Detection of abnormal folding patterns with unsupervised deep generative models
Résumé
Although the main structures of cortical folding are present in each human brain, the folding pattern is unique to each individual. Because of this large normal variability, the identification of abnormal patterns associated to developmental disorders is a complex open challenge. In this paper, we tackle this problem as an anomaly detection task and explore the potential of deep generative models using benchmarks made up of synthetic anomalies. To focus learning on the folding geometry, brain MRI are preprocessed first to deal only with a skeleton-based negative cast of the cortex. A variational auto-encoder is trained to get a representation of the regional variability of the folding pattern of the general population. Then several synthetic benchmark datasets of abnormalities are designed. The latent space expressivity is assessed through classification experiments between control's and abnormal's latent codes. Finally, the properties encoded in the latent space are analyzed through perturbation of specific latent dimensions and observation of the resulting modification of the reconstructed images. The results have shown that the latent representation is rich enough to distinguish subtle differences like asymmetries between the right and left hemispheres.
Origine | Fichiers produits par l'(les) auteur(s) |
---|