REF][START_REF] Zhang | Self-training with progressive augmentation for unsupervised cross-domain person re-identification[END_REF]3] or reference data [START_REF] Yu | Unsupervised person re-identification by soft multilabel learning[END_REF]. Pseudo label noise can be reduced by selecting credible samples [START_REF] Chen | Deep credible metric learning for unsupervised domain adaptation person re-identification[END_REF] or using a teacher network to assign soft labels [START_REF] Ge | Mutual meanteaching: Pseudo label refinery for unsupervised domain adaptation on person re-identification[END_REF]. All these UDA-based methods require a labeled source dataset. Fully unsupervised methods have a better flexibility for deployment. BUC [START_REF] Lin | A bottom-up clustering approach to unsupervised person re-identification[END_REF] first treats each image as a cluster and progressively merge clusters. Lin et al. [START_REF] Lin | Unsupervised person re-identification via softened similarity learning[END_REF] replace clustering-based pseudo labels with similarity-based softened labels. Hierarchical Clustering is proposed in [START_REF] Zeng | Hierarchical clustering with hard-batch triplet loss for person re-identification[END_REF] to improve the quality of pseudo labels. Since each identity usually has multiple positive instances, MMCL [START_REF] Wang | Unsupervised person reidentification via multi-label classification[END_REF] introduces a memory-based multi-label classification loss into unsupervised ReID. JVTC [START_REF] Li | Joint visual and temporal consistency for unsupervised domain adaptive person reidentification[END_REF] and CycAs [START_REF] Wang | Cycas: Selfsupervised cycle association for learning re-identifiable descriptions[END_REF] explore temporal information to refine visual similarity. SpCL [13] considers each cluster and outlier as a single class and then conduct instance-to-centroid contrastive learning. CAP [START_REF] Wang | Camera-aware proxies for unsupervised person re-identification[END_REF] calculates identity centroids for each camera and conducts intra-and inter-camera centroid contrastive learning. Both SpCL and CAP focus on instance-to-centroid contrast, but neglect inter-instance affinities.

Contrastive Learning. Recent contrastive learning methods [START_REF] Wu | Unsupervised feature learning via non-parametric instance discrimination[END_REF][START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF][START_REF] Chen | A simple framework for contrastive learning of visual representations[END_REF] consider unsupervised representation learning as a dictionary look-up problem. Wu et al. [START_REF] Wu | Unsupervised feature learning via non-parametric instance discrimination[END_REF] retrieve a target representation from a memory bank that stores representations of all the images in a dataset. MoCo [START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF] introduces a momentum encoder and a queue-like memory bank to dynamically update negatives for contrastive learning. In SimCLR [START_REF] Chen | A simple framework for contrastive learning of visual representations[END_REF], authors directly retrieve representations within a large batch. However, all these methods consider different instances of a same class as different classes, which is not suitable in a fine-grained ReID task. These methods learn invariance from augmented views, which can be regarded as a form of consistency regularization.

Consistency regularization. Consistency regularization refers to an assumption that model predictions should be consistent when fed perturbed versions of the same image, which is widely considered in recent semi-supervised learning [START_REF] Tarvainen | Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results[END_REF][START_REF] Sohn | Fixmatch: Simplifying semisupervised learning with consistency and confidence[END_REF][START_REF] Chen | Big self-supervised models are strong semi-supervised learners[END_REF]. The perturbation can come from data augmentation [START_REF] Sohn | Fixmatch: Simplifying semisupervised learning with consistency and confidence[END_REF], temporal ensembling [START_REF] Tarvainen | Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results[END_REF][START_REF] Laine | Temporal ensembling for semisupervised learning[END_REF][START_REF] Ge | Self-supervising fine-grained region similarities for large-scale image localization[END_REF] and shallow-deep features [START_REF] Zheng | Rectifying pseudo label learning via uncertainty estimation for domain adaptive semantic segmentation[END_REF][START_REF] Chen | Big self-supervised models are strong semi-supervised learners[END_REF]. Artificial perturbations are applied in contrastive learning as strong augmentation [7,[START_REF] Wei | Co2: Consistent contrast for unsupervised visual representation learning[END_REF] and momentum encoder [START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF] to make a model robust to data variance. Based on temporal ensembling, Ge et al. [START_REF] Ge | Self-supervising fine-grained region similarities for large-scale image localization[END_REF] use inter-instance similarity to mitigate pseudo label noise between different training epochs for image localization. Wei et al. [START_REF] Wei | Co2: Consistent contrast for unsupervised visual representation learning[END_REF] propose to regularize inter-instance consistency between two sets of augmented views, which neglects intra-class variance problem. We simultaneously reduce intra-class variance and regularize consistency between augmented and original views, which is more suitable for fine-grained ReID tasks.

Proposed Method

Overview

Given a person ReID dataset X = {x 1 , x 2 , ..., x N }, our objective is to train a robust model on X without annotation. For inference, representations of a same person are supposed to be as close as possible. State-of-the-art contrastive methods [START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF][START_REF] Chen | A simple framework for contrastive learning of visual representations[END_REF] consider each image as an individual class and maximize similarities between augmented views of a same instance with InfoNCE loss [START_REF] Van Den Oord | Representation learning with contrastive predictive coding[END_REF]:

L Inf oN CE = E[-log exp (q • k + /τ ) K i=0 exp (q • k i /τ ) ] (1) 
where q and k + are two augmented views of a same instance in a set of candidates k i . τ is a temperature hyper-parameter that controls the scale of similarities.

Following MoCo [START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF], we design our proposed ICE with an online encoder and a momentum encoder as shown in Fig. 1. The online encoder is a regular network, e.g., ResNet50 [START_REF] He | Deep residual learning for image recognition[END_REF], which is updated by back-propagation. The momentum encoder (weights noted as θ m ) has the same structure as the online encoder, but updated by accumulated weights of the online encoder (weights noted as θ o ):

θ t m = αθ t-1 m + (1 -α)θ t o ( 2 
)
where α is a momentum coefficient that controls the update speed of the momentum encoder. t and t -1 refer respectively to the current and last iteration. The momentum encoder builds momentum representations with the moving averaged weights, which are more stable to label noise. At the beginning of each training epoch, we use the momentum encoder to extract appearance representations M = {m 1 , m 2 , ..., m N } of all the samples in the training set X . We use a clustering algorithm DBSCAN [START_REF] Ester | A density-based algorithm for discovering clusters in large spatial databases with noise[END_REF] on these appearance representations to generate pseudo identity labels Y = {y 1 , y 2 , ..., y N }. We only consider clustered inliers for contrastive learning, while un-clustered outliers are discarded. We calculate proxy centroids p 1 , p 2 , ... and store them in a memory for a proxy contrastive loss L proxy (see Sec. 3.2). Note that this proxy memory can be cameraagnostic [13] or camera-aware [START_REF] Wang | Camera-aware proxies for unsupervised person re-identification[END_REF].

Then, we use a random identity sampler to split the training set into mini-batches where each mini-batch contains N P pseudo identities and each identity has N K instances. We train the whole network by combining the L proxy (with class-level labels), a hard instance contrastive loss L h ins (with hard instance pairwise labels, see Sec. 3.3) and a soft instance consistency loss L s ins (with soft instance pairwise labels, see Sec. 3.4):

L total = L proxy + λ h L h ins + λ s L s ins (3)
To increase the consistency before and after data augmentation, we use different augmentation settings for prediction and target representations in the three losses (see Tab. 1).

Loss

Predictions (augmentation) Targets (augmentation)

L proxy f (Strong) p (None) L h ins f (Strong) m (Strong) L s ins P (Strong) Q (None)
Table 1: Augmentation settings for 3 losses.

Proxy Centroid Contrastive Baseline

For a camera-agnostic memory, the proxy of cluster a is defined as the averaged momentum representations of all the instances belonging to this cluster:

p a = 1 N a mi∈ya m i (4)
where N a is the number of instances belonging to the cluster a.

We apply a set of data augmentation on X and feed them to the online encoder. For an online representation f a belonging to the cluster a, the camera-agnostic proxy contrastive loss is a softmax log loss with one positive proxy p a and all the negatives in the memory:

L agnostic = E[-log exp (f a • p a /τ a ) |p| i=1 exp (f a • p i /τ a ) ] ( 5 
)
where |p| is the number of clusters in a training epoch and τ a is a temperature hyper-parameter. Different from unified contrastive loss [START_REF] Ge | Mutual meanteaching: Pseudo label refinery for unsupervised domain adaptation on person re-identification[END_REF], outliers are not considered as single instance clusters. In such way, outliers are not pushed away from clustered instances, which allows us to mine more hard samples for our proposed hard instance contrast. As shown in Fig. 2, all the clustered instances converge to a common cluster proxy centroid. However, images inside a cluster are prone to be affected by camera styles, leading to high intra-class variance. This problem can be alleviated by adding a cross-camera proxy contrastive loss [START_REF] Wang | Camera-aware proxies for unsupervised person re-identification[END_REF].

For a camera-aware memory, if we have C = {c 1 , c 2 , ...} cameras, a camera proxy p ab is defined as the averaged momentum representations of all the instances belonging to the cluster a in camera c b :

p ab = 1 N ab mi∈ya∩mi∈c b m i (6)
where N ab is the number of instances belonging to the cluster a captured by camera c b . Given an online representation f ab , the cross-camera proxy contrastive loss is a softmax log loss with one positive cross-camera proxy p ai and N neg nearest negative proxies in the memory:

Lcross = E[- 1 |P| i̸ =b∩i∈C log exp (< f ab • pai > /τc) Nneg +1 j=1 exp (< f ab • pj > /τc) ] (7) 
where < • > denotes cosine similarity and τ c is a crosscamera temperature hyper-parameter. |P| is the number of cross-camera positive proxies. Thanks to this cross-camera proxy contrastive loss, instances from one camera are pulled closer to proxies of other cameras, which reduces intra-class camera style variance. We define a proxy contrastive loss by combining cluster and camera proxies with a weighting coefficient 0.5 from [START_REF] Wang | Camera-aware proxies for unsupervised person re-identification[END_REF]:

L proxy = L agnostic + 0.5L cross (8)

Hard Instance Contrastive Loss

Although intra-class variance can be alleviated by crosscamera contrastive loss, it has two drawbacks: 1) more memory space is needed to store camera-aware proxies, 2) impossible to use when camera ids are unavailable. We propose a camera-agnostic alternative by exploring interinstance relationship instead of using camera labels. Along with training, the encoders become more and more strong, which helps outliers progressively enter clusters and become hard inliers. Pulling hard inliers closer to normal inliers effectively increases the compactness of clusters.

A mini-batch is composed of N P identities, where each identity has N K positive instances. Given an anchor instance f i belonging to the ith class, we sample the hardest positive momentum representation m i k that has the lowest cosine similarity with f i , see Fig. 4. For the same anchor, we have J = (N P -1) × N K negative instances that do not belong to the ith class. The hard instance contrastive loss for f i is a softmax log loss of J + 1 (1 positive and J negative) pairs, which is defined as:

L h ins = E[-log exp (< f i • m i k > /τ h ins ) J+1 j=1 exp (< f i • m j > /τ h ins ) ] (9) 
where k = arg min k=1,..,N K (< f i • m i k >) and τ h ins is the hard instance temperature hyper-parameter. By minimizing the distance between the anchor and the hardest positive and maximizing the distance between the anchor and all negatives, L h ins increases intra-class compactness and inter-class separability.

Relation with triplet loss. Both L h ins and triplet loss [START_REF] Hermans | In defense of the triplet loss for person re-identification[END_REF] pull an anchor closer to positive instances and away from negative instances. As shown in Fig. 3, the traditional triplet loss pushes away a negative pair from a positive pair by a margin. Differently, the proposed L h ins pushes away all the negative instances as far as it could with a softmax. If we select one negative instance, the L h ins can be transformed into the triplet loss. If we calculate pairwise distance within a mini-batch to select the hardest positive and the hardest negative instances, the L h ins is equivalent to the batch-hard triplet loss [START_REF] Hermans | In defense of the triplet loss for person re-identification[END_REF]. We compare hard triplet loss (hardest negative) with the proposed L h ins (all negatives). in Tab. 2. 

Soft Instance Consistency Loss

Both proxy and hard instance contrastive losses are trained with one-hot hard pseudo labels, which can not capture the complex inter-instance similarity relationship between multiple pseudo positives and negatives. Especially, inter-instance similarity may change after data augmentation. As shown in Fig. 4, the anchor A becomes less similar to pseudo positives (P 1 , P 2 , P 3 ), because of the visual distortions. Meanwhile, the anchor A becomes more similar to pseudo negatives (N 1 , N 2 ), since both of them have red shirts. By maintaining the consistency before and after augmentation, a model is supposed to be more invariant to augmentation perturbations. We use the inter-instance similarity scores without augmentation as soft labels to rectify those with augmentation.

For a batch of images after data augmentation, we measure the inter-instance similarity between an anchor f A with all the mini-batch N K × N P instances, as shown in Fig. 4. Then, the inter-instance similarity is turned into a prediction distribution P by a softmax:

P = exp (< f A • m > /τ s ins ) N P ×N K j=1 exp (< f A • m j > /τ s ins ) (10) 
where τ s ins is the soft instance temperature hyperparameter. f A is an online representation of the anchor, while m is momentum representation of each instance in a mini-batch.

For the same batch without data augmentation, we measure the inter-instance similarity between momentum representations of the same anchor with all the mini-batch N K × N P instances, because the momentum encoder is more stable. We get a target distribution Q:

Q = exp (< m A • m > /τ s ins ) N P ×N K j=1 exp (< m A • m j > /τ s ins ) (11) 
The soft instance consistency loss is Kullback-Leibler Divergence between two distributions:

L s ins = D KL (P ||Q) (12) 
In previous methods, consistency is regularized between weakly augmented and strongly augmented images [START_REF] Sohn | Fixmatch: Simplifying semisupervised learning with consistency and confidence[END_REF] or two sets of differently strong augmented images [START_REF] Wei | Co2: Consistent contrast for unsupervised visual representation learning[END_REF]. Some methods [START_REF] Laine | Temporal ensembling for semisupervised learning[END_REF][START_REF] Tarvainen | Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results[END_REF]] also adopted mean square error (MSE) as their consistency loss function. We compare our setting with other possible settings in Tab. 3. 

Experiments

Datasets and Evaluation Protocols

Market-1501 [43], DukeMTMC-reID [START_REF] Ristani | Performance measures and a data set for multi-target, multi-camera tracking[END_REF] and MSMT17 [START_REF] Wei | Person transfer gan to bridge domain gap for person reidentification[END_REF] 

Implementation details

General training settings. To conduct a fair comparison with state-of-the-art methods, we use an ImageNet [START_REF] Russakovsky | Imagenet large scale visual recognition challenge[END_REF] pretrained ResNet50 [START_REF] He | Deep residual learning for image recognition[END_REF] as our backbone network. We report results of IBN-ResNet50 [START_REF] Pan | Two at once: Enhancing learning and generalization capacities via ibn-net[END_REF] in Appendix. An Adam optimizer with a weight decay rate of 0.0005 is used to optimize our networks. The learning rate is set to 0.00035 with a warm-up scheme in the first 10 epochs. No learning rate decay is used in the training. The momentum encoder is up- Clustering settings. We calculate k-reciprocal Jaccard distance [START_REF] Zhong | Reranking person re-identification with k-reciprocal encoding[END_REF] for clustering, where k is set to 30. We set a minimum cluster samples to 4 and a distance threshold to 0.55 for DBSCAN. We also report results of a smaller threshold 0.5 (more appropriate for the smaller dataset Mar-ket1501) and a larger threshold 0.6 (more appropriate for the larger dataset MSMT17) in Appendix.

Data augmentation. All images are resized to 256×128. The strong data augmentation refers to random horizontal flipping, cropping, Gaussian blurring and erasing [START_REF] Zhong | Random erasing data augmentation[END_REF].

Parameter analysis

Compared to the proxy contrastive baseline, ICE brings in four more hyper-parameters, including λ h ins , τ h ins for hard instance contrastive loss and λ s ins , τ s ins for soft instance consistency loss. We analyze the sensitivity of each hyper-parameter on the Market-1501 dataset. The mAP results are illustrated in Fig. 5. As hardest positives are likely to be false positives, an overlarge λ h ins or undersized τ h ins introduce more noise. λ h ins and λ s ins balance the weight of each loss in Eq. (3). Given the results, we set λ h ins = 1 and λ s ins = 10. τ h ins and τ s ins control the similarity scale in hard instance contrastive loss and soft instance consistency loss. We finally set τ h ins = 0.1 and τ s ins = 0.4. Our hyper-parameters are tuned on Market-1501 and kept same for DukeMTMC-reID and MSMT17. Achieving state-of-the-art results simultaneously on the three datasets can validate the generalizability of these hyper-parameters.

Ablation study

The performance boost of ICE in unsupervised ReID mainly comes from the proposed hard instance contrastive loss and soft instance consistency loss. We conduct ablation experiments to validate the effectiveness of each loss, which is reported in Tab. 4. We illustrate the number of clusters during the training in Fig. 6 and t-SNE [START_REF] Van Der Maaten | Visualizing data using t-SNE[END_REF] after training in Fig. 8 to evaluate the compactness of clusters. We also illustrate the dynamic KL divergence of Eq. ( 12) to measure representation sensitivity to augmentation perturbation in Fig. 7 .

Hard instance contrastive loss. Our proposed L h ins reduces the intra-class variance in a camera-agnostic manner, which increases the quality of pseudo labels. By reducing intra-class variance, a cluster is supposed to be more compact. With a same clustering algorithm, we expect to have less clusters when clusters are more compact. As shown in Fig. 6, DBSCAN generated more clusters during the training without our proposed L h ins . The full ICE framework has less clusters, which are closer to the real number of identities in the training set. On the other hand, as shown in Fig. 8, the full ICE framework has a better intra-class compactness and inter-class separability than the camera-aware Camera-agnostic scenario. Above results are obtained with a camera-aware memory, which strongly relies on ground truth camera ids. We further validate the effectiveness of the two proposed losses with a camera-agnostic memory, whose results are also reported in Tab. 4. Our proposed L h ins significantly improves the performance from the camera-agnostic baseline. However, L s ins should be used under low intra-class variance, which can be achieved by the variance constraints on camera styles L cross and hard samples L h ins . L h ins reduces intraclass variance, so that AA ≈ AP 1 ≈ AP 2 ≈ AP 3 ≈ 1 before augmentation in Fig. 4. L s ins permits that we still have AA ≈ AP 1 ≈ AP 2 ≈ AP 3 ≈ 1 after augmentation. However, when strong variance exists, e.g., AA ̸ ≈ AP 1 ̸ ≈ AP 2 ̸ ≈ AP 3 ̸ ≈ 1, maintaining this relationship equals maintaining intra-class variance, which decreases the ReID performance. On medium datasets (e.g., Market1501 and DukeMTMC-reID) without strong camera variance, our proposed camera-agnostic intra-class variance constraint L h ins is enough to make L s ins beneficial to ReID. On large datasets (e.g., 15 cameras in MSMT17) with strong camera variance, only camera-agnostic variance constraint L h ins is not enough. We provide the dynamic cluster numbers of camera-agnostic ICE in Appendix.

Comparison with state-of-the-art methods

We compare ICE with state-of-the-art ReID methods in Tab. 5. Comparison with unsupervised method. Previous unsupervised methods can be categorized into unsupervised domain adaptation (UDA) and fully unsupervised methods. We first list state-of-the-art UDA methods, including MMCL [START_REF] Wang | Unsupervised person reidentification via multi-label classification[END_REF], JVTC [START_REF] Li | Joint visual and temporal consistency for unsupervised domain adaptive person reidentification[END_REF], DG-Net++ [START_REF] Zou | Joint disentangling and adaptation for cross-domain person re-identification[END_REF], ECN+ [START_REF] Zhong | Learning to adapt invariance in memory for person re-identification[END_REF], MMT [START_REF] Ge | Mutual meanteaching: Pseudo label refinery for unsupervised domain adaptation on person re-identification[END_REF], DCML [START_REF] Chen | Deep credible metric learning for unsupervised domain adaptation person re-identification[END_REF], MEB [START_REF] Zhai | Multiple expert brainstorming for domain adaptive person re-identification[END_REF], SpCL [13] and ABMT [3]. UDA methods usually rely on source domain annotation to reduce the pseudo label noise. Without any identity annotation, our proposed ICE outperforms all of them on the three datasets.

Under the fully unsupervised setting, ICE also achieves better performance than state-of-the-art methods, including BUC [START_REF] Lin | A bottom-up clustering approach to unsupervised person re-identification[END_REF], SSL [START_REF] Lin | Unsupervised person re-identification via softened similarity learning[END_REF], MMCL [START_REF] Wang | Unsupervised person reidentification via multi-label classification[END_REF], JVTC [START_REF] Li | Joint visual and temporal consistency for unsupervised domain adaptive person reidentification[END_REF], HCT [START_REF] Zeng | Hierarchical clustering with hard-batch triplet loss for person re-identification[END_REF], CycAs [START_REF] Wang | Cycas: Selfsupervised cycle association for learning re-identifiable descriptions[END_REF], GCL [START_REF] Hao Chen | Joint generative and contrastive learning for unsupervised person re-identification[END_REF], SpCL [13] and CAP [START_REF] Wang | Camera-aware proxies for unsupervised person re-identification[END_REF]. CycAs leveraged temporal information to assist visual matching, while our method only considers visual similarity. SpCL and CAP are based on proxy contrastive learning, which are considered respectively as camera-agnostic and cameraaware baselines in our method. With a camera-agnostic memory, the performance of ICE(agnostic) remarkably surpasses the camera-agnostic baseline SpCL, especially on Market1501 and MSMT17 datasets. With a camera-aware memory, ICE(aware) outperforms the camera-aware baseline CAP on all the three datasets. By mining hard positives to reduce intra-class variance, ICE is more robust to hard samples. We illustrate some hard examples in Fig. 9, where ICE succeeds to notice important visual clues, e.g., characters in the shirt (1st row), blonde hair (2nd row), brown shoulder bag (3rd row) and badge (4th row). Comparison with supervised method. We further provide two well-known supervised methods for reference, including the Part-based Convolutional Baseline (PCB) [28] and the joint Discriminative and Generative Network (DG-Net) [START_REF] Zheng | Joint discriminative and generative learning for person re-identification[END_REF]. Unsupervised ICE achieves competitive performance with PCB. If we replace the clustering generated pseudo labels with ground truth, our ICE can be transformed into a supervised method. The supervised ICE is competitive with state-of-the-art supervised ReID methods (e.g., DG-Net), which shows that the supervised contrastive learning has a potential to be considered into future supervised ReID.

Conclusion

In this paper, we propose a novel inter-instance contrastive encoding method ICE to address unsupervised ReID. Deviated from previous proxy based contrastive ReID methods, we focus on inter-instance affinities to make a model more robust to data variance. We first mine the hardest positive with mini-batch instance pairwise similarity ranking to form a hard instance contrastive loss, which effectively reduces intra-class variance. Smaller intra-class variance contributes to the compactness of clusters. Then, we use mini-batch instance pairwise similarity scores as soft labels to enhance the consistency before and after data augmentation, which makes a model robust to artificial augmentation variance. By combining the proposed hard instance contrastive loss and soft instance consistency loss, 

Figure 1 :

 1 Figure1: General architecture of ICE. We maximize the similarity between anchor and pseudo positives in both inter-class (proxy agreement between an instance representation f1 and its cluster proxy p1) and intra-class (instance agreement between f1 and its pseudo positive m2) manners.

Figure 2 :

 2 Figure 2: Proxy contrastive loss. Inside a cluster, an instance is pulled to a cluster centroid by Lagnostic and to cross-camera centroids by Lcross.

Figure 3 :

 3 Figure 3: Comparison between triplet and hard instance contrastive loss.

Figure 4 :

 4 Figure 4: Based on inter-instance similarity ranking between anchor (A), pseudo positives (P) and pseudo negatives (N), Hard Instance Contrastive Loss matches an anchor with its hardest positive in a mini-batch. Soft Instance Consistency Loss regularizes the interinstance similarity before and after data augmentation.

Figure 5 :

 5 Figure 5: Parameter analysis on Market-1501 dataset.

Figure 6 :

 6 Figure 6: Dynamic cluster numbers during 40 training epochs on DukeMTMC-reID. "hard" and "soft" respectively denote L h ins and Ls ins. A lower number denotes that clusters are more compact.

Figure 7 :

 7 Figure 7: Dynamic KL divergence during 40 training epochs on DukeMTMC-reID. Lower KL divergence denotes that a model is more robust to augmentation perturbation.

Table 4 :

 4 79.5 92.0 97.0 98.1 67.2 81.3 90.1 93.0 29.8 59.0 71.7 77.0 Comparison of different losses. Camera-aware memory occupies up to 6, 8 and 15 times memory space than camera-agnostic memory on Market1501, DukeMTMC-reID and MSMT17 datasets. baseline in the test set. The compactness contributes to better unsupervised ReID performance in Tab. 4.Soft instance consistency loss. Hard instance contrastive loss reduces the intra-class variance between naturally captured views, while soft instance consistency loss mainly reduces the variance from artificially augmented perturbation. If we compare the blue (ICE full) and yellow (w/o soft) curves in Fig.7, we can find that the model trained without L s ins is less robust to augmentation perturbation. The quantitative results in Tab. 4 confirms that the L s ins improves the performance of baseline. The best performance can be obtained by applying L h ins and L s ins on the camera-aware baseline.

Figure 8 :

 8 Figure 8: T-SNE visualization of 10 random classes in DukeMTMC-reID test set between camera-aware baseline (Left) and ICE (Right).

Figure 9 :

 9 Figure 9: Comparison of top 5 retrieved images on Market1501 between CAP [34] and ICE. Green boxes denote correct results, while red boxes denote false results. Important visual clues are marked with red dashes. ICE significantly outperforms previous unsupervised ReID methods on Market1501, DukeMTMC-reID and MSMT17 datasets.

Table 2 :

 2 Comparison between using the hardest negative and all negatives in the denominator of L h ins .

	Negative in L h ins	Market1501 mAP Rank1 mAP DukeMTMC-reID Rank1
	hardest	80.1	92.8	68.2	82.5
	all	82.3	93.8	69.9	83.3

Table 3 :

 3 

	Consistency	Market1501 mAP Rank1 mAP DukeMTMC-reID Rank1
	MSE	80.0	92.7	68.4	82.1
	Strong-strong Aug 80.4	92.8	68.2	82.5
	ours	82.3	93.8	69.9	83.3

Comparison of consistency loss. Ours refers to KL divergence between images with and without data augmentation.

  datasets are used to evaluate our proposed method.

	Market-1501 dataset is collected in front of a supermarket
	in Tsinghua University from 6 cameras. It contains 12,936
	images of 751 identities for training and 19,732 images of
	750 identities for test. DukeMTMC-reID is a subset of the
	DukeMTMC dataset. It contains 16,522 images of 702 per-
	sons for training, 2,228 query images and 17,661 gallery
	images of 702 persons for test from 8 cameras. MSMT17
	is a large-scale Re-ID dataset, which contains 32,621 train-
	ing images of 1,041 identities and 93,820 testing images
	of 3,060 identities collected from 15 cameras. Both Cu-
	mulative Matching Characteristics (CMC) Rank1, Rank5,
	Rank10 accuracies and mean Average Precision (mAP) are
	used in our experiments.

  proxy 79.3 91.5 96.8 97.6 67.3 81.4 90.8 92.9 36.4 67.8 78.7 82.5 +L h ins 80.5 92.6 97.3 98.4 68.8 82.4 90.4 93.6 38.0 69.1 79.9 83.4 +L s ins 81.1 93.2 97.5 98.5 68.4 82.0 91.0 93.2 38.1 68.7 79.8 83.7 +L h ins + L s ins 82.3 93.8 97.6 98.4 69.9 83.3 91.5 94.1 38.9 70.2 80.5 84.4

	Camera-aware memory	Market1501 mAP R1 R5	DukeMTMC-reID R10 mAP R1 R5	MSMT17 R10 mAP R1 R5	R10
	Baseline L Camera-agnostic memory	Market1501 mAP R1 R5	DukeMTMC-reID R10 mAP R1 R5	MSMT17 R10 mAP R1 R5	R10
	Baseline L agnostic	65.8 85.3 95.1 96.6 50.9 67.9 81.6 86.6 24.1 52.3 66.2 71.6
	+L h ins	78.2 91.3 96.9 98.0 65.4 79.6 88.9 91.9 30.3 60.8 72.9 77.6
	+L s ins	47.2 66.7 86.0 91.6 36.2 50.4 70.3 76.3 17.8 38.8 54.2 60.9
	+L h ins + L s ins				

Table 5 :

 5 .4 92.8 95.0 51.4 72.4 82.9 85.0 16.2 43.6 54.3 58.9 JVTC[START_REF] Li | Joint visual and temporal consistency for unsupervised domain adaptive person reidentification[END_REF] ECCV'20 61.1 83.8 93.0 95.2 56.2 75.0 85.1 88.2 20.3 45.4 58.4 64.3 DG-Net++ [51] ECCV'20 61.7 82.1 90.2 92.7 63.8 78.9 87.8 90.4 22.1 48.8 60.9 65.9 ECN+ [50] TPAMI'20 63.8 84.1 92.8 95.4 54.4 74.0 83.7 87.4 16.0 42.5 55.9 61.5 .3 93.5 95.5 62.8 82.9 87.1 88.5 21.3 45.7 58.6 64.5 SpCL(agnostic) [13] NeurIPS'20 73.1 88.1 95.1 97.0 65.3 81.2 90.3 92.2 19.1 42.3 55.6 61.2 ICE(agnostic) This paper 79.5 92.0 97.0 98.1 67.2 81.3 90.1 93.0 29.8 59.0 71.7 77.0 CAP(aware)[34] AAAI'21 79.2 91.4 96.3 97.7 67.3 81.1 89.3 91.8 36.9 67.4 78.0 81.4 ICE(aware) This paper 82.3 93.8 97.6 98.4 69.9 83.3 91.5 94.1 38.9 70.2 80.5 84.4 Supervised PCB [28] ECCV'18 81.6 93.8 97.5 98.5 69.2 83.3 90.5 92.5 40.4 68.2 ICE (w/ ground truth) This paper 86.6 95.1 98.3 98.9 76.5 88.2 94.1 95.7 50.4 76.4 86.6 90.0 Comparison of ReID methods on Market1501, DukeMTMC-reID and MSMT17 datasets. The best and second best unsupervised results are marked in red and blue.

	Method	Reference	Market1501 mAP R1 R5	DukeMTMC-reID R10 mAP R1 R5	MSMT17 R10 mAP R1 R5	R10
	Unsupervised Domain Adaptation									
	MMCL [32] 60.4 84MMT [11] CVPR'20 ICLR'20 71.2 87.7 94.9 96.9 65.1 78.0 88.8 92.5 23.3 50.1 63.9 69.8
	DCML [1]	ECCV'20	72.6 87.9 95.0 96.7 63.3 79.1 87.2 89.4	-	-	-	-
	MEB [41]	ECCV'20	76.0 89.9 96.0 97.5 66.1 79.6 88.3 92.2	-	-	-	-
	SpCL [13]	NeurIPS'20 76.7 90.3 96.2 97.7 68.8 82.9 90.1 92.5 26.8 53.7 65.0 69.8
	ABMT [3]	WACV'21	78.3 92.5	-	-	69.1 82.0	-	-	26.5 54.3	-	-
	Fully Unsupervised										
	BUC [20]	AAAI'19	29.6 61.9 73.5 78.2 22.1 40.4 52.5 58.2	-	-	-	-
	SSL [21]	CVPR'20	37.8 71.7 83.8 87.4 28.6 52.5 63.5 68.9	-	-	-	-
	JVTC [18]	ECCV'20	41.8 72.9 84.2 88.7 42.2 67.6 78.0 81.6 15.1 39.0 50.9 56.8
	MMCL [32]	CVPR'20	45.5 80.3 89.4 92.3 40.2 65.2 75.9 80.0 11.2 35.4 44.8 49.8
	HCT [40]	CVPR'20	56.4 80.0 91.6 95.2 50.7 69.6 83.4 87.4	-	-	-	-
	CycAs [35]	ECCV'20	64.8 84.8	-	-	60.1 77.9	-	-	26.7 50.1	-	-
	GCL [4]	CVPR'21	66.8 87-	-
	DG-Net [44]	CVPR'19	86.0 94.8	-	-	74.8 86.6	-	-	52.3 77.2	-	-
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