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A Kinetic Monte Carlo Algorithm to Model the 

Annealing Process and Compute the Dark Current 

Nonuniformity 
 

K. Lemière, C. Inguimbert, T. Nuns

Abstract: A simulation chain, composed of GEANT4 

and a Kinetic Monte Carlo algorithm, dedicated to study 

the annealing process of defects produced after energetic 

particle irradiation is presented. Results will be used to 

compute Dark Current Nonuniformity. 

I. INTRODUCTION 

uring energetic particle irradiation, like in space or 

in particle accelerators, electronic devices could 

suffer from different types of damage. 

Displacement of atoms causes some specific degradations in 

semiconductor materials [1]. Displacement Damage Dose 

(DDD) consists in the mean energy deposited by non-

ionizing process. It causes displacement of atoms 

surrounding the incident particle track. Depending on the 

energy involved in the nuclear reaction, isolated defects or 

cluster of defects are produced [2]. When an incident 

particle displaces a lattice atom, the latter is called a Primary 

Knock-on Atom (PKA). If the PKA transmits enough 

energy to displace a neighboring atom, it is called a 

Secondary Knock-on Atom (SKA). Damage cascades are 

created through these processes. After a short time, 

displaced atoms could get back to a lattice position, or be 

definitively kicked out of their lattice position: this is called 

a Frenkel pair, a pair of an interstitial atom and an 

associated vacancy [3]. Following this initial phase, some 

Frenkel pairs recombine almost instantaneously after the 

thermal energy has dissipated (thermal spike). Then, 

primary defects start moving out through the semiconductor 

lattice thanks to their thermal energy. During this diffusion 

process, a defect can encounter another defect. Depending 

on the nature of colliding defects, they could either 

recombine, or associate in a more complex one. Finally, the 

small fraction of defects which survived could lead to the 

introduction of electrically active deep or shallow trap levels 

in the semiconductor band gap [4]. The deep trap levels are 

responsible of the increasing number of charge carriers 

produced in the depleted region observed after an irradiation 

in detectors. It results in an increase of the intrinsic parasitic 

current, the so-called dark current. 

In addition, energetic particle irradiation is uniform but the 

associated damage production is not uniform. In imagers, 

this leads to statistical variation of degradation undergone 

by each pixel: this is called the Dark Current Nonuniformity 

(DCNU) [5]. In this paper, a simulation chain composed of 

different numerical tools to compute the DCNU created by 

proton irradiation is presented. This toolkit relies on the 

assumption of proportionality between the increase in dark 

current and the DDD by means of a universal damage factor 

[6]. In order to avoid the use of this empirical parameter 

which not takes into account an accurate annealing state, we 

have developed a numerical chain capable to estimate 

annealing rates and nature of surviving defects. Knowing 

their thermal emission rate we are able to estimate the 

increase in the DCNU induced by an irradiation. Generation 

of damage cascade tracks, simulation of annealing process 

and DCNU computation are treated separately in order to 

avoid too complex and time-consuming simulations. Each 

simulation step is run from input data calculated from the 

previous one. Firstly, the GEANT4 toolkit [6] is used, in 

order to have a realistic spatial distribution of Frenkel pairs 

in the volume. Each track is stored in a database. Then, 

these defect distributions are used as input for a Kinetic 

Monte Carlo (KMC) algorithm [8]. In this paper, the KMC 

algorithm is dedicated to the estimation of annealing process 

that occurred in a defect distribution. In other words, the 

KMC algorithm is used to estimate which stable defect 

population could be expected at a given time after 

irradiation. 

A statistical study is made on the annealing factor and the 

final population of complex defects by executing numerous 

KMC simulations. Finally, introduction of KMC simulation 

results as input of our Monte Carlo method, dedicated to the 

prediction of dark current distribution through a pixel array, 

is presented in this paper. 

II. GEANT4 CASCADE DAMAGE SIMULATIONS TO CREATE 

KMC INPUT DATA 

A. GEANT4 simulation framework 

When an energetic particle creates a damage cascade in the 

matter, the shape of the cascade and the number of defects 

produced are not the same for each incident particle. In the 

aim of having the most realistic annealing simulation, 

GEANT4 code has been used to simulate the damage 

cascade caused by a PKA according to the Binary Collision 

Approximation (BCA) in a simulation box exclusively 

composed of silicon. Below approximately 10 keV incident 

heavy ions, the BCA is close to limit of validation and 

alternative simulations such as full Molecular Dynamic must 

be preferred. 

The GEANT4 version used in this work is 9.6 patch 03, 

with the threshold displacement damage energy set to 

21 eV. The G4ScreenedNuclear module has been used to 

model the nuclear interactions between the incident 

energetic particle and the silicon atoms. The simulation 

volume is a box with sides of some microns. The punctual 

particle source is placed inside the simulation volume, a few 

dozen of nanometers under the surface of the box, in order 

to keep tracking atoms that have been kicked out in the 

reverse direction of the incident energetic particle direction 

of propagation. Position of each vacancy and interstitial 

created during the simulation is stored. The vacancy location 

D 



corresponds to the initial position of a displaced atom, and 

the associated interstitial location corresponds to the 

position where the displaced atom has zero kinetic energy.  

1,000 simulations are executed to have a sufficient database 

of damage cascades. In other words, 1000 PKA with the 

same energy and same incident direction (normal direction 

to the surface of the box) are considered for GEANT4 

simulations. 

B. Choice of the nature of simulated incident particle in 

GEANT4 

In the frame of this work, we focused exclusively on dark 

current degradation caused by energetic proton irradiation. 

Even if it may seem intuitive at first to perform a KMC 

simulation on all the defects produced along the trajectory of 

a proton, this strategy can be highly time consuming. 

Indeed, a proton will generate a set of PKA on dimensions 

that imposes prohibitive computation times. The damage 

cascade produced by a single PKA can contain thousands of 

vacancy-interstitial pairs, which can already be long in 

computation time. Simulating the trajectory of a proton 

would lead to days or even weeks of simulation in the worst 

case. In order to avoid these constraints, we chose a 

different approach. 

If one assumes that the damage cascades of each PKA are 

independent, and this is almost the case, since the PKA are 

produced at sufficiently large distances compared to the size 

of a sub-cascade, a more time-efficient calculation strategy 

consists in simulating a damage cascade from a PKA and 

not from the incident proton. Rather than simulating the 

entire trajectory caused by an energetic particle, only part of 

the cascades is modeled by choosing a recoil nucleus as the 

precursor of the cascade. This approach is justified by the 

fact that one can consider that a cascade is a set of sub-

cascades created by the different PKA. This is a classic 

strategy also adopted by Raine et al. [9] and Jay et al. [10], 

[11]. 

C. Choice of the PKA energy to simulate in GEANT4 

In their work, Wood et al. [12] estimate that 6 MeV to 

10 MeV protons induce 1 keV to 2 keV PKAs. The authors 

estimate also that protons of more than 20 MeV generate 

PKAs in the range of 12 keV to 20 keV. Srour et Palko [1] 

consider that 100 MeV protons create PKAs in the order of 

10 keV. More precisely, Inguimbert et al. [13] calculate the 

atoms recoil energy after proton irradiation and confirm 

most of these PKA energy ranges. The authors find that 

protons from 1 MeV to 100 MeV generate PKAs in the 

range of 1 keV to approximately 100 keV. The choice of the 

PKA energy are essentially based on the PKA energy 

distribution provided by Inguimbert et al. [13]. GEANT4 

proton simulations have been performed for the presented 

work and are in agreement with this PKA energy range. 

Finding a typical energy for a PKA produced by a p+Si 

interactions and reducing the population of various PKAs to 

a single typical particle is not possible and can only be an 

approximation to the problem. We were forced to do that for 

obvious CPU time reasons. PKAs can be produced by both 

Coulombian and nuclear reactions. If we focus on high Z 

recoil nuclei produced by nuclear reactions the distribution 

of energy are comparable to Gaussian for which an average 

value of several MeV can be defined easily [14]. But most 

of recoil nuclei are produced by Coulombian interactions 

that are far more numerous. Such kind of interactions 

present strong decreasing distributions having a very low 

average energy (~keV). 100 keV is a kind of trade off to get 

a sufficient high energy which could be representative of 

nuclear recoil (~MeV), a not to high energy to get 

something representative of Coulombian interactions and 

which is compatible with KMC simulations durations. This 

assumption is supported by the fact that for higher PKA 

energies the damage cascade presents independent 

subcascades of lower energy recoils. 

As a consequence, the PKA energy that will be treated in 

the Kinetic Monte Carlo program is chosen as a function of 

the proton energy. If the proton energy is below 10 MeV, 

the KMC algorithm will receive 1 keV PKA damage 

cascades as input. If the proton energy is greater than 10 

MeV, the PKA energy considered is 10 keV. For more 

energetic protons (above 100 MeV), the PKA energy is 

fixed to 100 keV. 

In order to model the reorganization of the matter after a 

proton irradiation, i.e the annealing of the PKA damage 

cascade, the Kinetic Monte Carlo (KMC) algorithm has 

been selected. In the following, the algorithm used in this 

work is presented, as well as the parameters used to model 

the diffusion of primary and complex defects in silicon. 

III. KINETIC MONTE CARLO SIMULATIONS 

Recently, Raine et al. and Jay et al. [9]–[11] proposed a 

complex chain of simulation to model the creation of stable 

electrically active defects in silicon, coupling molecular 

dynamics (MD) simulations, a k-ART technique and ab 

initio calculations.  

The k-ART technique relies on a complex KMC algorithm, 

which construct a library of possible event at each step. To 

be more precise, the k-ART technique refines the energy 

barriers taken from the library as a function of the 

surrounding defects. This way, the algorithm is more 

realistic, but need a heavy computational cost. 

In this paper, the authors investigated the influence of 

different defect switching states, i.e. defects that have 

different levels in the band gap and switch between those, 

on electrical measurements made after irradiation, and 

proposed hypothesis to explain the creation of the Random 

Telegraph Signal (RTS) pixels. Their work proposes 

accurate simulations at each timescale of the simulation, 

corresponding to different phases of the physical process. 

The initial damage cascade is simulated with GEANT4. 

Then the thermal spike is simulated thanks to MD 

simulations in order to get accurate defects characteristics 

just a few picoseconds following the initial damage cascade 

at atomic level. From these characteristics, a KMC based 

algorithm is used to model the annealing processes for 

longer time durations.  

In our work, we did not concentrate on the prediction of 

RTS levels, but on the realistic estimation of defects mainly 

responsible of the dark current level enhancement observed 

after irradiation, followed by a long-term annealing. Our 

goal is to include a relaxation step to our DCNU modelling 

and in this way removing the use of the empirical 

parameters. But for that, we needed to compute a large 

number of damage cascade for various PKA energies. In 

order to achieve this goal, as following the kinetic of the 

displacement damage cascades is CPU consuming, we have 

chosen to develop a KMC algorithm, less accurate method 



than some industrial code [15] or advanced scientific code 

[9]–[11] but faster. 

We focused on the KMC simulations in order to access to 

the final population of damages few days up to 1 month 

after irradiation. The main goal of this approach is to 

provide realistic input defect data to our Monte Carlo toolkit 

dedicated to the computation of the Dark Current 

Nonuniformity. MD simulations are not used in this work 

but the migration energy barriers computed in [10], [16], 

that determines the kinetic properties of each defect (see 

Table 1 in section III.C), are used in the KMC algorithm 

developed in this work.  

A. The Kinetic Monte Carlo Algorithm 

The KMC algorithm is used to create a database of 

annealing factor according to PKA energy (i.e a distribution 

of annealing factors according to the KMC results), and also 

to estimate the final population of complex defects. This 

information will then be used as input for the Monte Carlo 

based simulation toolkit dedicated to the computation of the 

Dark Current Nonuniformity on a whole pixel array (named 

DAAN [17]), and then compared with experimental data. 

The annealing factor defines indirectly the quantity of 

defects (single or complex) that vanishes (anneals) at a 

given time after irradiation. The annealing factor AF is 

simply expressed as: 

 
𝐴𝐹 =

𝑁𝑏. 𝑜𝑓 𝑑𝑒𝑓𝑒𝑐𝑡𝑠 𝑎𝑡 𝑓𝑖𝑛𝑎𝑙 𝑠𝑡𝑎𝑡𝑒

𝑁𝑏. 𝑜𝑓 𝑑𝑒𝑓𝑒𝑐𝑡𝑠 𝑎𝑡 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒
 (1) 

The final population of complex defects, or more simply 

trap population, defines the distribution of traps in the 

simulation, i.e. in what proportions are present each species 

of defect in the simulation. 

The developed off-lattice KMC method is based on the 

model described by Nordlund [18]. The defect’s kinetic is 

directly linked to three physical parameters: the migration 

energy 𝐸𝑚, the intrinsic jump frequency 𝑤0 and the lattice 

temperature 𝑇. The two former parameters are defined by 

the nature of the defects. Migration energy is equivalent to 

the potential barrier that a defect must overcome to make a 

jump in the lattice, i.e move to another location in the 

lattice. For a given defect 𝑖, the intrinsic jump frequency 

𝑤0,𝑖 designates the number of attempts made by the defect to 

overcome the potential barrier by unit of time. From these 

parameters, the term 𝑊𝑖 is deduced, which corresponds to 

the number of jumps that a defect can make during a unit of 

time, and computed as follows: 

𝑊𝑖 =  𝑤0,𝑖exp (
−𝐸𝑚,𝑖

𝑘𝐵𝑇
) (2) 

The jump process is a thermally activated mechanism, that 

is why the expression of 𝑊𝑖 is similar to an Arrhenius law. It 

could be associated to a diffusivity or a defect mobility. 

The key steps of the Kinetic Monte Carlo algorithm, 

inspired from [18], are detailed in the following: 

 

1°) Firstly, all primary defects are placed in the simulation 

box according to a GEANT4 PKA damage cascade 

simulation. The time simulated in the KMC algorithm is 

initialized (𝑡 = 0). A defect list is established, containing 

there coordinates in the simulation volume, their name and 

their migration properties (migration energy, intrinsic jump 

frequency and frequency jump). 

 

2°) The algorithm checks if some Frenkel pairs are close 

enough to recombine directly. In practice, this step is 

equivalent to test if a vacancy and an interstitial are within 

the interaction radius of vacancy-interstitial pair defined by 

the user to initiate a recombination process. In our 

simulation, the recombination radius is fixed to 4 Å for all 

defects according. This value is a typical parameter set 

between the lattice parameter and the distance between the 

closest silicon atoms in an elementary lattice, according to 

[10], [18]. It is a first order process, in order to simplify the 

modeling of the physical mechanism that follows the 

thermal spike after the crossing of energetic particle. Indeed, 

a few nanoseconds after that particle deposited its energy, 

some Frenkel pairs are so closed that they recombine a few 

moment later, after the thermal energy is dissipated [19]. At 

the end of this step, the defect list is updated. 

 

3°) The cumulative function 𝑅𝑗 is computed: 

𝑅𝑗 = ∑ 𝑊𝑖

𝑗

𝑖=1

 (3) 

The sum is made from the first defect (𝑖 = 1) to the 𝑗-th 

defect. The last term is obtained when 𝑗 = 𝑁, with 𝑁 the 

total number of defects in the system at the beginning of the 

step. The term 𝑅𝑗 equals to the sum of each 𝑊𝑖 of the 𝑗-th 

defects of the system at the beginning of the step. 𝑅𝑁 is 

noted 𝑅 for writing simplification. 

 

4°) A random number 𝑢 ∈ [0,1] is drawn uniformly. Then 

the number 𝑢 × 𝑅 is calculated. Finding the index 𝑖 where 

 𝑅𝑖 ≤ 𝑢𝑅 <  𝑅𝑖+1 leads to find the defect which will move 

during the KMC step.  

 

5°) After selecting the defect that will move during the 

current step, the migration process can start. The defect 

jumps in a three-dimensional random direction with a radius 

defined by the user as a KMC input, noted 𝑟𝑗𝑢𝑚𝑝. The 

direction is defined by two random angles, 𝜃 and 𝜑, that 

define a spherical angle. One must precise that our KMC 

algorithm is an “off-lattice” algorithm, it means that the 

crystal lattice is not taken into account. As a consequence, 

no jump direction is preferred. 

 

6°) At the end of the defect jump, the algorithm tests if 

there is one or more defects in a specific interaction radius 

(also entered as KMC input) that could interact with it, 

noted 𝑟𝑖𝑛𝑡.. If there is more than one candidate in the 

interaction radius, we suppose in this work that the closest 

candidate will interact with the defect. Depending on the 

nature of the candidate, a recombination or association 

process starts. For example, if a vacancy and an interstitial 

are within the interaction radius defined by the user, they 

could recombine and they are both deleted from the system. 

In the opposite case, if a vacancy is in the interaction radius 

of another vacancy, they could associate with each other to 

form a well-known defect: the di-vacancy. 

 

7°) Finally, the list of defects and their properties is 

updated, and the migration time step is determined randomly 

through the KMC characteristic relationship: 

 



∆𝑡 =  −
log 𝑢′

𝑅
 (4) 

 

where 𝑢′ a random number 𝑢′ ∈ [0,1] drawn uniformly. At 

the end of the step, the simulated time is updated, the 

algorithm is repeated from the step 3°) and a new step 

begins until the stopping criterion is reached. The stopping 

criterion can be for example a maximum number of 

iterations or a maximum simulated time in KMC. It is 

important to underline the fact that only one defect moves at 

each iteration of the algorithm. 

Use of KMC algorithm implies that a defect selected 

randomly according to its jump probability moves in a 

random direction during a random migration time, and could 

interact with a surrounding defect. The most powerful 

advantage of using KMC algorithm is its adaptability to a 

large range of timescale. Indeed, as the simulation runs, the 

time step ∆𝑡 evolves as function of the number of defects in 

the system and their jump frequency. In addition, a great 

advantage of KMC algorithm is to be able to take into 

account these different kinetics to make evolve the system. 

Indeed, at each step of KMC simulation, a defect is selected 

according to its jump frequency. Hence, the algorithm 

ensures that the most mobile defects are selected more often 

than the least mobile defects. 

In order to avoid too much time consuming simulations, 

the size of the simulation box is “adaptative”. It means that 

the size of the box is proportional to the size of the damage 

cascade. We choose to manage the size of the simulation 

box in this way because the simulation cost can be very 

expensive if the lonely vacancies and interstitials diffuse in a 

too large box. Hence, for each damage cascade the largest X 

coordinate is multiplied by 10, the largest Y coordinate by 

10, and the largest Z dimension “only” by 5, because the 

PKA is launched along the depth-Z axis and the damage 

cascade has more chance to extend along the projectile 

incident direction. Following this idea, the simulation box is 

similar to a cuboid of a dozen to a hundred of nanometers 

for 1keV or 10 keV PKA. 

B. Defect interaction management 

To run a classical KMC algorithm, the user needs to define 

some rules and exceptions to deal with the different 

interactions (recombination or association) that can occurs 

during the simulation. In this work, an “authorized” species 

list is created. This list indicates to the KMC algorithm 

which defect it is able to create and under which conditions. 

To activate an interaction between two species, the 

distance separating them has to be lower than the interaction 

radius defined for this specific reaction. 

During the KMC, different defects could interact through 

recombination process or association process. A 

recombination process implies the annihilation of the two 

defects. Taking the example of an interstitial 𝐼 and a 

vacancy 𝑉, we obtain:  

 

𝐼 + 𝑉 →  ∅ (5) 

 

In this work, the association process occurred when two 

defects of the same species interact together. Here the 

classical relationship of di-vacancy creation: 

 

𝑉 + 𝑉 → 𝑉2 (6) 

 

A complex defect can also experience a partial 

recombination, and this is taken into account in our KMC 

algorithm. For example, if a tri-vacancy (complex of three 

vacancies) meets an interstitial, it could also create a di-

vacancy: 

 

𝑉3 + 𝐼 →  𝑉2 (7) 

 

When a defect is created, its coordinates are computed as 

the center of each Cartesian coordinates. 

The maximum complex defect size that can be created is 

limited to 3 elements, i.e 𝑉3 and 𝐼3 are the biggest defect that 

our KMC can create, unless the contrary is explicitly 

indicated. The maximum complex defect size is voluntarily 

limited because we are interested into long term annealing 

(one month after irradiation) and according to the literature, 

large complex defects seems to be rare on long time period. 

Indeed, large size clusters (more than 4 interstitials or 

vacancies approximately) tends to recrystallize or 

disaggregate [10], [20], [21]. Moreover, the electrical 

properties of these kind of defects are unknown. As a 

consequence, the creation of defects involving more than 3 

interstitials or vacancies are not permitted in our 

simulations. 

Finally, the search method has been optimized to reduce 

the computation cost and gain simulation time. Initially, in 

this kind of algorithm, searching the best candidate (the 

closest defect in our case) for an interaction is time 

consuming, because the algorithm has to go through the 

whole defect list and compute the distance one by one. This 

process is really time consuming, and in addition it is 

repeated a large number of times, so this operation is 

penalizing for the KMC algorithm. For that reason, an 

octree search method replaces the classical search method in 

our Kinetic Monte Carlo algorithm. An octree (contraction 

of “octary” and “tree”) search method consists in divided 

recursively a volume in 8 sub-volumes according to a 

criteria defined by the user [22], [23]. It could be for 

example a number of elements in a volume or a maximum 

depth of the tree. An octree is a hierarchical data structure 

optimized for searching operation, where generally some 

libraries are provided to deal with the octree. As a 

consequence, only the defects contained in the sub-volumes 

located in the interaction radius are tested. Because there are 

much less candidates to test, the search method execution 

time is divided by approximately a factor 4.  

C. Inventory of the different species considered in the KMC 

algorithm 

All species considered in this work are summarized in 

Table 1. The choice of the value of the migration parameters 

for each defect is supported by a bibliographic review. 
 

Species 𝑬𝒎 (𝒆𝑽) 𝒘𝟎 (𝒇𝒔−𝟏) 
𝑾𝒊 (𝒇𝒔−𝟏) 

(300𝐾) 

𝐼 : mono-interstitial 0.9 1.71 1.30 × 10−15 

𝑉: mono-vacancy 0.51 1.28 × 10−3 3.47 × 10−12 

𝐼2: di-interstitial 0.28 10−2 1.98 × 10−7 

𝑉2: di-vacancy 1.0 10−2 1.59 × 10−19 

𝐼3: tri-interstitial 1.66 10−2 1.30 × 10−30 

𝑉3: tri-vacancy 1.32 10−2 6.68 × 10−25 
Table 1: Each species has their own migration properties. The jump 

frequency is indicated to identify the most mobile defects. 



It has to be mentioned that these values correspond to 

“mean” values of the migration parameters. These values 

can vary from one work to another, depending on the 

simulation conditions (the shape of the potential driving the 

interatomic forces) or the experimental protocol [4], [10], 

[16], [19], [24]–[36]. Nevertheless, the migration parameters 

used in this work are similar to those used in [10], [16].  

In silicon, interstitial and vacancy do not have the same 

migration energy and intrinsic frequency factor. From room 

temperature to approximately 1000 K, vacancy is largely 

more mobile than interstitial. As a consequence, their 

diffusion kinetics are not the same. According to the 

parameters chosen for the KMC algorithm, di-interstitial 

defect has the largest jump frequency, followed by vacancy 

and interstitial. This is due to their low migration barrier 

energy, which facilitates their move into the lattice. The 

migration radius is typically set to 2.35 Å, which correspond 

to the nearest neighbor in a silicon cell. On short term 

annealing calculations, the value of the migration radius 

could have an important effect. However, our KMC 

algorithm is dedicated to long term annealing, so the choice 

of the radius as less impact on results if the radius value 

does not vary on several order of magnitude. We consider 

that on average, the most probable jumping site location is 

the closest neighbor site. In silicon, it corresponds to a 

distance of 2.35 Å. The typical interaction radius is set to 

4 Å, which is considered as sufficiently representative of the 

diverse interaction process after [18]. The more the jump 

radius increases, the more the defects move on long 

distance. Also, as the interaction radius increases, the more 

easily the defects interact between them, because the 

required distance to trigger an interaction is higher. 

IV. USING KMC SIMULATION RESULTS AS DARK CURRENT 

COMPUTATION INPUT DATA 

In order to know how many defects on average will 

survive during the annealing process after irradiation and to 

have an idea of which species could be expected at the end 

of the annealing, the KMC algorithm described previously is 

used. Annealing scenario will not be the same if the 

experience is repeated many times. It is a stochastic process 

and as a consequence, a statistical study is needed to extract 

relevant information about these simulations. As the 

depleted surface of the pixel is approximately equal 

to 20 µ𝑚2, and a PKA damage cascade spreads typically on 

a surface of some hundreds of nanometers (400 nm² on Fig. 

1), one can consider that the PKA damage cascade can be 

treated separately. 

A. Statistical study of energetic particle damage annealing 

by simulation with the KMC algorithm 

From our database of 1000 PKA damage cascade 

simulations for each energy, 30 damage cascades at chosen 

randomly for 1 keV and 10 keV PKA, only 5 for 100 keV 

PKA due to high computation time. At the beginning of 

each simulation, a damage cascade track is randomly 

selected and the KMC algorithm is applied. Hence, for a 

given PKA energy, a distribution of annealing factor is 

obtained. It will serve for the last simulation step: the 

computation of the Dark Current Nonuniformity. At the end 

of this computation step, average and standard deviation of 

the annealing factor distribution are calculated. In addition 

to this, the number of each species presents at the end of 

KMC simulation is stored. Thus the information about 

which species that are the most representative at the end of 

the simulated annealing process is available. This 

information will also be used in the next simulation step. 

An example of a simulated damage cascade caused by 

10 keV silicon PKA is shown in Fig. 1. 

 

 
Fig. 1: Initial spatial distribution of Frenkel pairs. This damage cascade 

results from the simulation of 10 keV silicon PKA in GEANT4. Blue points 
are interstitial defects, orange one are vacancy defects. The color 

transparency is linked to the defect position (front side or back side) in the 

figure. The number of vacancies and interstitials is identical at the initial 
stage of the simulation. Most of the time, the size of the simulation box is in 

the order of a dozen of nanometers. 

 

The KMC simulations are made at 294.15 𝐾, because the 

results will be compare to dark current experimental data 

obtained at this temperature. Fig. 2 shows result of 

simulation performed in the case of the initial defect 

configuration presented in Fig. 1. At the beginning of the 

simulation, vacancies are so mobile that they start moving in 

first. It explains the quick decreasing number of vacancies 

and the increasing production of based vacancy complexes 

during first microseconds observed in Fig. 3. A tenth 

microseconds after, interstitials start jumping, and have the 

possibility to create interstitial based complexes. Tri-

interstitial and tri-vacancy defects are almost motionless, 

due to the high migration energy barriers that these defects 

have to overcome to make a jump. This implies that once 

one of these defects is created, the probability that it makes 

a jump is very low. The only way for these defects to evolve 

is that they encounter an opposite species to do a partial 

recombination and move again. At the end of the simulation, 

the final distribution of defects that have been produced 

during the KMC algorithm is stored.  

As the number of each defect species is stored each time an 

interaction occurred during the KMC execution, the 

evolution of each species can be observed, as shown in Fig. 

3. For example, primary defects, vacancies and interstitials, 

tend to extinct with time, whereas the number of small 

complex defects increases with time simulation. Step-like 

annealing curves have also been observed in [10]. 

 
Fig. 2: Final spatial distribution of complex defects. It represents the final 

state of the Fig. 1 after a KMC simulation of 1 month at 294.15 K. Some di-
vacancies, tri-vacancies and tri-interstitials have been created (blue, orange 

and green points respectively). 



If a defect moves out the simulation box, it is no longer 

tracked but it is taken into account in the annealing rate 

calculation as a recombination, as we consider that it could 

potentially interact with fictive defects coming from other 

damage cascades. 

 
Fig. 3: Evolution of the population of each defect species with time at 

294.15 K. As the population of primary defects decreases, the population of 

more complex defects increases. The transition from the initial state (Fig. 1) 
to the final state (Fig. 2) is observed from this figure. 

 

The results of the statistical study are summarized in Table 

2. The simulations give a mean annealing rate 〈𝜏𝑎𝑛𝑛𝑒𝑎𝑙.〉 
slightly below 90 % for PKA energy comprised between 

10 keV and 100 keV (i.e 10 % of the initial defects survive 

and create stable defects), a value in agreement with [5]. 

Concerning the 1 keV PKAs, the mean annealing rate is 

around 82 %, so it is slightly lower compared to 10 keV and 

100 keV. This discrepancy is due to the higher variation on 

the mean annealing factor, as we can see from the standard 

deviation. This variation is caused by the nature of the 

damage cascade. A 1 keV PKA is likely to cause isolated 

defects along its track. As a consequence, the primary 

defects have more chance to get out the simulation box and 

they do not associate with others defects. For more energetic 

PKAs, the damage cascades tend to create high defect 

density pockets, where the defects are closer each other and 

interact more easily. 

 

 1 𝑘𝑒𝑉  10 𝑘𝑒𝑉  100 𝑘𝑒𝑉  

〈𝜏𝑖𝑛𝑖𝑡.  𝑟𝑒𝑐.〉 (𝜎) 58.6 % (7.7 %) 57 % (2.5 %) 56.6 % (1 %) 

〈𝜏𝑎𝑛𝑛𝑒𝑎𝑙.〉 (𝜎) 81.8 % (5.5 %) 87 % (2 %) 88.8 % (1 %) 

Table 2: Mean initial recombination rate and mean annealing rate for 

different PKA energies after 1 month KMC simulations at 294.15 K. The 
standard error is mentioned into brackets. 30 simulations have been done 

for 1 keV and 10 keV, but only 5 simulations have been done for 100 keV 

due to high computation time. 

 

During the step 2°) of the KMC (see section III.A), the 

vacancies and interstitials recombined each other before the 

algorithm makes them moving. The quantity of 

recombination experienced during this step is called in this 

work the initial recombination rate, defined as: 

 
𝜏𝑖𝑛𝑖𝑡.  𝑟𝑒𝑐. =

𝑁𝑏. 𝑜𝑓 𝑟𝑒𝑐.  𝐹𝑟𝑒𝑛𝑘𝑒𝑙 𝑝𝑎𝑖𝑟𝑠 𝑖𝑛 2°)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑏. 𝑜𝑓 𝐹𝑟𝑒𝑛𝑘𝑒𝑙 𝑝𝑎𝑖𝑟𝑠 𝑎𝑡 𝑡 = 0
 (8) 

The mean initial recombination rate of Frenkel pairs equals 

to approximately 57 % (see Table 2), in accordance with the 

MD simulations of Jay et al. [10] which found a value 

around 50 %. As the PKA energy increases, the standard 

deviation (which represents the data statistical spread) on 

the mean annealing rate and the mean initial recombination 

rate of Frenkel pairs decreases. This is due to the higher 

number of defects in the simulation volume, which increase 

the number of samples on which the statistical study is 

made. As a consequence, the statistical study tends more 

easily to the mean value of initial recombination and 

annealing rates. The results seem to be quite equivalent for 

10 keV and 100 keV PKA. These results show that the 

discretization of the PKA energy according to the proton 

energy induces a small error on the KMC results since the 

trap population and the annealing rates does not vary on a 

large amplitude. 

With regard to the average percentage of defects for each 

species, it is found that KMC simulations for 1 keV PKA 

provide highly variable estimates. The standard deviations 

are large and give a significant uncertainty on the average 

number of defects. These values reflect the fact that at the 

end of a KMC simulation for example, a tri-vacancy may be 

present in small numbers, either majority or completely 

absent. For PKA of 1 keV, the tri-interstitial population is 

clearly a minority compared to the others. This deficit is 

surely explained by the fact that the interstitials have a 

frequency of jumps weaker than the vacancies. Therefore, 

highly mobile vacancies will either migrate and recombine 

with interstitials, or the interstitials will react with vacancy 

complexes that formed before interstitials started moving. 

Finally, like the vacancies, some interstitials can migrate 

away from the initial damage cascade and exit the 

simulation volume. Once all these interstitials are consumed, 

there are not enough defects to form complexes such as tri-

interstitials. On our own observations, the absolute fraction 

of defects varies from 5% to 20% in the worst case, 

depending on the PKA energy. We observed that a large 

number of defects (in terms of absolute fraction) can leave 

the simulation box when the PKA energy is low (around 1 

keV). This is due to the fact that a 1 keV PKA damage 

cascade has ore chance to produce isolated defects, and 

consequently the recombination or association processes are 

more complex to achieve. The higher standard deviation on 

statistical study for 1 keV PKAs is directly linked to this 

phenomenon. 

 

𝑋𝑟𝑒𝑙.(%)(𝜎) 1 𝑘𝑒𝑉  10 𝑘𝑒𝑉  100 𝑘𝑒𝑉  

𝑉2 62 % (42 %) 50 % (19 %) 48.6 % (6.4 %) 

𝑉3 23.5 % (26 %) 17 % (15.6 %) 29.8 % (5.6 %) 

𝐼3 0.75 % (5 %) 17 % (10.2 %) 21.6 % (4.2 %) 
Table 3: Relative mean proportion of defects after 1 month KMC 

simulations for different PKA energies. The standard error is mentioned 

into brackets. 30 simulations have been done for 1 keV and 10 keV, but 
only 5 simulations have been done for 100 keV due to high computation 

time. 

 

This study shows that the di-vacancy is the dominant 

defect for any PKA energy, as observed in other works [1], 

[4], [28], [37], [38]. For 10 keV and 100 keV PKA, the tri-

interstitials and tri-vacancies seem to be in equivalent 

proportion at the end of the simulation. In their work, Jay et 

al. identified the tri-interstitial as a main source of RTS 

pixels, and the tri-vacancy and larger defects (quadri-

interstitial and quadri-vacancy defects) as minor RTS 

sources. In the literature, clusters of defects such as tri-

vacancies or tri-interstitials are also widespread in silicon 

components after irradiation, and are suspected to also play 

a role in the degradation of these components [1], [6], [11], 

[39]–[41]. However, there are no measurements or 

calculations that clearly indicate in which proportions these 



defects are present in the irradiated silicon based 

components. 

The average population estimated by the KMC simulations 

seems to be consistent with regard to the literature. The data 

extracted from the analysis of KMC simulations are then 

used to compute the Dark Current Nonuniformity. 

B. Methodology of the DCNU computation 

In this section, the last modeling step of our simulation 

chain, dedicated to the computation of the dark current 

increase after irradiation, is described. The original 

simulation Monte Carlo based toolkit described in [17], 

[42], [43] is used. Since it has been presented in previous 

works, it will not be detailed in this paper. According to 

incident particle energy, fluence and pixel geometry, the 

simulation toolkit is able to compute the mean number of 

nuclear interactions that occurred in pixels. From this 

information, a Monte Carlo simulation is made on the whole 

pixel array to compute the DCNU. For each nuclear 

interaction that occurred in a pixel, a given number of 

atomic displacements computed from a GEANT4 application 

is added to the total degradation of the pixel. This number of 

atomic displacements corresponds to the degradation at the 

initial state of the damage cascade. From the statistical study 

on annealing process of PKA damage structures through 

KMC simulations, the dark current produced by a nuclear 

interaction after long term annealing can be estimated. 

C. Definition of the dark current computation parameters 

According to the statistical study presented in 

section IV.A, the annealing rate and the typical population 

created following the annealing mechanism are very similar. 

In order to simplify the calculation, the following hypothesis 

is made: if the proton has energy below 10 MeV, only PKA 

of 1 keV are considered. In the opposite case, if the proton 

has an energy greater than 10 MeV, only PKA of 10 keV are 

taken into account. 

At first, we consider that the annealing process that follows 

a nuclear reaction is not the same at each nuclear interaction 

that occurred in a pixel. Hence, an annealing factor is 

randomly drawn in a Gaussian distribution, centered on the 

mean annealing rate provided by the statistical study made 

in the previous section (see Table 2). The standard deviation 

of the Gaussian distribution corresponds also to the standard 

deviation on the KMC annealing rate data. As the data 

provided in Table 3 indicates relative mean proportion of 

defects, we propose here to convert these data in absolute 

values, necessary to use them as input parameters (Table 4). 

 

PKA 

Energy 

X (%) 

𝑉2
−/0

 𝑉3
−/0

 𝐼3 

1 𝑘𝑒𝑉 70 30 0 

10 𝑘𝑒𝑉 54 23 23 

Table 4: Average population of complex defects used to compute the dark 
current for different PKA energy. 

 

Then, the electron-hole pair thermal generation rate of 

average population of defects estimated by the KMC 

algorithm is used to convert the number of atomic 

displacements produced by a nuclear reaction into an 

electrical current (equation (9)). It means that on average, 

one nuclear interaction produces the average population 

predicted by the KMC algorithm. The defect electrical 

parameters capture shown in Table 5 are taken as most 

representative from calculations and measurements available 

in the literature [4], [26]–[28], [30], [31], [40], [44]–[48]. 

More references can be found in [49]. However, just as 

migration parameters, electrical parameters data suffer from 

experimental uncertainties and their calculation depends on 

simulation hypothesis. For example, the capture cross 

sections data spread on several orders of magnitude 

(10−18 𝑚² to 10−21 𝑚²). 

 

Species 𝑬𝒕 (𝒆𝑽)  𝝈𝒏 (𝒎𝟐)  𝝈𝒑 (𝒎𝟐)  𝒈𝒊 (#/𝒔)  

𝑉2
−/0

 𝐸𝑣 + 0.71 5 × 10−19 5 × 10−19 0.55  

𝑉3
−/0

 𝐸𝑣 + 0.665 2.4 × 10−19 1 × 10−18 6.49  

𝐼3 𝐸𝑣 + 0.92 1 × 10−18 1 × 10−18 2.8 × 10−4  

Table 5: Electrical properties of the standard complex defects used to 

compute the dark current for different PKA energy. 

 

The term 𝑔𝑖 corresponds to the intrinsic thermal generation 

rate for the defect 𝑖, expressed in number of electron-hole 

pairs thermally generated by a defect 𝑖, and it is expressed as 

followed: 

 
𝑔𝑖 =

𝜎𝑛𝜎𝑝𝑣𝑡ℎ𝑛
𝑣𝑡ℎ𝑝

𝑛𝑖

𝜎𝑛𝑣𝑡ℎ𝑛
exp (

𝐸𝑡 − 𝐸𝐹𝑖

𝑘𝐵𝑇
) + 𝜎𝑝𝑣𝑡ℎ𝑝

exp (−
𝐸𝑡 − 𝐸𝐹𝑖

𝑘𝐵𝑇
)

 
(9) 

where 𝜎𝑛,𝑝 is the electron and hole capture cross section 

respectively, 𝑣𝑡ℎ𝑛,𝑝
 the thermal velocity of electron and hole 

respectively (𝑚/𝑠), 𝐸𝑡 the defect’s energy level in the 

silicon bandgap and 𝐸𝐹 𝑖
 the intrinsic Fermi level (𝑒𝑉), and 

𝑛𝑖 the intrinsic carrier concentration (𝑚−3). 

D. Mathematical formalism of the DCNU computation 

In addition, a 3D Electric Field Enhancement (3D EFE) 

effects model is used to simulate the influence of the electric 

field on the electron-hole pair thermal generation rate [50]. 

For a nuclear reaction 𝑗, the dark current associated is 

computed as follows: 

 ∆𝐼𝑗 = 𝑁𝑑,𝑗 × 〈𝑔′〉𝑗 × (1 − 𝐴𝐹𝑗) (10) 

With 𝑁𝑑,𝑗 the number of atomic displacements contained 

in the damage cascade, 𝐴𝐹𝑗 the random annealing factor 

drawn in a Gaussian distribution, and 〈𝑔′〉𝑗 the thermal 

generation rate for the typical defect population estimated 

by the KMC enhanced by the 3D EFE model. The mean 

thermal generation rate is expressed: 

 〈𝑔′〉𝑗 =
∑ 𝜆𝑔,𝑗,𝑖 × 𝑔𝑖

𝑁𝑑𝑒𝑓.

𝑖=0

𝑁𝑑𝑒𝑓.

 (11) 

Where 𝑁𝑑𝑒𝑓. is the total number of defects that composed 

the standard population predicted by the KMC method, 

and 𝜆𝑔,𝑗,𝑖the electric field enhancement factor computed for 

each defect 𝑖. For each nuclear interaction an electric field is 

randomly drawn in the electric field distribution associated 

to the simulated pixel image sensor, and the electric field 

effects are computed for each defect. The electric field 

distribution comes from an electric field depth profile 

provided by TCAD software simulation. The term (1 − 𝐴𝐹𝑗) 

corresponds to the fraction of initial Frenkel pairs that 

survives to the annealing process and produces electrically 



active stable defects. Hence, this computation gives the 

mean number of electron-hole pair thermally generated by 

unit of time (under the influence of electric field) from a 

fraction of primary defects that have survived and formed 

electrically active and stable complex defects.  

E. Comparison with experimental data 

According to Fig. 4, the comparison between simulations 

using the KMC method and those using the universal 

damage factor shows that, for the simulation parameters 

considered, results are quite equivalent. The method used to 

take into account the 3D EFE model with the UDF is the 

same as the reference [50]. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 4: Comparison between the Dark Current Nonuniformity measured 

experimentally (blue curve), simulated with the KMC input data (red 

curve) and simulated with the Universal Damage Factor for protons of (a) 

6.5 MeV at a fluence of 3.89 × 109 𝑝+/𝑐𝑚², (b) 72.8 MeV at a fluence 

of 2.52 × 1010 𝑝+/𝑐𝑚², (c) 200 MeV at a fluence of 5.16 ×
1010 𝑝+/𝑐𝑚². All measurements are made 1 month after irradiation at 
294.15 K. The simulated image sensor contains 1310720 pixels.  
 

For proton modeling of 6.5 MeV (trap population and 

annealing factor corresponding to 1 keV PKA), the 

simulation from the KMC method provided a very slight 

overestimation of the maximum dark current (about a 

factor 1.1) compared to the universal damage factor method. 

With regard to the estimated increase in dark current for 

protons of 72.8 MeV and 200 MeV (trap population and 

annealing factor corresponding to 10 keV PKA), the dark 

current distributions from the KMC method show a 

reduction of the number of pixels and their dark current 

intensity located at the tail of the distribution (greater than 

3 nA/cm²) compared to the UDF method. For 72.8 MeV and 

200 MeV irradiations, the simulation of dark currents by the 

KMC method does not allow to reproduce the last channel 

of the experimental distribution, containing the few highly 

degraded pixels. Apart from this single point, the tail of 

distribution (currents greater than about 2-3 nA/cm²) is well 

predicted by the DAAN KMC method. 

Depending on the parameters considered, the new model 

makes it possible to estimate the number and intensity of hot 

pixels in a consistent way with the experimental distribution 

compared to the UDF method for currents greater than 

0.9 nA/cm². 

Another interesting results is the mean concentration of 

defects that can be deduced from this chain of simulation. 

On average, the number of Frenkel pairs for a given PKA 

energy 〈𝑁𝐹𝑟𝑒𝑛𝑘𝑒𝑙〉 according to GEANT4 nuclear reaction 

simulations is given in the table below (100 PKA are 

considered to compute the average): 

 

 𝑃𝐾𝐴 𝑒𝑛𝑒𝑟𝑔𝑦  

 1 𝑘𝑒𝑉 10 𝑘𝑒𝑉 100 𝑘𝑒𝑉 
〈𝑁𝐹𝑟𝑒𝑛𝑘𝑒𝑙〉  22.1 167.3 919.2 

Table 6: Mean number of Frenkel pairs according to PKA energy in 
silicon. 

 

The mean concentration of defects  [𝑋] produced for 1 

PKA in the depleted volume of the pixel 𝑉𝑑𝑒𝑝𝑙𝑒𝑡𝑒𝑑 is 

obtained according to the following expression: 

 

 
[𝑋] =

〈𝑁𝐹𝑟𝑒𝑛𝑘𝑒𝑙〉 × (1 − 𝐴𝐹) × 𝑋

𝑉𝑑𝑒𝑝𝑙𝑒𝑡𝑒𝑑

 (12) 

 

Where X is the average fraction of defects issued from 

Table 4. For the di-vacancy level (𝑋 = 0.7 for a 1 keV PKA, 

𝑋 = 0.54 for a 10 keV PKA), the mean concentration is the 

studied pixel is equal to 8.08 × 1010 𝑐𝑚−3 for 1 PKA of 

1 keV, 3.37 × 1011 𝑐𝑚−3 for a 10 keV PKA, both one 

month after irradiation at 294.15 K. These values obtained 

by KMC simulations are in the order of magnitude of 

experimental values of di-vacancy concentrations found in 

[51], [52] obtained respectively with Current Transient 

Spectroscopy method (CTS) and Deep Level Transient 

Spectroscopy (DLTS) method, at a similar Displacement 

Damage Dose level. Because the tri-interstitials and tri-

vacancies have found interest recently, concentration data 

are rare for these defects and as a consequence, no other 

comparison between simulation and experimental 

concentrations is proposed in this work. These final results 

are really encouraging for the development of the simulation 

chain described in this work. 

V. DISCUSSION 

For this study, the hole capture cross section used in 

section IV.E (Table 5) for 1 keV PKA is divided by a factor 

2 for each defect to decrease the rate of generation of 

electron-hole pairs. The hole capture cross section has been 

reduced as a simple case study in order to illustrate the 

parametric sensitivity of the methodology proposed in this 

work. However, the selected values remain within the range 

of effective sections encountered in the literature (see 

references in section IV.C). The choice of hole capture cross 

6.5 MeV 

3.89 × 109 𝑝+/𝑐𝑚²  

72.8 MeV 

2.52 × 1010 𝑝+/𝑐𝑚²  

200 MeV 

5.16 × 1010 𝑝+/𝑐𝑚²  



section (instead of the electron one) is supported by the fact 

the thermal generation rate is more sensitive to the variation 

of hole capture cross section for an acceptor trap level when 

electric field enhancement effects are considered, as 

explained in [50]. 

 

 
Fig. 5: Comparison between the Dark Current Nonuniformity measured 
experimentally (blue curve), simulated with the KMC input data with 

adjusted electrical parameters (red curve) and simulated with the Universal 

Damage Factor for protons of 6.5 MeV at a fluence of 3.89 × 109 𝑝+/𝑐𝑚². 

 

Considering these adjusted parameters leads to a better 

estimation of the whole dark current distribution, as shown 

on Fig. 5. An attempt to improve the DCNU modelling has 

been performed by adjusting the value of the hole capture 

cross section. But this is not the sole parameter that could be 

adapted to best fit experimental data. Indeed the amplitude 

of the dark current depends also on other parameters such as 

the internal electric field distribution which remains 

unknown in most of tested devices. The differences between 

the experimental dataset and the UDF estimation could be 

caused by some modeling inaccuracies related for instance 

to the electric field distribution in the pixel, for which 

manufacturer information is not always readily available. 

The adjustment of the defects characteristics can bring the 

simulation closer to the experimental data but as the 

population of defects predicted by the KMC algorithm is not 

absolutely the exact one as the level of complexity is limited 

to tri-vacancy and tri-interstitial the relevance of their 

characteristics must be regarded in the scope of the 

hypothesis of our calculation. 

In order to analyze the similarities between the KMC 

method and the UDF method, the average conversion factor 

for the KMC method and for the UDF method are evaluated. 

This average conversion coefficient α (expressed in nA/cm² 

for 1 displaced atom). This average coefficient is calculated 

by taking the total number of nuclear interactions 𝑁𝑖𝑛𝑡. that 

occurred in the pixel matrix. The conversion factor of the 

KMC method in the simplified case where the electric field 

is zero (the term 𝜆𝑔,𝑗,𝑖 of equation (8) is therefore equal to 1) 

is also computed. For this study, the adjusted trap 

parameters (previous paragraph) corresponding to a proton 

irradiation of 6.5 MeV (Fig. 5) and the annealing rate 

associated with 1 keV PKA are used. The average 

conversion factor for each method is presented in Table 7 

(expressed in nA/cm² by atomic displacement): 

𝛼(𝐾𝑀𝐶) 𝛼(𝑈𝐷𝐹) 𝛼(𝐾𝑀𝐶, ∅ 𝐸𝐹𝐸) 

(expressed in nA/cm² for 1 atomic displacement) 

8.22 × 10−4 1.35 × 10−3 3.74 × 10−4 

Table 7: Mean conversion factor for different dark current computation 

method: the KMC method, the Universal Damage Factor method and the 

KMC method without three dimensional electric field effects. 

On average, the conversion factor of the UDF method is 

1.66 times greater than that of the KMC method. For 

comparison purposes, the conversion factor of the KMC 

method is on average 2.2 times higher for the parameter sets 

considered than for the KMC method without electric field 

effects. Knowing that the KMC and UDF methods give 

similar results, one may wonder if the universal damage 

factor could contain a small contribution of electric field 

effects. One have to mention that another set of defect 

electrical parameters (i.e. energy level and electron-hole 

capture cross section) could change the value of the 

conversion factor for each method. Nevertheless, using trap 

parameters representative of the literature and a 

methodology validated by comparison with other research 

work, the KMC method developed in this work is a potential 

alternative to the UDF method. 

The fact that the simulation results provided by our KMC 

method are not entirely consistent with the experimental 

results certainly comes from the calculation method. As a 

first approximation, we considered that each nuclear 

interaction produced on average a typical population of 

defects represented with fixed proportions. However, we 

know from the statistical study carried out on the results of 

the Kinetic Monte Carlo algorithm that the proportion of 

final defects varies according to the simulations. This 

variation, represented by a standard deviation, is not taken 

into account in our calculation method. A calculation 

method using this standard deviation could provide a finer 

analysis. Finally, we considered that for high proton 

energies (greater than 100 MeV), the energy of a PKA was 

about 10 keV. However, this choice may be open to 

discussion, as higher PKA energy may be more 

representative of high-energy protons and present also a 

PKA energy spectrum. As a result, the associated population 

of defects and the annealing factor used may not quite 

correspond to the degradation undergone by the component 

to these energies. It should be remembered, however, that 

the use of PKA of 10 keV is constrained by the computation 

time that prevents us from going higher in energy for PKA. 

In a similar way, the influence of the box boundaries 

conditions on the KMC simulation results will be studied in 

a further work. Indeed, in this work, the defects are killed 

when they moved out the box boundaries for computation 

cost reasons. 

This work seems to show that the final level of defects 

following one month of annealing is quite independent on 

the initial spatial distribution of Frenkel pairs. The clustering 

effects seems not to be a predominant one in the damaging 

process. But our modelling lays on many assumptions that 

could hide this mechanism that could arise for high energy 

protons. Multiscale simulations chains, combining DFT 

(Density Functional Theory), Molecular dynamic and 

Kinetic Monte Carlo modelling, as proposed by Jay et al. 

[11] could better answer to this complex question. 

Finally, the case of dopants must be mentioned. As a fact, 

the dopants could play a role in the proton-induced dark 

current simulations. This case is interesting, as it raises some 

specific problematic. Indeed, the concentration of dopants is 

generally lower than the number of Frenkel pairs in the 

simulation box. As a consequence, the presence of an atom 

dopant is probabilistic. To take into account the dopants 

properly, one have to add a probability distribution in the 

KMC algorithm, which has not been determined yet. This 

specific case will be treated in further works. This 



problematic has also been raised recently by [11]. Another 

interesting perspective of this work is the role of “cluster” 

defects on the results of KMC simulations and by extension 

of the dark current simulation, as also mentioned by [11]. 

VI. CONCLUSIONS 

A complete simulation toolkit dedicated to the computation 

of the Dark Current Nonuniformity in irradiated pixel arrays 

is proposed. Its originality consists in the use of a Kinetic 

Monte Carlo algorithm to estimates the annealing process 

that occurs after irradiation. More precisely, the KMC 

algorithm is used to estimates the distribution of annealing 

factors for Primary Knock-on Atom of different energies, 

and the typical complex defect population associated to 

these annealing processes. From the KMC simulations, the 

di-vacancy is clearly identified as the most representative 

defect after long term annealing (one month after irradiation 

in this study). The standard complex defect populations and 

the distributions of annealing factor provide by KMC 

simulations are used as input data for a numerical tool 

dedicated to the prediction of the Dark Current 

Nonuniformity. The dark current simulation results are 

similar to the previous state of the art, which uses the 

Universal Damage Factor (UDF). This is due to the fact that 

the conversion factor between the number of atomic 

displacements and the dark current are quite equivalent on 

average. As a consequence, the dark current computation 

method presented in this work could be a potential 

alternative to the UDF method. 
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