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Multiobjective recommendation for sustainable production systems®

ARNAULT PACHOT, ADELAIDE ALBOUY-KISSI, BENJAMIN ALBOUY-KISSI, and FREDERIC CHAUSSE, Uni-

versité Clermont-Auvergne, CNRS, SIGMA Clermont, Institut Pascal, France

We present a recommendation system to help rebuild sustainable production
systems. Our multi-objective system synergizes the public and private actors
of a territory. From know-how proximities in the Product Space, we suggest
productive jumps for companies in a territory that consider the expectations
of companies not only in terms of diversification but also in terms of the
expectations of local authorities who are anxious to build sustainable pro-
duction systems. We formalize a multi-stakeholder recommendation that
is applied to the sustainability of a territorial economy and we propose the
following new objectives to consider:
(i) Economic growth, based on the concept of territorial economic com-
plexity;
(ii) Productive resilience, defined rigorously from the theory of dynamic
systems;
(iii) Food security and more generally basic necessities from an original
approach based on Maslow’s hierarchy of needs;
(iv) The need to develop greener productions that respect the environ-
ment.
The recommendation system that we propose incorporates territorial policy
as a weighting of objectives. This "configuration” acts directly on the system
to influence the recommended productive jumps. Each objective is defined
to be computed directly from open data available for most countries without
requiring external data.

CCS Concepts: « Applied computing — Supply chain management; «
Information systems — Recommender systems.

Additional Key Words and Phrases: Multi-Objective Recommender Systems,
Supply-chain resilience, Sustainable production system

1 INTRODUCTION

The Covid 19 crisis has shown the fragility of our European produc-
tion systems. Years of externalizations have damaged our productive
capacity. However, a general awareness has emerged following the
crisis, and the public and private sector are now ready to collabo-
rate to rebuild a sustainable production system. Financial support
programs have been deployed to help companies relocate their pro-
duction or reinforce their existing activities.

At the same time, companies have understood the importance of
securing their supplies through local production units. This offers
new business opportunities to suppliers to develop their production
towards new products to overcome shortages. To support this effort,
we imagined a recommender system whose goal is to suggest the de-
velopment of new products to companies to ensure their commercial
development, while taking into account territorial policies.

We will start by presenting the area of recommendation. Then,
after describing the previous work in relation to the field of industry,
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we will introduce the public and private stakeholders. We will then
detail how our multi-objective recommendation system works and
we will present a first experimentation on a French territory.

2 PREVIOUS WORKS

Recommendation systems are very successful in many areas. There
are two types of these systems: content-based and collaborative
filtering[6, 7]. Several recommendation systems are derived from the
two main types, and it is usual to combine them before generating
the list of recommended objects[10].

2.1 Multi-objective recommendation

Traditionally, recommendation systems are oriented towards the
end-user and seek to optimize a single cost function. However,
recommendation methods can be multi-objective when they aim to
optimize several objectives. For example, by integrating diversity
and novelty in the proposed products[4, 46, 48, 55]. Other uses
concern the consideration of price in recommended products[15, 30].
Recommendation systems that seek to improve the fairness of results
are also multi-objective recommendation systems[11, 40, 56]. The
difficulty is to take into account each objective without significantly
degrading the accuracy on the main objective.

Several approaches to this problem exist. The first approach draws
its foundations from multi-objective optimization and seeks to opti-
mize all of the objectives at the same time. This approach is based
on Pareto concepts and the associated algorithms are of the evolu-
tionary type[13, 17, 35, 41, 55, 57].

The second approach considers multi-objectives as a hybridiza-
tion of methods in which the combination of results can be done in
cascade[31, 36]: an objective refines the result of a previous objective
(re-ranking), or mixing[46]. The multi-objective recommendation
is then considered as a weighted hybridization of mono-objective
functions.

2.2 Multistakeholder recommendation

Multistakeholder recommendation systems[2, 3, 5, 12] are derived
from multi-sided platforms[16, 47] and reciprocal recommendation
systems. The latter require us to take each stakeholder into account
independently because their strategies, and therefore their objec-
tives, are different.

2.3 Recommendation in the field of industry

Pachot et al. [43] have developed a recommendation system to
recommend collaborative synergies between companies in the same
territory based on the semantic analysis of product nomenclatures
to find the productive link that exists (for example) between seed,
wheat, flour and bread. A distribution of products in a vector space
allows us to make recommendations.

The recommendations can be similar to client-supplier or co-
production relationships. To improve the industrial resilience of a
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territory, it is appropriate to develop distributed manufacturing by
encouraging the companies of a territory to work with each other.

The recommendation system integrates an alternative operation
when no potential supplier is present on a territory, which suggests
that suppliers are able to make "productive jumps" to produce the
required goods. These productive jumps are made possible by the
productive relationship between the classes of products. This relies
on the data of productive proximity from the Product Space[27].

The modeling of the companies’ productions is based on a sta-
tistical analysis of the productions associated with their economic
activity code. A first experiment was carried out on French compa-
nies.

We also find recommendation systems dedicated to the supply
chain, specifically for distribution[14, 29] or to promote the use of
waste in the context of industrial symbiosis[54].

To our knowledge, no study has aimed at the construction of a
multi-objective recommendation system in the field of industrial
production, and in particular with the aim of favoring the construc-
tion of sustainable production systems.

3 DESCRIPTION OF STAKEHOLDERS
3.1 Companies

Companies produce manufactured goods or raw materials. Their
production units are located on a territory and carry out an economic
activity. Firms collaborate with each other within a territory, or
import goods or raw materials from other territories or countries.

Companies follow a commercial strategy that not only encour-
ages them to develop their commercial portfolio by seeking new
customers but also encourages them to diversify their production by
favoring the production of goods that give them a better competitive
advantage. At the same time, they seek to secure their supplies by
diversifying their suppliers and giving preference to local suppliers.
For several years, companies have also been encouraged to improve
their social and environmental impact.

3.2 Local authorities

Building a sustainable ecosystem requires active collaboration be-
tween the private and public sectors. We would like to integrate
local authorities into our recommendation system, which through
their financial aid, taxation or thanks to their teams on the ground
have a certain number of levers to help build such ecosystems.

The territorial policy that is associated with local authorities is
defined by several objectives related to economic growth, food secu-
rity, industrial resilience, and environmental aspects. We consider
territorial policy as a "configuration” of the recommendation system
in which local authorities indicate their priorities on each of the
objectives.

4 FORMALIZATION

We design a recommendation system for the companies of a terri-
tory, whose object is the recommendation of new products to be
developed. These production units have a know-how that offers
them the possibility to make "productive jumps"; that is, to move
from the production of one kind of product to another when the
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"proximity of know-how" between the two products is relatively
strong.

There is naturally a propensity for companies to adapt their of-
fer to seize new commercial opportunities, but we propose to set
up a recommendation system that also takes into account territo-
rial policy. As mentioned earlier, the territorial policy consists in
weighing the different objectives of the referral system. The public
authorities thus have the possibility of influencing the functioning
of the system by choosing the objectives that are most important to
them. Let {a1, ay, ..., an} be the list of algorithms associated with
each objective. The territorial policy # on the territory 7 is defined
as follows:

P(1) = {wap» Way> - - ->»Wa, } (1)

We start by listing the achievable production jumps for a pro-
duction unit that correspond to the first objective for companies:
diversifying their production. To do this, we first calculate the cur-
rent production associated with each production unit. In this task,
we rely on a correspondence table that makes the link between the
economic activity code of the production unit and the associated
production (product codes in the HS nomenclature).

We then directly use the Product Space developed by the Growth
Lab of Harvard University[24] to identify the opportunities for
productive jumps for each of the products that the production unit
manufactures. The Product Space is a graph of products in which
each node corresponds to a product class (from the HS classification)
and the weighting of the edges corresponds to the proximity of
know-how between two product classes. For a given production unit
u, we obtain a list of new products A : {xg, x1, ..., xn}, which are
ranked in descending order with respect to the level of productive
relatedness. We choose an additional objective for companies that
consists in increasing the competitive advantage and four objectives
for territorial authorities that make sense with the development of
sustainable systems[42]. They take into account economic aspects,
resilience, security of basic goods and environment:

e Economic growth: we integrate the objective of developing
the economic growth of the territory. This is a wealth cre-
ator, and is essential to ensure economic prosperity and job
creation. To identify the products that are the most effective
in creating economic growth, we will take into account their
level of economic complexity, which is a measure that has
been shown to be highly correlated.

e Productive resilience: we integrate an objective to improve
the level of resilience of a territory. Given the fragility of our
production systems, which have been damaged by various
economic or health crises, we absolutely must build more
robust production systems. We are going to integrate a theo-
retical measure of resilience of a territory.

Securing basic necessities: we also want to give the possibility

to favor the basic necessities (e.g., food and pharmaceuticals)

over other products. To do so, we have followed an origi-
nal approach inspired by Maslow’s hierarchy to distinguish

"vital" products.

Green production: finally, we take into account the environ-

mental dimension of production, aware of the importance of
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Table 1. Stakeholders in the recommender system

Stakeholders Strategies Objectives Function

Companies Business strategy Diversification ai
Competitive advantage a

Local authorities Territorial policy Economic growth as
Productive resilience ay
Securing basic necessities as
Green production as

repositioning production systems towards the production of
greener goods.

We present below the technical details of the measurement of
each of these objectives. We perform a weighted hybridization[46]
from the different objectives to re-rank the list A.

For each production unit u we compute the scores {pq, (xi|u),
Pa, (xilu), ..., pa, (xilu)} of each product x; € A for each algorithm
{a1,ay,...,an}. All scores must be normalized. Then we perform a
weighted sum of each score to obtain a final score for each product:

plxilu) = ), pa, (xilu) X wa, ®)
Jj=1

4.1 Objective 1: Diversify production

Our system makes a recommendation of productive jumps, which
are repositioning or industrial diversification opportunities for com-
panies. As presented in Pachot et al. [43], the Product Space de-
veloped by Hausmann and Klinger [25] provides a model to make
recommendations.

To make the correspondence between a production unit and the
products it manufactures, we use a correspondence table!. The pro-
ductive proximity between product classes is based on the study of
country co-exports. From a large-scale analysis of the types of prod-
ucts exported by country, Hidalgo et al. [27] computed the proximity
of productive know-how (called "productive kinship") between each
type of product and construct a graph of the productive space.

The measurement of the productive proximity between each
product is done by looking for the percentage of times that product
p1 is co-exported with product ps:

$py.p, = min { Ze Mep Meps | 2e Mopi Mep, } 3)
Zc Mcp1 Zc Mcpz
We consider that a product p is exported by a country ¢ when it
grants the country a revealed competitive advantage (RCA) accord-
ing to the formula of Balassa [8]. Let X¢p be the exports of product p
by country c, then the revealed competitive advantage that country
¢ has for product p can be expressed as a function of exports:

Xep , ZpXep
Zc ch Zc,p Ccp

RCAgp = ()

IThere are several correspondence tables according to the nomenclatures used
for the classes of economic activities. For example, for the USA, ISIC-HS
(https://unstats.un.org/unsd/classifications/Econ) or NAF-CPF, equivalent to NACE-
CPA for Europe (https://www.insee.fr/fr/information/2399243). See Pachot et al. [43]
for details

We consider that a country ¢ exports a product p if RCA¢) is
greater than 1.

1 if RCAgp 2 1;
Mep = { 0 ! else ©)
From the data of productive proximity available in open data[53],
we build a function a; (u) that for each production unit u will asso-
ciate a list A of products and their associated scores of productive
proximity.

4.2 Objective 2: Increase the competitive advantage

Now we need to consider the commercial interest for each firm.
Some products are more advantageous for a production unit than
others and we have the RCA formula to allow us to rank the pro-
ductive opportunities according to the competitive advantage that
they would grant to the production unit.

We use a modified version of RCA applied to the products of
a sub-national territory. We compare the share of an activity in
a territory with the share of that activity on a global scale. This
prevents the more developed regions of a country from appearing
to have a comparative advantage in each product[9, 45]:

local jyrlocal
local _ XCP /XC
RCAG ™ = ———— (6)
Xﬁvorld/xworld
We define a function az(u, 7), which for each production unit
u of a territory 7 will associate a list of products € A and their
associated score of RCA.

4.3 Objective 3: Improve economic performance

Several studies have confirmed the strong relationship between a
country’s economic complexity and its growth rate: regions spe-
cializing in the manufacture of more complex products experience
faster economic growth[18, 27]. Therefore, we choose to use the
economic complexity indicator (ECI) as a target to improve the
growth of a territory.

The calculation of economic complexity presented by Hausmann
et al. [24] is based on two measures: productive diversity and ubig-
uity. Diversity illustrates the variety of different products exported
by a country. Ubiquity is an indication of the number of countries
that export the same product. Let M be a matrix of products ex-
ported by country, such that M,y = 1 if country ¢ exports product
p:

Diversity : ke = Zp Mep @
Ubiquity :  kpo = X¢ Mcp
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From the measures of diversity k¢ o and ubiquity kp, we can
recursively define the variables k. y and kj v corresponding to the
average ubiquity and diversity of products exported by a country c.

_ 1
ken = glo 2pMep  kpN-1
kpn = Too YeMep ke N—1

We wish to express k. n as a function of k¢ o. To do this, we replace
kp,n-1by @ 2.c Mcp . ke N—2 and then simplify the equation:

®)

kc,N k ZpMcpk Zc Mcp ke N-2
Myp Mep )

=2k ¢ ,N- ZZp kokpo

We consider the matrix M. as a weighted (and normalized)
diversification similarity matrix. This matrix reflects the extent
to which the types of products exported from two countries are
similar[38]:

My M
Mee = Z ot 2 (10)
keo kp,o
Let us rewrite the equation:
ken = Z Mo - ke N2 (11)
"

We note that k. 5 = k¢ ny—2 = 1 satisfies this equation when the

eigenvector of M, is associated with the largest eigenvalue. Since
this eigenvector is a vector composed only of 1, it does not contain
any information. Therefore, it is better to look at the eigenvector
that is associated with the second largest eigenvalue. This is the
eigenvector that captures the most variance in the system and is
therefore a relevant measure of economic complexity. We denote K;

as the i-th eigenvector of M., ordered in a decreasing order[22]:

M . IZZ = /12[22 (12)
The economic complexity index ECI[26] is obtained by normal-

izing the eigenvector of M associated with its second largest
eigenvalue. < Ky > corresponds to the mean of Ky and stdev(K3)
to its standard deviation.

K- < K
ECl, = 2 =12~ (13)
stdev(Kz)

In the same way, the complexity of a product (PCI) is defined by
the following formula, with Q the eigenvector of My, ;v constructed

on the same principle as M, but exchanging the ¢ countries with
the p products:
pep, = L <%> (14)
stdev(Q2)

We now wish to calculate the economic complexity of a sub-
national territory. We must use a modified version of the equation
13, which combines PCIs calculated using international trade data
with local data:

, Vol. 1, No. 1, Article . Publication date: September 2021.

local _ L local
BCL! = - > migeelper, (15)
P
Where Mé;’,cal is calculated in the same way as equation 5 but
using RCAIC‘;]C“I instead of RCAp:

(16)

A pre-calculated table with the complexities associated with each
Harmonized System (HS) product class is available in open data?.
We choose to retain the values for the latest available year (i.e.,
2019).

We define a function a3z (u), which for each production unit u will
associate a list of products € A and their associated score of PCI
ranked in decreasing order.

alocal [ 1 si RCAlgeal > 1;
0 else

4.4  Objective 4: Improve the resilience of the production
system

Resilience is defined as the ability to recover quickly after a disrup-
tive shock. For a production system, this corresponds to the ability
of a system to quickly recover its production level or a higher level.

To measure the resilience indicator of a territorial production sys-
tem, we start from an approach derived from the theory of dynamic
systems[49-51]. In particular, the studies of Kharrazi [32], Kharrazi
et al. [33, 34] focus on the definition of a theoretical resilience in-
dicator built from the analysis of imports, while the exports of a
territory are of particular interest to us. The theoretical resilience
of a dynamic system is proposed based on two measures: efficiency
and redundancy. Kharrazi et al. [34] have conducted a study on
the behavior of the production systems of countries between 1996
and 2012, including the economic crisis of 2009, confirming the
relevance of the theoretical indicator of resilience. The measure of
a territory’s efficiency (also called ascendancy) can be considered
as the degree of articulation or constraint of flows in a production
system[34]. The more specialized a system is, the more optimized
its connections are, the more efficient it is, and the less resilient it
is. The theoretical measure of efficiency is as follows:

B o TT

Efficiency = Z 8T T
ihj

(17)

Where T;;j is a product export Value from country i to country j,
T;. = 2. Tij is the total exports leaving country i, T j = 3}; Ti; is the
total imports entering country jand T.. = }};; Tj; is the sum of all
exports in the system [21].

Conversely, a redundant system has many connections, and will
therefore be "more flexible in re-rooting its flows and maintaining
critical functions"[32]. Redundancy can be defined as the "degree
of freedom or overhead of flows in a network"[32]. It is measured
from the conditional entropy:

2

Ti: T=
L Jog —L- (18)

Redundancy = — T T
i.Lj

ij

Zhttps://atlas.cid- harvard.edu/rankings/product
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From the efficiency and redundancy measures of a system, we
can then measure the theoretical resilience level:

a = Efficiency/ (Efficiency + Redundancy) (19)
Resilience = —a log(a)

We seek to recommend new products to be developed to com-
panies in a territory that can help to improve the resilience score.
We compute the contribution of a each product x to the resilience.
We define a function a4 (u) which for each production unit u will
associate a list of products € A and their associated score of their
contribution to the resilience of the territory.

4.5 Objective 5: Secure the production of essential goods

We consider that products can be ordered according to their contri-
bution to the needs of individuals. To do so, we propose an approach
based on the hierarchy of needs of Maslow [37].

Genkova [20] provides a table of correspondence between the
categories of needs of Maslow’s pyramid and the categories of prod-
ucts in the CPC nomenclature. All of the indirect products that are
necessary for the production of the goods of each category are also
associated.

We weight each product inversely to its corresponding level in
Maslow’s pyramid and we obtain a function as(u), which for each
production unit u will associate a list of products € A and their
associated score of their contribution to the needs.

4.6 Objective 6: Promote the production of environmental
products

We want the recommendation system to take the environmental
impact of products into account. As a priority, we propose the pro-
ductive jumps towards products with a lower environmental impact.
Several studies have been carried out to integrate this dimension
into the Product Space [19, 23, 28, 39, 44].

Initiatives exist to list green products[1, 19]. We retain the list
provided by APEC3, which is defined as products "that directly and
positively contribute to green growth and sustainable development
objectives".

Let G be the list of green products, we define a function as(u),
which for each production unit u will associate a list of products
x € A and an associated score s such that if x € G then s = 1 else
s=0.

5 EXPERIMENTATION

We tested the recommender system using open data on French com-
panies: production units, import and export amounts by French de-
partment and by product class. We made available the pre-calculated
rankings associated with each objective, as well as a first experi-
mentation on a French department?.

3 APEC List of Environmental Goods: https://www.apec.org/meeting-papers/leaders-
declarations/2012/2012_aelm/2012_aelm_annexc.aspx
“https://github.com/apachot/Multiobjective-recommendation-for-sustainable-
production-systems

Multiobjective recommendation for sustainable production systems « 5

5.1 Datasets

We relied on the SIRENE® dataset that is available history of French
production units since 1973. It provides information for every com-
pany, relating them to their connected production unit, their NACE
economic sector, their workforce group, and their postal address.
We choose the HS nomenclature limited to 4 digits as the reference
nomenclature for the products. By resorting to a combination of
correspondence tables between activities and products (NACE —
CPA— HS)®, we associate each NACE class with HS classes.

We use datasets from global trade[52], as well as local datasets
from each French department”. These datasets provide us for a given
territory or country, the amount of exports of each product class,
for each country or french department. We use the year 2019 and
convert the French data (French CPF nomenclature) into the HS
nomenclature.

5.2 Recommender System

We retrieve the list of production units on a territory. From their
activity code, our system is able to determine which product classes
are manufactured by this production unit. We then use a proximity
table between the product classes to determine which products are
the closest in the sense of know-how. These products represent the
potential production jumps.

At each productive jump we compute a global score from the
weighted average of 6 pre-computed rankings, associated to the 6
objectives of our recommendation system. We then propose alist of 5
classes of products whose productive jump has obtained the highest
score. You will find in table 2 an example of recommendation for a
production unit located in Haute-Loire in France, that manufactures
parts and accessories for motor vehicles.

6 CONCLUSION

The expectations of the different actors in a territory often come
up against the complexity of the production systems. Stakeholders
whose strategies are sometimes opposed can find a solution in a
recommendation system that takes their objectives into account.
We explored the fields of recommendation, information theory and
economics to find objectives that can be integrated, and we formal-
ized a first version of a multi-objective recommendation system.
We will continue our work by validating the system on a territory.
We also consider a Pareto-efficient hybridization to guide the local
authorities in setting the weights of the system.
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Table 2. Example of recommendations for a production unit located in Haute-Loire in France (NACE activity code 29.32: Manufacture of other parts and
accessories for motor vehicles).

=

o

[

—_

[Sa -

—

Code  Description

Score  aj a as as as ag

HS8406 Turbines; steam and other vapour turbines

3.76  0.61 0.001 0.74 041 1 1

HS8514 Industrial or laboratory electric furnaces and ovens (in- 3.71  0.67 3.7e-06 0.89 0.16 1 1
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