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1. Introduction

The stochastic modeling of images by spatial random fields allows to set up
a convenient statistical framework for different issues in image processing for
image denoising, pattern detection, segmentation or classification [28, 21, 11].
A particular interest directed towards the study of geometric attributes and
features of objects has grown these last years. Roughly speaking the consid-
ered quantities are the surface area, perimeter and Euler characteristic, which
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is a topological invariant that is equal to the number of connected components
minus the number of holes, in a black and white binary image obtained by
thresholding a gray image at some fixed level. These quantities are related to
intrinsic volumes and Minkowski functionals particularly studied in the integral
and stochastic geometry [7, 31] or Lipschitz-Killing (LK) curvatures of excursion
sets (see [32] for a formal introduction to the subject). Those functionals are
robust and efficient shape descriptors that have been largely applied to a vari-
ety of domains: cosmology (e.g. the morphological analysis of cosmic microwave
background [30, 26]), astrophysics (e.g. modeling galaxy formation [17]), mili-
tary (e.g. mine field detection, [25]) medicine (e.g. brain imaging, [16], study of
synthesized 2D digital mammograms, [4, 12]).

Very important results have been obtained in the framework of smooth sta-
tionary random fields, especially for Gaussian related fields (see [1]). In this
framework, the theoretical means of LK curvatures are explicitly computed with
respect to the parameters of the fields [34, 33, 2] and can be efficiently estimated
from images [4]. The consistent estimation of related variances had been recently
studied in [12]. Moreover, Central Limit Theorems (CLT) have been proven for
Gaussian fields [15, 22] that paved the road for statistical hypothesis tests. Sev-
eral extensions for non-Gaussian fields, namely shot noise random fields are also
available for means of LK curvatures [23] and associated CLT’s [24]. However
the framework of smooth fields, indexed by continuous space variables, is not
appropriate with the discrete framework induced by digital images. Let us re-
mark that links with discrete setting have been recently explored in [3].

In this paper we consider this discrete framework for digital images for which
white noise is well defined. More precisely, we assume that pixels values are
given by (Xi,j)i,j≥1 a sequence of independent and identically distributed (i.i.d.)
variables within an observation window S. We have in mind the residuals of a
denoising procedure or a linear regression, or the difference between two images
as for brain activities study. Therefore, we are interested to test the natural sym-
metry hypothesis, that is to know whether Xi,j is drawn from a symmetrical
distribution. This assumption of marginal distribution symmetry is called here
the null hypothesis H0 and includes Gaussian or Student distributions. Being
able to formally test for symmetry hypotheses is an important topic in many
fields since this basic assumption contains important information regarding the
underlying model, that would allow to validate it before further investigation.

This problem has been largely considered in the literature for i.i.d. sample, es-
pecially due to its importance for time series analysis. Different approaches to
construct a symmetry test include the use of empirical distribution for known
center of symmetry [6], the characteristic symmetry function and study of its be-
havior to know if the distribution is symmetric or not [8] with unknown center.
Other tests rely on the study of the skewness of the distribution function as ini-
tiated by [18]; see [27] for a free-distribution test based on Bonferroni’s measure.
For an overview and comparison of the existing methods we refer to [29] and [20].
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In our original approach we attempt to use our digital image setting and the
geometrical features of its excursion sets. More precisely, for a given thresh-
old t ∈ R we consider the binary image given by the i.i.d. Bernoulli variables
(1{Xi,j≥t})i,j≥1, coloring black pixels for values equal to one and considering the
area of black components as well as its perimeter inside a given domain. This al-
lows us to build an unbiased estimator of the perimeter, without border effects.
This framework is close from the one used by [14] to set up a goodness of fit test
for complete spatial randomness. In the aforementioned paper the authors con-
sider the counting process obtained from a homogeneous Poisson point process
such that the observed values (Xi,j) are i.i.d. Poisson random variables. They
obtain explicit expectation and covariance matrix for the three Lipschitz-Killing
curvatures at a fixed level as well as CLT to build their test. In the present pa-
per, we focus on the perimeter and obtain a multivariate CLT with respect to
several threshold levels with an explicit covariance matrix, under a general i.i.d.
assumption, in a dense tiling framework. The choice of our unbiased perimeter
estimator permits us to preserve the symmetry of the distribution, in contrast
with perimeter with border. This lead us to construct the statistical test of sym-
metry, by considering the behavior of the ratio between two specific thresholds.
We also explore the asymptotic in large threshold limit regime and obtain the
equivalence between the asymptotic behavior of the expectation value and the
variance establishing a joint auto-normalized Central Limit Theorem for dense
tiling and large threshold limit regime in a white noise framework, similarly to
[10] for crossings in dimension 1.

The paper is organized as follows. In Section 2 we introduce our mathematical
framework for binary images and we proceed to the construction of an unbiased
estimator for the associated perimeter. Then, in Section 3 we study the first
and second moments of the perimeter, which allows us to prove asymptotic nor-
mality results with an explicit covariance matrix, for which we consider several
consistent estimators. The construction of our consistent symmetry test via em-
pirical accessible test statistics is proposed in Section 4. Numerical evaluations
are presented in Section 5. The case of large threshold values is investigated in
Section 6, that yields to a new a central limit theorem and test statistics illus-
trated with numerical comparisons. Finally, we postpone the technical proofs to
Section 7, and additional numerical evaluations to the Appendix.

2. Mathematical framework

2.1. Construction of the binary image

Square tiling Let m be an integer with m ≥ 2, without loss of generality, we
consider our observation window as the unit square S = [0, 1]2 and we divide
our window into m2 pairwise disjoint squares. This provides a regular tiling of
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S with squares of “size” (side length) 1/m, i.e.,

C
(m)
i,j := [ i− 1

m
,
i

m
]× [j − 1

m
,
j

m
], for i, j ∈ {1, . . . ,m}.

The C
(m)
i,j will be referred to as cells. We denote by Em the set of edges in

S̊ = (0, 1)2, each w ∈ Em is a segment of length 1/m.

Fig 1. Tilling with squares for m = 5 and associated vertices (red circles).

Discrete setting Using the previous square tiling, we write S = ∪
1≤i,j≤m

Cmi,j .

Let (Xi,j)1≤i,j≤m be a sequence of random variables defined over the same
probability space (Ω,A,P), that are independent and identically distributed.

Each pixel value Xi,j is associated to the cell C
(m)
i,j . In Figure 2, Xi,j ∼ U(0, 1)

and m = 20.
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Fig 2. Left and center panels: Image of size (20 × 20) realization of a Uniform white noise
model. Right panel: Obtained binary image for t = 0.5.

Let us consider a threshold parameter t ∈ R. In order to create the associated
binary image, we introduce a random m × m-matrix Z(t) = (Zi,j(t))1≤i,j≤m,
where

Z
(m)
i,j (t) := 1{Xi,j≥t}, for i, j ∈ {1, . . . ,m}.

Each cell C
(m)
i,j is associated to black or white according to whether Zi,j(t) = 0

or Zi,j(t) = 1. Then, Zi,j(t) follows a binomial distribution of parameter (1, pt),
where

pt := P(Zi,j(t) = 1) = P(Xi,j ≥ t) = 1− F (t−),
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with F the cumulative distribution function associated to Xi,j .

2.2. Perimeter of a binary image

Let Z = Z(t) be the binary image Z at that given threshold t ∈ R. Following the
approach presented in [3], for each edge w ∈ Em, we aim to know if w contributes
to the perimeter of the black component of Z. Let w be a horizontal edge of
the form w =

(
l−1
m , lm

)
×{k−1

m }, w belongs to both cells Cl,k−1 and Cl,k, which
means that w is a contribution to the perimeter if Zl−1,k 6= Zl,k. Following this
consideration, one can consider

f (t)

1 (l, k) = 1{(Zl,k−1(t) = 0 ∩ Zl,k(t) = 1) ∪ (Zl,k−1(t) = 1 ∩ Zl,k(t) = 0)}

to count the horizontal contributions and

f (t)

2 (k, l) = 1{(Zk−1,l(t) = 0 ∩ Zk,l(t) = 1) ∪ (Zk−1,l(t) = 1 ∩ Zk,l(t) = 0)}

to count the vertical ones.

Definition 2.1 (Perimeter and scaled perimeter of a binary image). We denote
by P (1)

m (t) =
∑m
l=1

∑m
k=2 f

(t)

1 (l, k) the sum of all horizontal contributions and
P (2)
m (t) =

∑m
l=1

∑m
k=2 f

(t)

2 (k, l) the sum of the vertical ones, then, the perimeter
and scaled perimeter are given by

Pm(t) := P (1)

m (t) + P (2)

m (t), P̌m(t) :=
1

m2
(P (1)

m (t) + P (2)

m (t)) . (1)

An equivalent way to compute the perimeter is by considering, for each edge w,
the maximal and minimal values on the two sides of w. Then, the perimeter is
equivalently given by

Pm(t) :=
∑
w∈Em

(f (t)

+ (w)− f (t)

− (w)), (2)

where f (t)
+ (w) = max(Zl,k−1(t), Zl,k(t)) and f (t)

− (w) = min(Zl,k−1(t), Zl,k(t)) for
w the common edge between Cl,k−1 and Cl,k. The interested reader is referred
to [3]. The only edges w ∈ Em that contribute to the computation are those for
which f (t)

+ (w) = 1 and f (t)
− (w) = 0 which are exactly the edges belonging to the

perimeter intersected with the interior of our observation window.

+1−−→ +1−−→

y+1

+1−−→ +1−−→

Fig 3. Computation of the perimeter of a binary image with m = 3. Here P3 = 5.
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Algorithm 1 Perimeter of a binary image computation using Equation (2)

Initialization Binary image Z of shape (M,N),
Do L1 = sum((Z[0 : M − 1, 0 : N ] == 1)× (Z[1 : M, 0 : N ] == 0))

L2 = sum((Z[0 : M, 0 : N − 1] == 1)× (Z[0 : M, 1 : N ] == 0))
L3 = sum((Z[0 : M − 1, 0 : N ] == 0)× (Z[1 : M, 0 : N ] == 1))
L4 = sum((Z[0 : M, 0 : N − 1] == 0)× (Z[0 : M, 1 : N ] == 1))
P1 = L1 + L3

P2 = L2 + L4

Return P1 + P2

Remark 1. Notice that the proposed method in Definition 2.1 (see Equation
(2)) does not take into account the contribution of the edges that belongs to
the frontier of the observation window S. Indeed, in Algorithm 1, the border
cells can only contribute to the perimeter with one or two edges contrary to
the other cells that can have up to four edges contributing to the perimeter. In
this sense this method is unbiased in comparison with [14]’s technique. In the
aforementioned paper, the authors introduce a white artificial frontier around
the image and then, compute the perimeter of the extended new image (white
frontier included), making all cells contributing to the perimeter have a four
edge contribution.

3. Statistics of the perimeter of a binary image

3.1. Moments and asymptotic normality

In this section we investigate the first and second moments of the perimeter.
This preliminary study will be useful to state our multivariate Central Limit
Theorem (see Theorem 3.3 below).

Proposition 3.1 (First moment of the perimeter). The expected value of the
scaled perimeter in (1) is given by

E(P̌m(t)) = 4pt(1− pt)
(

1− 1

m

)
:= µP̌(pt,m). (3)

The proof of Proposition 3.1 is postponed to Section 7.

Remark 2. Assume that Xi,j is drawn from a symmetrical continuous
distribution of axis θ ∈ R, i.e pθ−t = 1 − pθ+t, ∀t ∈ R. Then,
µP̌(pθ−t,m) = µP̌(pθ+t,m) and therefore, t 7→ µP̌(pt,m) has an axis of symme-
try on θ. This implies that the ratio (P̌m(θ−t))/(P̌m(θ+t)) would be distributed
around 1 in the case of symmetry. This consideration will be crucial for the pro-
posed symmetry testing procedure in Section 4.

We now study the second moment of the perimeter of the considered binary
image.
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Proposition 3.2 (Covariance between perimeters at two thresholds). Let t, s ∈ R
be two given thresholds. The covariance between the scaled perimeter taken at
levels t and s is given by

Cov
(
P̌m(t), P̌m(s)

)
=

4

m4
pmax(t,s)(1− pmin(t,s))

(
(4m2 − 7m+ 2)

− 2pmin(t,s)(1− pmax(t,s))(7m
2 − 13m+ 4)

+ 2(pmin(t,s) − pmax(t,s))(3m
2 − 6m+ 2)

)
.

Taking t = s, we obtain the following variance formula

Var(P̌m(t)) =
4

m4
pt(1− pt)

(
(4m2 − 7m+ 2)− 2pt(1− pt)(7m2 − 13m+ 4)

)
:= σ2

P̌(t,m). (4)

The proof of Proposition 3.2 is postponed to Section 7. If we add in Proposition
3.2 the bias induced by the boundary of the window S to the variance compu-
tation, we obtain the same results as those provided in [14] (see Theorem 4.1).
Beyond Propositions 3.1 and 3.2, we can prove the multivariate asymptotic
normality as m→∞ of our geometrical feature for a given vector of thresholds.

Theorem 3.3 (Multivariate CLT for r-thresholds). Let r be a positive integer,
m ≥ 2 and t1, . . . , tr ∈ R, then,

m



P̌m(t1)
P̌m(t2)

...
P̌m(tr)

−

E(P̌m(t1))
E(P̌m(t2))

...
E(P̌m(tr))


 d−−−−→

m→∞
N (0, Σ?r) ,

where
d−→ holds for the convergence in distribution and N (0, Σ?r) for the r-

dimensional centered Gaussian distribution with covariance matrix Σ?r given by

Σ?r(i, j) := 4pmax(ti,tj)(1− pmin(ti,tj))
(

4− 14pmin(ti,tj)(1− pmax(ti,tj))

+ 6(pmin(ti,tj) − pmax(ti,tj))
)
. (5)

The proof of Theorem 3.3 is postponed to Section 7. Furthermore, some numer-
ical illustrations of Theorem 3.3 in the case r = 2 can be found in Appendix A.
Finally, as can be seen in (5), the last theoretical result that will be needed for
the construction of an empirical accessible test statistic is an estimation of pt.
This will be discussed in the next section.

3.2. Two consistent estimators for pt.

In the following, we will present two estimators and study their consistency
properties. In this section, for the sake of clarity, we denote p(t) := pt, ∀ t ∈ R.



Abaach et al./Testing marginal symmetry 8

One way to estimate p(t) is by considering the area of the excursion set. Another
idea for the estimation of p(t) is built on the relationship that exists between
the expectation value of the perimeter at a level t and p(t) (see Equation (3)):

E

(
P̌m(t)

(1− 1
m )

)
= 4p(t)(1− p(t)). (6)

Definition 3.4 (Area and perimeter based estimator for p(t)). Given a thresh-
old t ∈ R, we define

p̂Am(t) =
1

m2

m∑
i,j=1

Zi,j(t).

Besides, we partition the image S in m2/4 sub-images Si2 of size (2×2). We de-
note by P̌i2(t) the value of the scaled perimeter for each sub-image.
Let Sm(t) := 4

m2

∑
i P̌i2(t) and the continuous mapping g : [0, 1] → R defined

by

x 7→ g(x) =


1

2

(
1−

√
1− 2x

)
if x < 1

2 ,

1

2
else.

Then, for t > θ with θ the median value of the distribution, we define the
perimeter based estimator of p(t) as

p̂Pm(t) := g(Sm(t)).

Proposition 3.5 (Asymptotic normality for the proposed estimators for p(t)).
Let p̂Am(t) and p̂Pm(t) as in Definition 3.4. Then, it holds that

p̂Am(t)
a.s−−−−→

m→∞
p(t) and m (p̂Am(t)− p(t)) d−−−−→

m→∞
N (0, p(t)(1− p(t))).

Similarly, it holds
p̂Pm(t)

a.s−−−−→
m→∞

p(t)

and

m (p̂Pm(t)− p(t)) d−−−−→
m→∞

N

0,
p(t)(1− p(t))

(
1− 3p(t)(1− p(t))

)
4(1− 2p(t))2

 .

The proof of Proposition 3.5 is postponed to Section 7.

Remark 3. It is also possible to estimate p(t) for t < θ by considering the con-

tinuous mapping h : [0, 1] → R, x 7→ h(x) =


1

2

(
1 +

√
1− 2x

)
if x < 1

2 ,

1

2
else,

and applying the same procedure.
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4. Perimeter based symmetry test

As previously discussed in Remark 2, we now aim to build a test using the spe-
cific structure of the mean perimeter in the case of symmetry.

Let I =

{
x ∈ R, 0 < p(x) <

1

2

}
and Iθ = I − θ, it follows that

∀ t ∈ Iθ, 0 < p(θ + t) <
1

2
.

A test statistic Following the idea in [4] we propose a method to test the
symmetry of the marginal distribution marginal of the field at equidistant levels
from the median.
Let us consider the null hypothesis for t ∈ Iθ

H0(t) : pθ−t = 1− pθ+t,

where θ is the median value of the distribution. Let us first present a normal-
ity asymptotic result in the general case and a second result under the null
hypothesis.

Proposition 4.1 (Ratio between perimeters at two thresholds). Let t1 ∈ R
and t2 ∈ I with t1 < t2, and P̌m(·) be the scaled perimeter in Definition 2.1
computed for each threshold. Then, it holds that,

m

(
P̌m(t1)

P̌m(t2)
−
µP̌m(t1)

µP̌m(t2)

)
d−−−−→

m→∞
N
(
0, σ̃2(t1, t2)

)
,

with σ̃2(t1, t2) =
pt1(1− pt1)

(pt2(1− pt2))3

(
pt2(1 − pt2) − 2pt2(1 − pt1) − 3pt2(pt1 − pt2)

(1− pt1) + pt1(1− pt1)
)

.

Let t ∈ Iθ and Rm,θ(t) :=
P̌m(θ − t)
P̌m(θ + t)

. Then, under H0(t), it holds that

m (Rm,θ(t)− 1)
d,H0−−−−→
m→∞

N
(
0, σ2(θ + t)

)
, (7)

with σ2(θ + t) =
(2pθ+t − 1)(3pθ+t − 2)

pθ+t(1− pθ+t)2
.

We postpone the proof of Proposition 4.1 in Section 7.

4.1. Proposed test with asymptotic level α

Let α ∈ (0, 1) and q1−α/2 such that P(N (0, 1) ≤ q1−α/2) = 1 − α/2. Then,
using Proposition 4.1, we define the statistic of the test with asymptotic level α,
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φPm(σ) = 1{
| m
σ(θ+t)

(Rm,θ(t)− 1)| ≥ q1−α/2

}. (8)

Firstly, we study the consistency of the proposed test statistic (see Proposition
4.2 below). Secondly, we focus on some estimation procedures for σ(θ + t) (see
Section 4.2).

Let t ∈ Iθ and H1(t) be the alternative hypothesis

H1(t) : pθ−t 6= 1− pθ+t.

Proposition 4.2 (Consistency of the proposed symmetry test). For t ∈ Iθ, it
holds that PH1(t)(φ

P
m(σ) = 1)→ 1 for m→∞, with φPm(σ) as in Equation (8).

We postpone the proof of Proposition 4.2 in Section 7.

4.2. Empirical accessible test statistic

Notice that, if we take a consistent empirical estimator σ̂m(θ+ t) of the variance
of the considered ratio at level θ+t, then, we can consider the empirical accessible
test statistic

φPm(σ̂) = 1{
| m
σ̂m(θ+t)

(Rm,θ(t)− 1)| ≥ q1−α/2

}. (9)

Using the estimators of p(t) presented in Proposition 3.5, we can now construct
estimators of the variance of the ratio to built φPm(σ̂) in (9).

Proposition 4.3 (Plug-in variance estimators). Let p̂m(θ + t) be a consistent
estimator of p(θ+t) (i.e p̂m(θ + t)→ p(θ + t), a.s.) and σ(θ+t) as in Proposition
4.1. We define

σ̂m(θ + t) : =

√
(2p̂m(θ + t)− 1)(3p̂m(θ + t)− 2)

p̂m(θ + t)(1− p̂m(θ + t))2
. (10)

Then, σ̂m(θ + t)
a.s.−−−−→
m→∞

σ(θ + t) and

m

σ̂m(θ + t)
(Rm,θ(t)− 1)

d,H0−−−−→
m→∞

N (0, 1). (11)

The proof of Proposition 4.3 is postponed to Section 7.

Corollary 4.4. Using the same framework as in Proposition 4.3, we denote by
σ̂Pm(θ + t) and σ̂Am(θ + t) the plug-in estimators based on Equation (10) using
respectively p̂Pm(θ+ t) and p̂Am(θ+ t) as in Proposition 3.5. Then, σ̂Pm(θ+ t) and
σ̂Am(θ+ t) are two consistent estimators of σ(θ+ t) and asymptotic normality in
(11) holds for these two estimators.
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Thus, from Corollary 4.4 and using Equation (9), we get two empirical accessible
test statistics

φPm(σ̂P) = 1{
| m

σ̂Pm(θ+t)
(Rm,θ(t)− 1)| ≥ q1−α/2

} (12)

and
φPm(σ̂A) = 1{

| m

σ̂Am(θ+t)
(Rm,θ(t)− 1)| ≥ q1−α/2

}. (13)

4.3. Comparison with Kolmogorov-Smirnov based estimator

Remark that under H0(t), the cumulative distribution function F
satisfies F (θ − t) = 1− F (θ + t). Then, considering the empirical cumulative

distribution function t 7→ F̂m(t) :=
1

m2

∑
i,j 1Xi,j≤t, which is a robust es-

timator of F , one can build an alternative symmetry test. Let us note that
F̂m(t−) = 1− p̂Am(t) with p̂Am(t) as in Definition 3.4.

Proposition 4.5. Let t ∈ (0,∞). Under H0(t), it holds that

m

(
1− p̂Am(θ − t)
p̂Am(θ + t)

− 1

)
d,H0−−−−→
m→∞

N
(
0, (σk-s)2(θ + t)

)
, (14)

with (σk-s)2(θ + t) = 2
p(θ+t) .

The proof of Proposition 4.5 is postponed to Section 7.
Let us denote

σ̂k-s
m (θ + t) =

√
2

p̂Am(θ + t)
and Rk-s

m,θ(t) :=
1− p̂Am(θ − t)
p̂Am(θ + t)

.

One can provide an alternative Kolmogorov-Smirnov based test statistic with
asymptotic level α

φk-s

m (σ̂k-s) = 1{
| m

σ̂k-sm (θ+t)
(Rk-s
m,θ(t)− 1)| ≥ q1−α/2

}. (15)

Remark 4. In particular for s ∈ I we can prove
that σ2(s) < σ2

k-s(s), where σ2(s) is given by (7) and σ2
k-s(s) by (14), as shown in

Figure 9 in Appendix B. Then, the perimeter based test has a smaller variance
than the alternative Kolmogorov-Smirnov one.

5. Some numerical studies for the proposed symmetry test

In this section, we report simulation results for our symmetry test, for sam-
ples of 500 images of size m ×m, for m = 100, 512, 1024 and different choices
of threshold level. Firstly, we display the results for three symmetrical distri-
butions (Gaussian, Student and Uniform distributions, see Figure 4) and two
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Gaussian marginal distribution N (0, 1)
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Fig 4. Under H0 hypothesis. Average of the empirical values of PH0(t)(φ
P
m = 1) for different

thresholds t, for 500 Montecarlo simulations and for m = 100 (left panels), 512 (center
panels) and 1024 (right panels). We consider Gaussian marginal distribution N (0, 1) (first
row), Student marginal distribution with ν = 3 degrees of freedom (second row), Uniform
marginal distribution U(0, 1) (third row) and three different test statistics: φPm(σ̂P) as in (12)
(blue diamonds), φPm(σ̂A) as in (13) (red crosses) and φk-s

m (σ̂k-s) as in (15) (black stars).

asymmetrical ones (Exponential and Skew-normal distributions, see Figure 5).

For a better approximation of θ, we use the mean estimator provided by the
NumPy library, making use of the fact that for a symmetrical distribution it is
equivalent to use the mean or median to characterize the symmetry of a distribu-
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tion [i.e. a random variable X is symmetrically distributed around θ, the center
of symmetry, if its distribution function F satisfies
F (θ − x) = 1 − F (θ + x)]. As we can appreciate in Figure 4, the test is able
to successfully accept the H0 hypothesis. However, the choice of the thresh-
old is crucial in regard to the quality of the test. Unsurprisingly, for extreme
thresholds, the test is less precise. We will focus on this important point in
Section 6 below. Notice that the performances of our test statistic φPm with the
two proposed estimators of the variance σ̂A and σ̂P (in red crosses and blue
diamonds, respectively) seem to be globally similar. Furthermore, these satis-
factory results are comparable to those obtained with the Kolmogorov-Smirnov
based estimator in (15) (black stars).

Skew-normal and Exponential marginal distributions
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Fig 5. Under H1 hypothesis. Average of the empirical values of PH1(t)(φ
P
m = 1) for differ-

ent thresholds t, for 500 Montecarlo simulations for m = 512 with a skew-normal marginal
distribution with different choices of parameter a = 0.1, 0.5, 1, 3 (from first to fourth panel)
and Exp(1) distribution (fifth panel). We consider different test statistics: φPm(σ̂P) as in (12)
(blue diamonds), φPm(σ̂A) as in (13) (red crosses) and φk-s

m (σ̂k-s) as in (15) (black stars).

Figure 5 numerically describes the good performance of our test φPm to dis-
tinguish H1(t) from H0(t), for t ∈ R?+, in two asymmetric distributional cases:
Skew-normal distribution with probability density function given by
f(x) = 2φ(x)Φ(ax), for x ∈ R, with a ≥ 0, φ(·) (resp. Φ(·)) the standard
normal probability density function (resp. standard normal cumulative distri-
bution function) and Exponential distribution with parameter 1. Unsurprising,
in the skew-normal case, we observe that when a is larger the power of the test
increases, indeed the smaller the parameter a, the less asymmetric the distribu-
tion will be. This behavior can be easily observed for the four chosen levels of
skewness parameter a = 0.1, 0.5, 1, 3 in Figure 5 (from first to fourth panel).
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6. Perimeter based symmetry test for large threshold and dense
tiling

Following the considerations in Section 5, we aim to improve the quality of the
proposed test for large thresholds. As in [10], we firstly study the convergence
of the ratio between the first two moments of the unscaled perimeter Pm (see
Equations (3) and (4)). In Lemma 6.1 below, the expectation and the variance
are proven to have the same order of magnitude for large threshold and dense
tiling.

Lemma 6.1 (First two moments ratio for large threshold). Let Pm(t) as in (1)
and µP(pt,m) and σ2

P(pt,m) the associated mean and variance. Let (tm) be a
sequence of positive real numbers such that ptm → 0 as m→∞, then,

σ2
P(ptm ,m)

µP(ptm ,m)
−−−−→
m→∞

4,

and furthermore, for m large enough,

0.5 ≤
σ2
P(ptm ,m)

µP(ptm ,m)
≤ 4.

The proof of Lemma 6.1 is postponed to Section 7. By using Lemma 6.1 we can
now formulate a bivariate Central Limit Theorem for our geometrical feature
for m→∞ and large thresholds.

Proposition 6.2 (Bivariate Central Limit Theorem for large threshold and
dense tiling). Let 0 < γ < 2 and t(m,γ) and s(m,γ) two points of continuity for
the cumulative distribution function F , such that

t(m,γ) := F−1( 1
mγ ) and s(m,γ) := F−1(1− 1

mγ ).

Then, it holds that

√
m2E(P̌m(t(m,γ)))

4



P̌m(t(m,γ))

E(P̌m(t(m,γ)))
P̌m(s(m,γ))

E(P̌m(s(m,γ)))

−
(

1
1

) d−−−−→
m→∞

N
((

0
0

)
,

(
1 0
0 1

))
.

(16)

The proof of Proposition 6.2 is postponed to Section 7. Note that we have
written E

(
P̌m(t(m,γ))

)
and E

(
P̌m(s(m,γ))

)
in (16) for visual symmetry purposes

although those two quantities are equal (see Equation (3)). Finally, we can easily
derive the following result.

Corollary 6.3. Under assumptions of Proposition 6.2, it holds that√
m2E(P̌(t(m,γ)))

8

( P̌(t(m,γ))

P̌(s(m,γ))
− 1

)
d−−−−→

m→∞
N (0, 1). (17)
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Furthermore, √
m2P̌m(t(m,γ))

8

( P̌(t(m,γ))

P̌(s(m,γ))
− 1

)
d−−−−→

m→∞
N (0, 1). (18)

Equation (17) is obtained via the Delta method applied to Proposi-
tion 6.2. Finally, Equation (18) is given by using that, for m → ∞,

P̌m(t(m,γ))/E(P̌m(t(m,γ)))
P−→ 1 and by applying the Slutsky Theorem.

Using Corollary 6.3, one can build a modified version of the empirical accessi-
ble test statistic φPm in (9) with asymptotic level α, adapted to large thresh-
olds. Under H0(t) hypothesis, let θ be the median value of the distribution
and u(m,γ) ∈ R?+ so that θ+u(m,γ) := F−1(1− 1

mγ ), and θ−u(m,γ) := F−1( 1
mγ ).

Coming back to the ratio Rm,θ introduced in Section 4, we have

Rm,θ(u(m,γ)) :=
P̌m(θ − u(m,γ))

P̌m(θ + u(m,γ))
.

Then, from Corollary 6.3, it holds that

v̂(m,γ)(Rm,θ(u(m,γ))− 1)
d,H0−−−−→
m→∞

N (0, 1) with v̂(m,γ) =

√
m2P̌(θ − u(m,γ))

8
.

This asymptotic allows us to define a new symmetry test statistic by prescribing

φPm(v̂(m,γ)) = 1{
v̂(m,γ)|Rm,θ(u(m,γ))−1|≥q1−α/2

}. (19)

Conversely to Equation (9), the main statistical interest of the test in (19) is
to avoid the estimation of the variance. Furthermore, as one can remark for
instance in the numerical study in Figure 6, global performances of the test
in (19) are similar to those obtained in the same distributional framework in
Figure 4. This means that we can obtain similar p−values with less effort in

terms of moment estimations. Furthermore, notice that, since γ =
− ln(pum,γ )

ln(m)

and γ ∈ (0, 2), the range of admissible values for um,γ from Proposition 6.2 is
growing with m.

In order to better appreciate the statistical equivalent performance of the four
proposed test statistics, we gathered in Table 1 averaged values of the empirical
PH0(t)(φ

P
m = 1) and associated standard deviations for different thresholds and

several distributional models. We underline in bold some values for which the
last proposed test in (19) seems slightly outperform the other ones especially
for large threshold values (see Table 1).
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Gaussian marginal distribution N (0, 1)
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Fig 6. Under H0 hypothesis. Average of the empirical values of PH0(t)(φ
P
m = 1) for different

thresholds tm,γ , for 500 Montecarlo simulations, for m = 100 (left panels), 512 (center panels)
and 1024 (right panels). We consider a Gaussian marginal distribution N (0, 1) and different
test statistics: φPm(σ̂A) as in (13) (red stars), φk-s

m (σ̂k-s) as in (15) (black stars) and φPm(v̂(m,γ))
as in (19) (green diamonds).

Gaussian marginal distribution N (0, 1)
Thresholds tm,γ 1.0 1.85 2.69 3.54

b PH0 (φPm(σ̂P) = 1) 0.0 (0.0) 0.018 (0.133) 0.048 (0.214) 0.040 (0.196)
b PH0

(φAm(σ̂A) = 1) 0.0 (0.0) 0.018 (0.133) 0.048 (0.214) 0.038 (0.191)
bblPH0 (φk-s

m (σ̂k-s) = 1) 0.0 (0.0) 0.018 (0.133) 0.050 (0.218) 0.040 (0.196)
PH0

(φPm(v̂) = 1) 0.0 (0.0) 0.016 (0.125) 0.048 (0.214) 0.038 (0.191)

Student marginal distribution df = 3

Thresholds tm,γ 1.5 3.62 5.75 7.87
b PH0 (φPm(σ̂P) = 1) 0.006 (0.077) 0.01 (0.099) 0.034 (0.181) 0.038 (0.191)
b PH0

(φAm(σ̂A) = 1) 0.006 (0.077) 0.01 (0.099) 0.034 (0.181) 0.038 (0.191)
bblPH0 (φk-s

m (σ̂k-s) = 1) 0.002 (0.045) 0.01 (0.099) 0.032 (0.176) 0.038 (0.191)
PH0

(φPm(v̂) = 1) 0.00 (0.0) 0.01 (0.099) 0.032 (0.176) 0.038 (0.191)

Uniform marginal distribution U(0, 1)

Thresholds tm,γ 0.7 0.78 0.85 0.93
b PH0 (φPm(σ̂P) = 1) 0.002 (0.045) 0.0 (0.0) 0.004 (0.063) 0.094 (0.292)
b PH0

(φAm(σ̂A) = 1) 0.002 (0.045) 0.0 (0.0) 0.004 (0.063) 0.094 (0.292)
bblPH0

(φk-s
m (σ̂k-s) = 1) 0.00 (0.0) 0.0 (0.0) 0.004 (0.063) 0.096 (0.295)

PH0
(φPm(v̂) = 1) 0.00 (0.0) 0.0 (0.0) 0.00 (0.0) 0.064 (0.245)

Table 1
Under H0 hypothesis. Average of the empirical values of PH0(t)(φ

P
m = 1) and associated

standard deviations for different thresholds tm,γ , for 500 Montecarlo simulations, for
m = 1024. We consider different test statistics: φPm(σ̂P) as in (12), φPm(σ̂A) as in (13),

φk-s
m (σ̂k-s) as in (15) and finally φPm(v̂(m,γ)) as in (19).

7. Proofs

Proof of Proposition 3.1. One can start by observing that both f (t)

1 (l, k) and
f (t)

2 (k, l) follow a Bernoulli distribution with parameter 2pt(1− pt). Thus, using
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Equation (1), one can write

E(Pm(t)) = E(P (1)

m (t) + P (2)

m (t)) = 2

m∑
l=1

m∑
k=2

E(f (t)

1 (l, k))

= 4m(m− 1)pt(1− pt).

Thus we obtain the result for E
(
P̌m
)

dividing by m2.

Proof of Proposition 3.2. Without loss of generality, one can assume that t ≤ s.
We use here Definition 1 of the perimeter. Let us start by making use of the

fact that (P (1)
m (s),P (1)

m (t))
d
= (P (2)

m (s),P (2)
m (t)). Thus,

Cov (Pm(s),Pm(t)) = 2Cov (P (1)

m (s),P (1)

m (t)) + 2Cov (P (2)

m (s),P (1)

m (t)) .

Firstly,

Cov (P (1)

m (s),P (1)

m (t)) = Cov

 m∑
l=1

m∑
k=2

f
(s)
1 (l, k),

m∑
i=1

m∑
j=2

f
(t)
1 (i, j)


=

m∑
l=1

m∑
k=2

m∑
j=2

Cov
(
f

(s)
1 (l, k), f

(t)
1 (i, j)

)
,

where we have used that for ∀k, l, if , i 6= l, Cov
(
f

(s)
1 (l, k), f

(t)
1 (i, j)

)
= 0.

In the above sum, there will be only three cases for which the covariance function
is different from 0: j = k, j = k + 1 and j = k − 1.

1. If j = k,

E(f
(s)
1 (l, k)f

(t)
1 (l, k)) = P

(
f

(s)
1 (l, k) = 1 ∩ f

(t)
1 (l, k) = 1

)
= P

(
((Xl,k−1 < s ∩ Xl,k ≥ s) ∪ (Xl,k−1 ≥ s ∩ Xl,k < s)

)
∩ ((Xl,k−1 < t ∩ Xl,k ≥ t) ∪ (Xl,k−1 ≥ t ∩ Xl,k < t))

)
= P

((
Xl,k−1 < s ∩ Xl,k ≥ s ∩ Xl,k−1 < t ∩ Xl,k ≥ t

)
∪
(
Xl,k−1 < s ∩ Xl,k ≥ s ∩ Xl,k < t︸ ︷︷ ︸

=∅

∩ Xl,k−1 ≥ t
)

∪
(
Xl,k−1 ≥ s ∩ Xl,k−1 < t︸ ︷︷ ︸

=∅

∩ Xl,k < s ∩ Xl,k ≥ t
)

∪ (Xl,k−1 ≥ s ∩ Xl,k < s ∩ Xl,k−1 ≥ t ∩ Xl,k < t)

)
= P

(
Xl,k−1 < t ∩ Xl,k ≥ s

)
+ P

(
Xl,k−1 ≥ s ∩ Xl,k < t

)
= ps(1− pt) + (1− pt)ps
= 2ps(1− pt).
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Thus,

Cov
(
f

(s)
1 (l, k), f

(t)
1 (l, k)

)
= 2ps(1− pt)− 2ps(1− ps)2pt(1− pt)

= 2ps(1− pt)(1− 2pt + 2ptps).

2. If j = k + 1,

E(f
(s)
1 (l, k)f

(t)
1 (l, k + 1)) = P

(
f

(s)
1 (l, k) = 1 ∩ f

(t)
1 (l, k + 1) = 1

)
= P

(
((Xl,k−1 < s ∩ Xl,k ≥ s) ∪ (Xl,k−1 ≥ s ∩ Xl,k < s)

)
∩ ((Xl,k < t ∩ Xl,k+1 ≥ t) ∪ (Xl,k ≥ t ∩ Xl,k+1 < t)))

= P
(
(Xl,k−1 < s ∩ Xl,k ≥ s ∩ Xl,k < t︸ ︷︷ ︸

=∅

∩ Xl,k+1 ≥ t)

∪ (Xl,k−1 < s ∩ Xl,k ≥ s ∩ Xl,k ≥ t ∩ Xl,k+1 < t)

∪ (Xl,k−1 ≥ s ∩ Xl,k < s ∩ Xl,k < t ∩Xl,k+1 ≥ t)
∪ (Xl,k−1 ≥ s ∩ Xl,k < s ∩ Xl,k ≥ t ∩ Xl,k+1 < t)

)
= P(Xl,k−1 < s)P(Xl,k ≥ s)P(Xl,k+1 < t)

+ P(Xl,k−1 ≥ s)P(Xl,k < t)P(Xl,k+1 ≥ t)
+ P(Xl,k−1 ≥ s)P(Xl,k ≥ t ∩ Xl,k < s)P(Xl,k+1 < t)

= (1− ps)ps(1− pt) + (1− pt)ptps + ps(pt − ps)(1− pt)
= ps(1− pt)(1 + 2pt − 2ps).

Thus,

Cov
(
f

(s)
1 (l, k), f

(t)
1 (l, k + 1)

)
= ps(1− pt)(1 + 2pt − 2ps)− 2ps(1− ps)2ps(1− pt)

= ps(1− pt)(1− 2pt − 2ps + 4ptps).

3. Similarly, if j = k − 1,

Cov(f
(s)
1 (l, k), f

(t)
1 (l, k − 1)) = Cov(f

(s)
1 (l, k), f

(t)
1 (l, k + 1))

= ps(1− pt)(1− 2pt − 2ps + 4ptps).

Thus,

Cov
(
P (1)

m (s),P (1)

m (t)
)

=

m∑
l=1

m∑
k=2

Cov
(
f

(s)
1 (l, k), f

(t)
1 (l, k)

)
+

m∑
l=1

m∑
k=3

Cov
(
f

(s)
1 (l, k), f

(t)
1 (l, k + 1)

)
+

m∑
l=1

m∑
k=3

Cov
(
f

(s)
1 (l, k), f

(t)
1 (l, k − 1)

)
= 2m(m− 1)ps(1− pt)(1− 2pt(1− ps))

+ 2m(m− 2)ps(1− pt)(1 + 2pt − 2ps − 4pt(1− ps)).
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Now, let us compute the inter-level covariance between the horizontal contribu-
tions to the perimeter and the vertical ones:

Cov (P (1)

m (s),P (2)

m (t)) = Cov

 m∑
l=1

m∑
k=2

f
(s)
1 (l, k),

m∑
i=1

m∑
j=2

f
(t)
2 (j, i)


=

m∑
l=1

m∑
k=2

m∑
i=1

m∑
j=2

Cov
(
f

(s)
1 (l, k), f

(t)
2 (j, i)

)
.

To this aim, notice that the covariance between cells is non equal to zero only
if the cells are neighbors, that implies that

for i /∈ {k − 1, k} or for l /∈ {j − 1, j} Cov(f1(l, k), f2(j, i)) = 0.

Thus,

Cov(P1
m(s),P2

m(t)) =

m∑
k=2

m∑
j=2

(
Cov(f

(s)
1 (j − 1, k), f

(t)
2 (j, k − 1))

+ Cov(f
(s)
1 (j, k), f

(t)
2 (j, k − 1))

+ Cov(f
(s)
1 (j − 1, k), f

(t)
2 (j − 1, k))

+ Cov(f
(s)
1 (j, k), f

(t)
2 (j, k))

)
.

Due to the i.i.d setting (see Figure 7), one can remark that the four types of

covariance in the above sum are equal and are equal to Cov(f
(s)
1 (l, k), f

(t)
2 (l, k+

1)).

∼

Fig 7. Representation of the configuration between (f1(l, k), f2(l + 1, k − 1)) (left panel) and
(f1(l, k), f1(l, k + 1)) (right panel), the black dot represents the cell (k, l).

Thus,

Cov(P1
m(s),P2

m(t)) = 4(m− 1)2Cov(f
(s)
1 (l, k), f

(t)
2 (l, k + 1))

= 4(m− 1)2ps(1− pt)(1 + 2pt − 2ps − 4pt(1− ps)).

Putting all elements together, we get the covariance function of the unscaled
perimeter:

Cov (Pm(s),Pm(t)) = 4 ps(1− pt)((4m2 − 7m+ 2)
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− 2pt(1− ps)(7m2 − 13m+ 4) + 2(pt − ps)(3m2 − 6m+ 2)).

Hence, the result.

Proof of Theorem 3.3. In order to prove this result, we will use the well known
Cramèr-Wold method. For the sake of completeness we recall it below.

Theorem 7.1 (Cramèr-Wold method, see, e.g., [5], p. 383). Let X
m

= (Xm
1 , · · · , Xm

r )
and X = (X1, · · · , Xr) be random vectors of dimension r ≥ 1. Then, X

m

con-
verges in distribution to X if and only if∑r

i=1 aiX
m
i

d−−−−−→
m→+∞

∑r
i=1 aiXi,

for each (a1, · · · , ar) ∈ Rr, i.e., if every fixed linear combination of the coordi-
nates of X

m
converges in distribution to the correspondent linear combination

of coordinates of X.

We first need to introduce some notations. Let Vm = {1, . . . ,m} × {2, . . . ,m}
a1, . . . , ar ∈ R, t1, . . . , tr ∈ R, (l, k) ∈ Vm and i ∈ {1, . . . , r}. Let Pm(ti) as in
Equation (1). We introduce

Yl,k(ti) = 1
(Z

(ti)

l,k−1= 0 ∩ Z(ti)

l,k = 1) ∪ (Z
(ti)

l,k−1= 1 ∩ Z(ti)

l,k = 0)

+ 1
(Z

(ti)

k−1,l= 0 ∩ Z(ti)

k,l = 1) ∪ (Z
(ti)

k−1,l= 1 ∩ Z(ti)

k,l = 0)
.

Note that 0 ≤ Yl,k(ti) ≤ 2 a.s. and |Yl,k(ti) − E(Yl,k(ti))| ≤ 2,
thus |

∑r
i=1 ai(Yk,l(ti)− E(Yl,k(ti)))| ≤ 2

∑r
i=1 |ai|. We note

Wm
l,k =

1

m

r∑
i=1

ai
[
Yl,k(ti)− E(Yl,k(ti)))

]
, (20)

and finally,

Sm =

m∑
l=1

m∑
k=2

Wm
l,k =

a1

m
(Pm(t1)− E(Pm(t1))) + . . .+

ar
m

(Pm(tr)− E(Pm(tr))).

Using the Cramèr-Wold method, we need to prove that

Sm
d−−−−→

m→∞
N

0,

r∑
i=1

a2
iΣ

?
r(i, i) +

∑
0≤i<j≤r

2aiajΣ
?
r(i, j)

 ,

with Σ?r as in (5). To this purpose we use the following weaker version of Theorem
1 of [19] for bounded variables (see p.200 in [19] for details).

Proposition 7.2. Let Vm = {1, . . . ,m} × {2, . . . ,m} and {Xm
z , z ∈ Vm} be a

sequence of 1-dependent random field, and Sm =
∑
z∈Vm X

m
z . If the following

three conditions are satisfied:

(i) ∀ε > 0,
∑
z∈Vm P(|Xm

z | ≥ ε) −−−−→
m→∞

0,
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(ii)
∑
z∈Vm E((Xm

z )2) ≤ C < +∞,

(iii) E(Sm) −−−−→
m→∞

0 and Var(Sm) −−−−→
m→∞

σ2 with σ2 ∈ (0,∞),

then, Sm
d−−−−→

m→∞
N (0, σ2).

We start by showing that {Wm
z , z ∈ Vm} satisfies (i). For ε > 0, we get that,

∑
(l,k)∈Vm

P
(∣∣Wm

l,k

∣∣ ≥ ε) ≤ ∑
(l,k)∈Vm

E(
∣∣Wm

l,k

∣∣3)

ε3

≤
(2
∑r
i=1 |ai|)3 ×m(m− 1)

(mε)3
−−−−→
m→∞

0.

To prove that {Wm
z , z ∈ Vm} satisfies (ii), we write

∑
(l,k)∈Vm

E
((
Wm
l,k

)2) ≤ m(m− 1)

(
2

m

r∑
i=1

|ai|

)2

≤

(
2

r∑
i=1

|ai|

)2

.

For (iii) we observe that Var(Sm) = Var
(
a1
mPm(t1) + . . .+ ar

mPm(tr)
)

thus, as
m→∞,
Var

(
a1
mPm(t1) + . . .+ ar

mPm(tr)
)
→
∑r
i=1 a

2
iΣ

?
r(i, i) +

∑
0≤i<j≤r 2aiajΣ

?
r(i, j),

by Equation (5). Using the auxiliary Proposition 7.2 proves Theorem 3.3.

Proof of Proposition 3.5. Let θ be the median value of the underlying distribu-
tion. We first start with solving the quadratic Equation (6) for m = 2 under the

condition that t > θ (i.e p(t) < 1
2 ). We get that p(t) =

1

2

(
1−

√
1− 2E

(
P̌2(t)

))
.

Since we are in an i.i.d. framework, the variables P̌i2(t) for each sub-image Si
are i.i.d, and, by using the Law of Large numbers, Sm(t) := 4

m2

∑
i P̌i2(t) is an

estimator of E
(
P̌2(t)

)
. Applying the Central Limit Theorem, we get√

m2

4

(
Sm(t)− E

(
P̌2(t)

)) d−−−−→
m→∞

,N (0, σ2
P̌(t, 2)), (21)

with σ2
P̌(t, 2) = Var

(
P̌2(t)

)
= pt(1 − pt) (1− 3pt(1− pt)). We apply the Delta

method to Equation (21) using the function g as defined in Proposition 3.4.
Note that g is differentiable on (0, 1

2 ) and that for t 6= 1
2 , E

(
P̌2(t)

)
< 1

2 Thus√
m2

4

(
g(Sm(t))− g(E

(
P̌2(t)

)
)
) d−−−−→
m→∞

g′(E
(
P̌2(t)

)
N (0, σ2

P̌(t, 2)),

with g′(x) =
1

2
√

1− 2x
. Since

√
1− 2E

(
P̌2(t)

)
= 1− 2pt, we get

m (p̂Pm(t)− p(t)) d−−−−→
m→∞

N

0,
p(t)(1− p(t))

(
1− 3p(t)(1− p(t))

)
4(1− 2p(t))2

 .
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Hence, the result for p̂Pm. For p̂Am, the result is a classical consequence of the
Central Limit Theorem.

Proof of Proposition 4.1. Let t, s ∈ R with t < s. Let

µ := limm→∞

(
µP̌m(t)
µP̌m(s)

)
=

(
4pt(1− pt)
4ps(1− ps)

)
and g :

(
x
y

)
7→

x

y
.

Applying the Delta method to the multivariate Central Limit Theorem 3.3, we
get the following result

m

(
P̌m(t)

P̌m(s)
−
µP̌m(t)

µP̌m(s)

)
d−−−−→

m→∞
N
(
0,∇g(µ)TΣ?2∇g(µ)

)
,

with ∇g(µ) =


1

4ps(1− ps)
− 4pt(1− pt)

(4ps(1− ps))2

, and Σ?2 as in Theorem 3.3. Thus,

∇g(µ)TΣ?2∇g(µ) =
pt(1− pt)

(ps(1− ps))3
(
ps(1− ps)− 2ps(1− pt)− 3ps(pt − ps)(1− pt)

+ pt(1− pt)
)
.

Proof of Proposition 4.2. From Proposition 4.1 it holds that,

m

(
Rm,θ(t)−

µP̌m(θ − t)
µP̌m(θ + t)

)
d,H0−−−−→
m→∞

N
(
0, σ̃2(θ − t, θ + t)

)
. (22)

Let us denote σ := σ(θ + t) =

√
(2pθ+t − 1)(3pθ+t − 2)

pθ+t(1− pθ+t)2
the standard deviation

of the ratio under H0(t) and σ̃ the standard deviation in (22). Let φPm(σ) as in
Equation (8).
Under the alternative hypothesis H1(t), pθ−t 6= 1− pθ+t. Besides, pθ−t 6= pθ+t.

Let define δ = 1− pθ−t(1− pθ−t)
pθ+t(1− pθ+t)

. By hypothesis δ 6= 0. Recall that

µP̌m(θ − t)
µP̌m(θ + t)

=
pθ−t(1− pθ−t)
pθ+t(1− pθ+t)

, then
µP̌m(θ − t)
µP̌m(θ + t)

= 1− δ.

Then, we get

PH1(t)(φ
P
m(σ) = 1) = PH1(t)

(∣∣∣m
σ̃

(
Rm,θ(t)− 1 + δ − δ

)∣∣∣ ≥ q1−α/2
σ

σ̃

)

= PH1(t)

(
m

σ̃

(
Rm,θ(t)−

µP̌m(θ − t)
µP̌m(θ + t)

)
− m

σ̃
δ ≥ q1−α/2

σ

σ̃

)
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+ PH1(t)

(
m

σ̃

(
Rm,θ(t)−

µP̌m(θ − t)
µP̌m(θ + t)

)
− m

σ̃
δ ≤ −q1−α/2

σ

σ̃

)
.

Then

PH1(t)(φ
P
m(σ) −−−−→

m→∞
1,

hence, we get the result.

Proof of Corollary 4.3. Considering the continuous mapping

ψ : x 7→

(
(2x− 1)(3x− 2)

x(1− x)2

)− 1
2

and the fact that p̂m(θ+t) is a robust estimator

of p(θ + t), we get that ψ(p̂m(θ + t))
a.s.−−−−→
m→∞

ψ(p(θ + t)) where

ψ(p(θ + t)) =
1

σ(θ + t)
. Thus, applying the Slutsky Theorem to (7), we get

mψ(p̂m(θ + t))(Rm,θ(t)− 1)
d,H0−−−−→
m→∞

ψ(p(θ + t))N (0, σ2(θ + t)).

Hence the result.

Proof of Proposition 4.5. For the sake of simplicity, let us note θ − t = u and

θ + t = s, for t ∈ (0,∞) and µ =

(
1− pu
1− ps

)
. We recall that, ∀x ∈ R

F̂m(x−) =
1

m2

m∑
i=1

m∑
j=1

1{Xi,j<x}.

Furthermore, from the bivariate Central Limit Theorem,

m

((
F̂m(u−)

F̂m(s−)

)
−
(
F (u−)
F (s−)

))
d−−−−→

m→∞
N
((

0
0

)
,

(
(1− pu)pu (1− pu)ps
(1− pu)ps (1− ps)ps

))
.

Applying the Delta method using the function g :

(
x
y

)
7→

x

1− y
, it holds that

m

(
F̂m(u−)

1− F̂m(s−)
− 1

)
d−−−−→

m→∞
N
(

0,∇g(µ)T
(

(1− pu)pu (1− pu)ps
(1− pu)ps (1− ps)ps

)
∇g(µ)

)

with ∇g(µ) =

(
1
ps

1−pu
(ps)2

)
. Since under H0(t), pu = 1− ps, then,

∇g(µ)T
(

(1− pu)pu (1− pu)ps
(1− pu)ps (1− ps)ps

)
∇g(µ) =

( 1
ps

1
ps

)(pups p2
s

p2
s pups

)( 1
ps
1
ps

)
=

2

ps
.

Then,

m

(
F̂m(u−)

1− F̂m(s−)
− 1

)
d,H0−−−−→
m→∞

N
(

0,
2

ps

)
.

Hence the result.
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Proof of Lemma 6.1. We recall from Equation (3) that we have,
µP(pt,m) = 4pt(1− pt)m(m− 1), and from Equation (4)

σ2
P(pt,m) = 4pt(1− pt)((4m2 − 7m+ 2)− 2pt(1− pt)(7m2 − 13m+ 4)).

Then, the ratio is equal to

σ2
P(pt,m)

µP(pt,m)
=

(4− 7
m + 2

m2 )− 2pt(1− pt)(7− 13
m + 4

m2 )

(1− 1
m )

. (23)

Let r?m :=
(4− 7

m + 2
m2 )

1− 1
m

, then,

∣∣∣∣∣σ2
P(pt,m)

µP(pt,m)
− r?m

∣∣∣∣∣ ≤
∣∣∣∣∣2pt(1− pt)(7m− 13 + 4

m )

(m− 1)

∣∣∣∣∣ ≤ |14pt(1− pt)| .

Hence, uniformly in m,
σ2
P(pt,m)

µP(pt,m)
−−−→
pt→0

r?m. (24)

Thus, as m→∞,
σ2
P(pt,m)

µP(pt,m)
tends to 4 = limm→∞ r?m.

For the second item, we can note that pt(1 − pt) reaches its maximal value at
pt = 1/2. It follows that

σ2
P(pt,m)

µP(pt,m)
≥

(4m2 − 7m+ 2)− 1
2 (7m2 − 13m+ 4)

m(m− 1)
=

1

2
.

Hence, we have proven that for m large enough,

1

2
≤

σ2
P(pt,m)

µP(pt,m)
≤ 4,

where the second part of the inequality is due to (23) and (24).

Proof of Proposition 6.2. Let us first notice that E (P(tm,γ)) = E(P(sm,γ)),

since ptm,γ = 1−
1

mγ
= 1− psm,γ . In order to prove the result, we will establish

that ∀ a1, a2 ∈ R√
1

4E (P(tm,γ))
(a1 (P (tm,γ)− E (P (tm,γ))) + a2 (P (sm,γ)− E (P (sm,γ))))

d−−−−→
m→∞

N (0, a2
1 + a2

2).

To prove this statement, we will follow the same idea as in the proof of Theorem
3.3, introducing the following notations, similar to (20),

W̃m
l,k =

√
1

4E (P(tm,γ))

(
a1 (Pm(tm,γ)− E(Pm(tm,γ)))+a2 (Pm(sm,γ)− E (Pm(sm,γ)))

)
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and finally, Sm =
∑m
l=1

∑m
k=2 W̃

m
l,k.

In order to show that Sm
d−−−−→

m→∞
N (0, a2

1 + a2
2), we will check that the family

{W̃m
z , z ∈ Vm} satisfies the three conditions of Proposition 7.2.

To show that {W̃m
z , z ∈ Vm} satisfies (i), we proceed as in the proof of Theo-

rem 3.3. For ε > 0 and choosing p >
4

2− γ
, we get that,

∑
(l,k)∈Vm

P
(∣∣W̃m

l,k

∣∣ ≥ ε) ≤ ∑
(l,k)∈Vm

E
(∣∣W̃m

l,k

∣∣p)
εp

≤
(
2
∑2
i=1 |ai|

)p
m(m− 1)

εp
√(

4× 4m(m− 1)× 1
mγ

(1− 1
mγ

)
)p ,

≤ Cm2− 1
2
p(2−γ),

for some positive constant C. As p >
4

2− γ
, Cm2− 1

2p(2−γ) −−−−→
m→∞

0.

To show that {W̃m
z , z ∈ Vm} satisfies (ii),

∑
(l,k)∈Vm

E
((
Wm
l,k

)2)
=

∑
(l,k)∈Vm

1

4E (P(tm,γ))
Var (a1Yl,k (tm,γ) + a2Yl,k (sm,γ))

≤
2m(m− 1)

4E (P (tm,γ))

(
a2

1Var (Y1,2 (tm,γ)) + a2
2Var (Y1,2 (sm,γ))

)
.

Let us recall that Y1,2(t) is a sum of two Bernoulli random variables with pa-
rameter 2pt(1− pt). Hence, Var (Y1,2(tm,γ)) ≤ 2ptm,γ (1− ptm,γ ).
Since ptm,γ = 1− psm,γ , we have

∑
(l,k)∈Vm

E
((
Wm
l,k

)2) ≤ m(m− 1)

4E (P (tm,γ))
(a21 + a22)× 8ptm,γ (1− ptm,γ ) ≤ a21 + a22.

Thus, the sum is bounded. Finally, for (iii),

Var(Sm) = Var

(√
1

4E (P(tm,γ))

(
a1Pm(tm,γ) + a2Pm(sm,γ)

))
=

1

4E (P(tm,γ))

(
a2

1Var(P(tm,γ)) + 2a1a2Cov(P(tm,γ),P(sm,γ)) + a2
2Var(P(tm,γ))

)
=

(a2
1 + a2

2)

4E(P(tm,γ))
Var(P(tm,γ)) +

1

4m(m− 1)

2a1a2

4ptm,γ (1− ptm,γ )
Cov(P(tm,γ),P(sm,γ)).

(25)

Note that sm,γ > tm,γ , thus, by Proposition 3.2,

Cov (P(tm,γ),P(sm,γ)) = 4 psm,γ (1− ptm,γ )((4m2 − 7m+ 2)

− 2ptm,γ (1− psm,γ )(7m2 − 13m+ 4)
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+ 2(ptm,γ − psm,γ )(3m2 − 6m+ 2)).

Given that ptm,γ = 1− psm,γ , we have

Cov (P(tm,γ),P(sm,γ)) = 4 (1− ptm,γ )2((4m2 − 7m+ 2)

− 2p2tm,γ (7m2 − 13m+ 4) + 2(2ptm,γ − 1)(3m2 − 6m+ 2)).

Recall that, ptm,γ → 1, thus,
Cov (P(tm,γ),P(sm,γ))

m(m− 1)ptm,γ (1− ptm,γ )
−−−−→
m→∞

0. Hence, from

Equation (25), we get that Var (Sm) −−−−→
m→∞

a2
1 +a2

2, since
Var (P(tm,γ)

E (P(tm,γ)
−−−−→
m→∞

4

by Lemma 6.1.
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niveau, volume 1147. Springer, 2006.

Appendix A: Numerical illustrations of Theorem 3.3

In order to illustrate the multivariate CLT of Theorem 3.3, we follow the example
given by [13]. We start by simulating a sample of 900 images of size 1000 ×
1000 pixels generated from a Uniform distribution and compute the perimeter
without the border using the Algorithm 1 associated to the binary image for a
threshold t = 0.5. We create the histogram of the variable:

Am(t) =
m
(
P̌m(t)− E(P̌m(t))

)√
σ?2(t)

(26)

and compare it to the plot of Gaussian density. To illustrate the bivariate CLT,
let s = 0.6 and t = 0.2, we use the Python function stats.normaltest from
scipy’s library to do a normal test based on [9]’s method. This function tests
whether a sample differs from a normal distribution. Thus, we plot the p-value
of the test conducted on the projection cos(θ)Am(t) + sin(θ)Am(s) for θ ∈
[0, 2π). This method mimics the Cramèr-Wold Theorem 7.1. We also use the
Mahalanobis distance to show the joint Gaussianity. This illustration is based
on the fact that if X ∼ Nd(µ,Σ) then, the Mahalanobis distance D2 with
entries D2

i

D2
i = (Xi − µ)′Σ−1(Xi − µ), i = 1, . . . ,m2

is distributed according to a χ2
d-distribution with d degrees of freedom. Using

the theoretical value of Σ? and numerically estimating the sample average µ, we
compute the value D2

i and compare it with a χ2
d-distribution, using the QQ-plot

method. In Figure 8, we gathered the obtained results from these numerical
studies which confirm the joint normal behaviour of (Am(t), Am(s)).
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Fig 8. (a.) Univariate Gaussianity of Am(t) in (26) for m = 1200 and t = 0.5 for a bin
size equal to 20. The solid blue line represents the corresponding standard Gaussian density.
We propose two validation methods of the multivariate Gaussianity of the bivariate vector
(Am(s), Am(t)) with s = 0.6 and t = 0.2. (b.) p−value for cos(θ)Am(t) + sin(θ)Am(s) for
θ ∈ [0, 2π), computed using the function stats.normaltest from scipy. (c.) Estimated proba-
bility density of D2 (blue histogram) and theoretical Chi-squared density (red curve). QQ-plot
between the theoretically predicted χ2

2 quantiles and the empirical quantiles of D2.

Appendix B: Comparison between σ2(s) and σ2
k-s

(s) variances

Figure 9 below provides a comparison between the two variance values σ2(s)
in (7) (red full line) and (σk-s)

2(s) in (14) (black dashed line), for ps ∈ (0, 0.5).
As notice in Remark 4, Figure 9 shows that the variance of the ratio computed
using the perimeter is lower than the variance of the ratio computed using a
Kolmogorov Smirnov method.
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Fig 9. Variance values σ2(s) in (7) in (red full line) and (σk-s)2(s) in (14) (black dashed
line), for ps ∈ (0.1, 0.5)

Appendix C: Optimization problem for the variance function

For statistical purposes, it is important to identify the points where the variance
function in Equation (4) reaches its maximum and minimum values.
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Let us consider the following optimization problem :

p?t = arg min
pt

σ2
P̌(pt,m)

= arg min
pt

4

m4
pt(1− pt)((4m2 − 7m+ 2)− 2pt(1− pt)(7m2 − 13m+ 4)).

By using XCAS, we get that the set of extrema of this variance function is equal
to {

1

2
−
√

84m4 − 324m3 + 416m2 − 200m+ 32

28m2 − 52m+ 16
,

1

2
,

1

2
+

AHHHhhh

√
84m4 − 324m3 + 416m2 − 200m+ 32

28m2 − 52m+ 16

}
:= {α1, α2, α3}.

By doing an analytical study, we get the maximum value of the variance is
reached on α1 and α3 and the minimum value for α2 (see Figure 10 for an
illustration in the Uniform white noise model).
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Fig 10. Curve of the variance function in Equation (4) for a Uniform white noise model for
m = 1024, the extrema are reached at pt ∈ {0.172, 0.5, 0.82}.
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