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Abstract

We present an individual-based model for the coevolutionary dynamics between CD8+
cytotoxic T lymphocytes (CTLs) and tumour cells. In this model, every cell is viewed as
an individual agent whose phenotypic state is modelled by a discrete variable. For tumour
cells this variable represents a parameterisation of the antigen expression profiles, while for
CTLs it represents a parameterisation of the target antigens of T-cell receptors (TCRs). We
formally derive the deterministic continuum limit of this individual-based model, which
comprises a non-local partial differential equation for the phenotype distribution of tu-
mour cells coupled with an integro-differential equation for the phenotype distribution
of CTLs. The biologically relevant homogeneous steady-state solutions of the continuum
model equations are found. The linear-stability analysis of these steady-state solutions is
then carried out in order to identify possible conditions on the model parameters that may
lead to different outcomes of immune competition and to the emergence of patterns of phe-
notypic coevolution between tumour cells and CTLs. We report on computational results
of the individual-based model, and show that there is a good agreement between them
and analytical and numerical results of the continuum model. These results shed light on
the way in which different parameters affect the coevolutionary dynamics between tumour
cells and CTLs. Moreover, they support the idea that TCR-tumour antigen binding affinity
may be a good intervention target for immunotherapy and offer a theoretical basis for the
development of anti-cancer therapy aiming at engineering TCRs so as to shape their affinity
for cancer targets.
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1 Introduction

Essentials of the underlying biological problem CD8+ cytotoxic T lymphocytes (CTLs) play
a key role in the immune response against cancer. CTLs carry a specific receptor on their sur-
face, the T-cell receptor (TCR), which can recognise and bind to non-self antigens expressed
by tumour cells [76]. Each TCR recognises and binds specifically to a certain antigen (i.e. the
cognate antigen) [21], and possibly other antigens within a certain affinity range [74, 108]. This
enables CTLs to exert an antigen-specific cytotoxic activity against tumour cells, whose efficacy
may depend on the affinity range of TCRs and the strength of TCR-tumour antigen binding (i.e.
TCR-tumour antigen binding affinity) [56, 91].

The presence of tumour cells expressing non-self antigens triggers the clonal expansion of
CTLs with matching TCRs. Thereupon, CTL numbers are kept under control by self-regulation
mechanisms [41, 109, 77, 90, 98], which play a key role in the prevention of autoimmunity.
Furthermore, epigenetic and genetic processes inducing stochastic and heritable changes in
the antigen expression profiles of tumour cells foster dynamical intercellular variability in the
expression levels of tumour antigens [14, 88, 100]. Due to limitations posed by self-regulation
mechanisms upon the numbers of CTLs targeted against different antigens at the same tumour
site, such a form of intratumour heterogeneity creates the substrate for adaptation of tumour
cells to the antigen-specific cytotoxic activity of CTLs and triggers adaptive changes in the
repertoire of CTLs. This results in coevolutionary dynamics whereby CTLs dynamically sculpt
the antigenic distribution of tumour cells, and tumour cells concurrently reshape the repertoire
of CTLs [83].

The observation that the numbers of CD8+ and CD3+ T lymphocytes at the tumour site cor-
relate with prognosis in different types of cancer led to the development of the ‘immunoscore’
as a prognostic marker in cancer patients [5, 38, 39, 37]. The immunoscore provides a score
that increases with the density of CD8+ and CD3+ T lymphocytes both in the centre and at
the periphery of the tumour. A possible tumour classification based on the immunoscore has
been proposed in [38], where tumours with a high immunoscore are classified as ‘hot tumours’,
tumours with an intermediate immunoscore are classified as ‘altered tumours’, and tumours
with a low immunoscore are classified as ‘cold tumours’.

Mathematical modelling background Mathematical modelling can contribute to biomedical
research on the immune response to cancer by supporting experimental results with a theo-
retical basis, bringing new perspectives on extant empirical data, and informing new experi-
ments [4, 10, 32, 33, 48, 73, 105]. In particular, different aspects of the coevolutionary dynamics
between immune cells and tumour cells have been studied, under the assumption of spatially-
homogeneous mixing between cells, using a number of deterministic continuum models for-
mulated as ordinary differential equations [3, 1, 8, 15, 29, 23, 35, 47, 59, 61, 60, 65, 70, 75, 95, 101,
106], integro-differential equations [9, 26, 58, 67] and partial differential equations [7, 2].

Although more amenable to analytical and numerical approaches, which allow for a more
in-depth theoretical understanding of the underlying cellular dynamics, deterministic contin-
uum models make it more difficult to incorporate the finer details of the coevolution between
tumour cells and CTLs. Moreover, they cannot easily capture adaptive phenomena that are
driven by stochastic effects in the evolutionary paths of single cells. Hence, one ideally wants
to derive them as the appropriate limit of stochastic discrete models (i.e. individual-based mod-
els) of the coevolutionary dynamics between tumour cells and CTLs. These individual-based
models track the dynamics of single cells, thus permitting the representation of single-cell-scale
mechanisms, and account for possible stochastic intercellular variability in the evolutionary tra-
jectories of individual cells. Integrating the results of computational simulations of stochastic
discrete models with analytical and numerical results of their deterministic continuum coun-
terparts makes it possible to clearly identify the validity domain of such results, thus leading
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to more robust biological insight.

Contents of the article In this vein, we develop an individual-based model for the coevolu-
tionary dynamics between tumour cells and CTLs in a well-mixed system (i.e. spatial inter-
actions are not incorporated into the model). While being aware of the fact that a variety of
different cells and molecules take part in this process, here we focus on interactions involving
tumour cells and CTLs only. Every cell is viewed as an individual agent whose phenotypic
state is modelled by a discrete variable. For tumour cells this variable represents a parame-
terisation of the antigen expression profiles, while for CTLs it represents a parameterisation of
TCRs.

The model takes into account the effects of the following biological processes: proliferation
and death of tumour cells and CTLs; heritable, spontaneous phenotypic changes of tumour
cells resulting in variation of antigenic expression; antigen-driven expansion of CTLs (i.e. in situ
clonal expansion following antigen recognition); death of tumour cells due to antigen-specific
cytotoxic activity of CTLs. These processes are incorporated into the model through a set of
rules that correspond to a discrete-time branching random walk on the space of phenotypic
states [18, 54].

We show that a generalised version of the mathematical model of immune competition pre-
sented in [67] can be formally obtained as the deterministic continuum limit of the individual-
based model presented here. This continuum model comprises a non-local partial differen-
tial equation (PDE) for the phenotype distribution of tumour cells coupled with an integro-
differential equation (IDE) for the phenotype distribution of CTLs, and shares some similarities
with non-local predator-prey models such as those considered, for instance, in [25, 43, 87, 97]. In
addition to the biological phenomena incorporated into the model considered in [67], the deter-
ministic continuum counterpart of the individual-based model developed here takes also into
account the effect of changes in antigen expression profiles of tumour cells and more general
forms of competitive feedback mechanisms regulating the growth of the numbers of tumour
cells and CTLs.

The biologically relevant homogeneous steady-state solutions of the continuum model equa-
tions are found. Linear-stability analysis of these steady-state solutions is then carried out in
order to identify possible conditions on the model parameters that may lead to different out-
comes of immune competition and to the emergence of patterns of phenotypic coevolution
between tumour cells and CTLs. We report on computational results of the individual-based
model, and show that there is a good agreement between them and analytical and numerical
results of the continuum model. Moreover, we explore possible scenarios in which differences
between the outputs of the individual-based and continuum models may emerge. The results
obtained disentangle the role of different cell parameters in the coevolutionary dynamics be-
tween tumour cells and CTLs.

Structure of the article In Section 2, the individual-based model is introduced. In Section 3,
the deterministic continuum counterpart of this model is presented (a formal derivation is pro-
vided in Appendix A). In Section 4, the homogeneous steady-state solutions of the continuum
model equations are identified and their linear stability is investigated. In Section 5, com-
putational results of the individual-based model are discussed and integrated with numerical
solutions of the continuum model. In Section 6, key biological implications of the main findings
of this study are summarised and directions for future research are outlined.

2 Individual-based model

We model the coevolutionary dynamics between a population of tumour cells and a population
of CTLs in a well-mixed system. The population of tumour cells is labelled by the letter C,
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while the population of CTLs is labelled by the letter T . Building on the modelling approach
developed in [27, 26, 67], at any time t ∈ [0, tf ] ⊂ R+, the phenotypic state of every tumour cell
is modelled by a variable u ∈ I, where I := [−L,L] ⊂ R is the closure of the set I := (−L,L) ⊂
R with L > 0, and the phenotypic state of every CTL is modelled by a variable v ∈ I. We make
the following modelling assumptions.

Assumption 2.1. The variable u represents a parameterisation of the antigen expression pro-
files of tumour cells, while the variable v represents a parameterisation of the target antigens of
the TCRs. As a result, CTLs in the phenotypic state v will be primarily capable of recognising
tumour cells in the phenotypic state u = v.

Assumption 2.2. Tumour cells will have higher antigenic similarity if their phenotypic states
are modelled by closer value of u. Hence, depending on the range of TCR affinity, CTLs in the
phenotypic state v = u may also be capable of recognising tumour cells in phenotypic states
which are sufficiently close to u.

Assumption 2.3. Tumour cells in similar phenotypic states (i.e. phenotypic states that are
modelled by sufficiently close values of u) will occupy similar niches and, therefore, a form
of intra-population competition (i.e. clonal competition) will occur between them. Moreover,
self-regulation mechanisms act on CTLs in similar phenotypic states (i.e. phenotypic states that
are modelled by sufficiently close values of v). Hence, a form of intra-population competition
will occur between these cells as well.

Building upon the ideas presented in [6, 18, 89], we model each cell as an agent that occupies
a position on a lattice, which represents the space of phenotypic states. We discretise the time
variable and the phenotypic states, respectively, as

th = hτ ∈ [0, tf ], ui = iχ ∈ I and vj = jχ ∈ I, h ∈ N0, i, j ∈ Z,

where τ ∈ R+
∗ and χ ∈ R+

∗ are the time- and phenotype-step, respectively. We introduce the
dependent variables Nh

Ci
∈ N0 and Nh

Tj
∈ N0 to represent, respectively, the number of tumour

cells on lattice site i (i.e. in the phenotypic state ui) and the number of CTLs on lattice site j (i.e.
in the phenotypic state vj) at time-step h. The population density functions of tumour cells and
CTLs (i.e. the phenotype distributions of the two cell populations) are defined, respectively, as

nhCi
≡ nC(ui, th) :=

Nh
Ci

χ
and nhTj ≡ nT (vj , th) :=

Nh
Tj

χ
, (2.1)

while the total numbers of tumour cells and CTLs (i.e. the sizes of the cell populations C and
T ) are defined, respectively, as

ρhC ≡ ρC(th) :=
∑
i

Nh
Ci

and ρhT ≡ ρT (th) :=
∑
j

Nh
Tj . (2.2)

In the mathematical framework of our model, the function

Ih ≡ I(th) :=
ρT (th)

ρC(th)
(2.3)

provides a possible simplified measure of the immune score at the hth time-step in the well-
mixed system considered here. In particular, abstracting from the immune-score based classi-
fication of tumours recalled in Section 1, throughout the article we will refer to situations in
which the average value of I , i.e. the quantity

I =
τ

tf

∑
h

Ih, (2.4)
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is smaller than 1 or at least about one order of magnitude larger than 1 as ‘cold tumour-like
scenarios’ and ‘hot tumour-like scenarios’, respectively, whereas the remaining situations will be
classified as ‘altered tumour-like scenarios’.

As mentioned earlier, we focus on a biological scenario whereby: (i) cells in the two pop-
ulations divide and die due to intra-population competition (i.e. clonal competition amongst
tumour cells and self-regulation of CTLs); (ii) tumour cells undergo heritable, spontaneous
phenotypic changes which result in variation of antigen expression profiles; (iii) CTLs undergo
antigen-driven expansion (i.e. in situ clonal expansion following antigen recognition); (iv) tu-
mour cells die due to the antigen-specific cytotoxic activity of CTLs. These biological phenom-
ena are incorporated into the model via the modelling strategies described in the following
subsections.

2.1 Mathematical modelling of cell division and death due to intra-population
competition

We assume that a dividing cell is replaced by two identical cells that inherit the phenotypic
state of the parent cell (i.e. the progenies are placed on the same lattice site as their parent),
while a dying cell is removed from the population.

At every time-step h, we allow tumour cells and CTLs to undergo cell division at rates
αC > 0 and αT > 0, respectively. Moreover, on the basis of Assumption 2.3, at every time-step
h, we allow tumour cells in the phenotypic state ui and CTLs in the phenotypic state vj to die
due to intra-population competition at rates µC Kh

Ci
and µT Kh

Tj
, respectively, where µC , µT > 0

and

Kh
Ci
≡ KC(ui, th) :=

∑
k

g(ui, uk; θC)Nh
Ck
, Kh

Tj ≡ KT (vj , th) :=
∑
k

g(vj , vk; θT )Nh
Tk
. (2.5)

The function g is defined as follows

g(x, y; ξ) :=


1

|Lξ(x)|
if |y − x| ≤ ξ

0 if |y − x| > ξ,
for (x, y; ξ) ∈ I × I × (0, |I|], (2.6)

where |I| denotes the size of the interval I (i.e. |I| = 2L) and |Lξ(x)| denotes the size of the
interval

Lξ(x) := {y ∈ I : |y − x| ≤ ξ}, (x; ξ) ∈ I × (0, |I|]. (2.7)

The quantity Kh
Ci

defined via (2.5)-(2.7) represents the number of tumour cells whose pheno-
typic states are modelled by values of the variable uk at a distance smaller than or equal to θC
from ui, rescaled to |LθC (ui)|. Similarly, the quantity Kh

Tj
defined via (2.5)-(2.7) represents the

number of CTLs whose phenotypic states are modelled by values of the variable vk at a distance
smaller than or equal to θT from vj , rescaled to |LθT (vj)|. Hence, the inverse of the parameter
0 < θC ≤ |I| (i.e. 1/θC) provides a measure of the level of selectivity of clonal competition
amongst tumour cells and the inverse of the parameter 0 < θT ≤ |I| (i.e. 1/θT ) provides a mea-
sure of the level of selectivity of self-regulation mechanisms acting on CTLs (i.e. the smaller θC
and θT , the higher the corresponding levels of selectivity). Furthermore, the parameters µC and
µT represent the rates of death of tumour cells and CTLs due to these forms of intra-population
competition.

2.2 Mathematical modelling of phenotypic changes in tumour cells

Building on the modelling strategies proposed in [6, 18, 89], we account for spontaneous, her-
itable phenotypic changes which result in variation of antigen expression profiles by allowing
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tumour cells to update their phenotypic states according to a random walk. More precisely,
between the time-steps h and h + 1, every tumour cell enters a new phenotypic state, with
probability 0 < λC < 1, or remains in its current phenotypic state, with probability 1 − λC .
When a tumour cell in the phenotypic state ui undergoes a phenotypic change, it enters into
either the phenotypic state ui−1 or the phenotypic state ui+1 with probability λC/2. This mod-
els the fact that phenotypic changes occur randomly due to non-genetic instability, rather than
being induced by selective pressures [53]. No-flux boundary conditions are implemented by
aborting any attempted phenotypic variation of a tumour cell if it requires moving into a phe-
notypic state outside the interval I.

2.3 Mathematical modelling of tumour-immune competition

Similarly to cell division, we assume that a CTL undergoing antigen-driven expansion is re-
placed by two identical cells that inherit the phenotypic state of the parent cell. Moreover,
similarly to cell death due to intra-population competition, we assume that a tumour cell dy-
ing due to the antigen-specific cytotoxic activity of CTLs is removed from the population.

On the basis of Assumptions 2.1 and 2.2, at every time-step h we allow CTLs in the phe-
notypic state vj to undergo antigen-driven expansion at rate ζT γ JhTj , while tumour cells in the
phenotypic state ui will die due to antigen-specific cytotoxic activity of CTLs at rate ζC γ JhCi

.
Here, ζC , ζT , γ > 0 and

JhTj ≡ JT (vj , th) :=
∑
i

g(vj , ui; η)Nh
Ci
, JhCi

≡ JC(ui, th) :=
∑
j

g(ui, vj ; η)Nh
Tj , (2.8)

where the function g is defined via (2.6) and (2.7). The quantity JhTj defined via (2.6)-(2.8) rep-
resents the number of tumour cells whose phenotypic states are modelled by values of the
variable ui at a distance smaller than or equal to η from vj , rescaled to |Lη(vj)|. Similarly, the
quantity JhCi

defined via (2.6)-(2.8) represents the number of CTLs in phenotypic states which
are modelled by values of the variable vj at a distance smaller than or equal to η from ui,
rescaled to |Lη(ui)|. Hence, the parameter 0 < η ≤ |I| provides a measure of the affinity range
of TCRs. In more detail, this parameter determines the range of tumour antigens each CTL can
recognise: large values of η correspond to a CTL population that is able to eliminate tumour
cells expressing a large spectrum of antigens, whereas low values of η correspond to scenarios
where CTLs can only recognise tumour cells with a more specific antigenic expression. Further-
more, the parameter γ provides a measure of the TCR-tumour antigen binding affinity (i.e. the
strength of TCR-tumour antigen binding). Previous experimental studies have highlighted the
role played by TCR-tumour antigen binding affinity in anti-tumour immune response and its
link with immune efficiency [55, 45, 96]. Finally, the parameter ζT represents the rate at which a
CTL undergoing antigen-driven expansion divides (i.e. the rate of cell division corresponding
to in situ clonal expansion), and the parameter ζC represents the rate at which a tumour cell can
die due to the antigen-specific cytotoxic activity of a CTL.

2.4 Computational implementation of the individual-based model

Numerical simulations of the individual-based model are performed in MATLAB. At each time-
step, we follow the procedures described hereafter to simulate phenotypic variation, cell divi-
sion and death of tumour cells, and cell division and death of CTLs. The random numbers r1,
r2 and r3 mentioned below are real numbers drawn from the standard uniform distribution on
the interval (0, 1) using the built-in function RAND.
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Computational implementation of spontaneous, heritable phenotypic changes of tumour
cells For each cell in population C, a random number, r1, is generated and used to determine
whether the cell undergoes a phenotypic change (i.e. 0 < r1 < λC) or not (i.e. λC ≤ r1 < 1). If
the cell undergoes a phenotypic change, then a second random number, r2, is generated. If 0 <
r2 < 1/2, then the cell moves into the phenotypic state to the left of its current state (i.e. a cell
in the phenotypic state ui will move into the phenotypic state ui−1 = ui − χ), whereas if 1/2 ≤
r2 < 1 then the cell moves into the phenotypic state to the right of its current state (i.e. a cell in
the phenotypic state ui will move into the phenotypic state ui+1 = ui+χ). As mentioned earlier,
no-flux boundary conditions are implemented by aborting attempted phenotypic changes that
would move a cell into a phenotypic state outside the interval I.

Computational implementation of cell division and death of tumour cells and CTLs For
each population, the number of cells in each phenotypic state is counted. The quantities KC

and KT are computed via (2.5) and the quantities JC and JT are computed via (2.8), and the
following definitions are used to calculate the probabilities of cell division, death and quies-
cence (i.e. no division nor death) for every phenotypic state of cells in populations C and T ,
respectively,

PbC := τ αC , PdC := τ
(
µC K

h
Ci

+ ζC γ J
h
Ci

)
, PqC := 1−

(
PbC + PdC

)
(2.9)

and
PbT := τ

(
αT + ζT γ J

h
Tj

)
, PdT := τ µT K

h
Tj , PqT := 1−

(
PbT + PdT

)
. (2.10)

Notice that we are implicitly assuming that the time-step τ is sufficiently small that 0 < PkC < 1
and 0 < PkT < 1 for all k ∈ {b, d, q}. For each cell, a random number, r3, is generated and
the cells’ fate is determined by comparing this number with the probabilities of division, death
and quiescence corresponding to the phenotypic state of the cell. In more detail, for a cell
in population C: if 0 < r3 < PdC then the cell is considered dead and is removed from the
population; if PdC ≤ r3 < PdC + PbC then the cell undergoes division and an identical daughter
cell is created; whereas if PdC + PbC ≤ r3 < 1 then the cell remains quiescent (i.e. does not divide
nor die). Similarly, for a cell in population T : if 0 < r3 < PdT then the cell is considered dead
and is removed from the population; if PdT ≤ r3 < PdT + PbT then the cell undergoes division
and an identical daughter cell is created; whereas if PdT + PbT ≤ r3 < 1 then the cell remains
quiescent.

3 Corresponding deterministic continuum model

In the case where cell dynamics are governed by the rules described in Sections 2.1-2.3, be-
tween time-steps h and h+ 1 a tumour cell in the phenotypic state ui may divide, die or remain
quiescent (i.e. not divide nor die) with probabilities defined via (2.9), while a CTL in the pheno-
typic state vj may divide, die or remain quiescent with probabilities defined via (2.10). Hence,
recalling that between time-steps h and h+ 1 a tumour cell in the phenotypic state ui may also
enter into either of the phenotypic states ui−1 and ui+1 with probabilities λC/2, the principle
of mass balance gives the following system of coupled difference equations for the population
densities nhCi

and nhTj :
nh+1
Ci

=
(
2 PbC + PqC

) [λC
2

(
nhCi+1

+ nhCi−1

)
+ (1− λC)nhCi

]
, (ui, th) ∈ I × (0, tf ],

nh+1
Tj

=
(
2 PbT + PqT

)
nhTi , (vj , th) ∈ I × (0, tf ].

(3.1)
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The difference equation (3.1)1 for nhCi
is subject to no-flux boundary conditions due to the

fact that, as mentioned in Section 2.2, any attempted phenotypic variation of a tumour cell
is aborted if it requires moving into a phenotypic state outside the interval I.

Starting from the system of coupled difference equations (3.1), letting the time-step τ → 0
and the phenotype-step χ→ 0 in such a way that

λC
χ2

2τ
→ βC with 0 < βC <∞, (3.2)

where the parameter βC is the rate of spontaneous, heritable phenotypic changes of tumour
cells, using the method employed in [6, 18, 89], it is possible to formally show (see Appendix A)
that the deterministic continuum counterpart of the stochastic discrete model comprises the
following PDE-IDE system for the cell population density functions nC(u, t) and nT (v, t)

∂tnC − βC ∂2uunC =
[
αC − µC KC(u, t)− ζC γ JC(u, t)

]
nC , (u, t) ∈ I × (0, tf ],

∂tnT =
[
αT − µTKT (v, t) + ζT γ JT (v, t)

]
nT , (v, t) ∈ I × (0, tf ],

JC(u, t) :=

∫
I
g(u, v; η)nT (v, t) dv, KC(u, t) :=

∫
I
g(u,w; θC)nC(w, t) dw,

JT (v, t) :=

∫
I
g(v, u; η)nC(u, t)du, KT (v, t) :=

∫
I
g(v, w; θT )nT (w, t) dw,

(3.3)

with I = (−L,L). Here, the function g is defined via (2.6) and (2.7), and the non-local PDE (3.3)1
for nC is subject to the following no-flux boundary conditions

∂unC(−L, t) = 0 and ∂unC(L, t) = 0 for all t ∈ (0, tf ]. (3.4)

We remark that linear diffusion operators like the one in the PDE (3.3)1, which are the determin-
istic, continuum counterparts of underlying random walks over the space of phenotypic states,
have been widely used to model the effect of heritable, spontaneous phenotypic changes in cell
populations – see, for instance, the review article [17] and references therein.

4 Steady-state and linear-stability analyses of the continuum model
equations

In this section, we first identify the biologically relevant homogeneous steady-state solutions
of the continuum model equations. Then, we carry out linear-stability analysis to: (i) deter-
mine conditions that may lead to the eradication of tumour cells by CTLs or to the coexistence
between the two cell populations, and (ii) identify sufficient conditions for the emergence of
patterns of phenotypic coevolution between tumour cells and CTLs.

4.1 Biologically relevant steady-state solutions

A biologically relevant steady-state solution of the PDE-IDE system (3.3) subject to the bound-
ary conditions (3.4) is given by a pair of real, non-negative functions n∗C(u) and n∗T (v) that
satisfy the following system−βC ∂

2
uun
∗
C =

[
αC − µC K∗C(u)− ζC γ J∗C(u)

]
n∗C , u ∈ I,[

αT − µTK∗T (v) + ζT γ J
∗
T (v)

]
n∗T = 0, v ∈ I,

(4.1)

where I = (−L,L), with (4.1)1 subject to the boundary conditions

∂un
∗
C(−L) = 0 and ∂un

∗
C(L) = 0. (4.2)
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In the system (4.1),

J∗C(u) :=

∫
I
g(u, v; η)n∗T (v) dv, K∗C(u) :=

∫
I
g(u,w; θC)n∗C(w) dw (4.3)

and
J∗T (v) :=

∫
I
g(v, u; η)n∗C(u) du, K∗T (v) :=

∫
I
g(v, w; θT )n∗T (w) dw. (4.4)

The components of homogeneous steady-state solutions satisfy the following system of equa-
tions 

[
αC − µC K∗C(u)− ζC γ J∗C(u)

]
n∗C = 0, u ∈ I,[

αT − µTK∗T (v) + ζT γ J
∗
T (v)

]
n∗T = 0, v ∈ I

(4.5)

and are of the form

n∗C(u) =
ρ∗C
|I|
∀u ∈ I and n∗T (v) =

ρ∗T
|I|
∀v ∈ I, (4.6)

where ρ∗C ≥ 0 and ρ∗T ≥ 0 satisfy the following system of algebraic equations
(
αC |I| − µC ρ∗C − γC ρ∗T

)
ρ∗C = 0,(

αT |I| − µT ρ∗T + γT ρ
∗
C

)
ρ∗T = 0,

with γC := ζC γ and γT := ζT γ. (4.7)

The system of algebraic equations (4.7) is obtained by first integrating the PDE (3.3)1 over I
and imposing the boundary conditions (3.4), then integrating the IDE (3.3)2 over I, next substi-
tuting ansatz (4.6) into the resulting equations and equating to zero their right-hand sides, and
finally using the fact that, when the function g is defined via (2.6) and (2.7),∫

I
g(x, y; ξ) dy = 1, ∀x ∈ I, ξ ∈ (0, |I|]. (4.8)

In particular, since we are studying tumour-immune competition, we are interested in solu-
tions of the system of equations (4.7) whose ρ∗T component is strictly positive. There exist two
solutions of this type, that is, the semitrivial solution

(ρ∗C1, ρ
∗
T1) =

(
0,
|I|αT
µT

)
, (4.9)

and, provided that the following condition on the model parameters is met

γ <
µT
αT

αC
ζC
, (4.10)

the nontrivial solution

(ρ∗C2, ρ
∗
T2) =

(
|I| (αCµT − αTγC)

γTγC + µCµT
, |I| (αTµC + αCγT )

γTγC + µCµT

)
. (4.11)

The semitrivial steady-state solution given by (4.6) and (4.9) corresponds to biological scenarios
whereby tumour cells are eradicated by CTLs, while the nontrivial steady-state solution given
by (4.6) and (4.11) corresponds to situations where coexistence between tumour cells and CTLs
occurs. Notice that condition (4.10) indicates that lower TCR-tumour antigen binding affinity
(i.e. smaller values of γ) make it more likely that tumour cells survive the cytotoxic action of
CTLs, thus promoting coexistence between the two cell populations.
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4.2 Linear-stability analysis

Linearising the PDE-IDE system (3.3), subject to the boundary conditions (3.4), about a steady-
state of components n∗C(u) and n∗T (v), and using the conditions given by equations (4.1), we
obtain the following PDE-IDE system for the perturbations ñC(u, t) and ñT (v, t)
∂tñC − βC ∂2uuñC = [αC − µCK

∗
C(u)− γCJ∗

C(u)] ñC −
[
µC K̃C(u, t) + γC J̃C(u, t)

]
n∗C , (u, t) ∈ I × (0, tf ],

∂tñT = [αT − µTK
∗
T (v) + γTJ

∗
T (v)] ñT −

[
µT K̃T (v, t)− γT J̃T (v, t)

]
n∗T , (v, t) ∈ I × (0, tf ],

(4.12)
subject to the boundary conditions

∂uñC(−L, t) = 0 and ∂uñC(L, t) = 0 for all t ∈ (0, tf ]. (4.13)

In the system (4.12), J∗C(u) and K∗C(u) are defined via (4.3), J∗T (v) and K∗T (u) are defined
via (4.4), and

J̃C(u, t) :=

∫
I
g(u, v; η) ñT (v, t) dv, K̃C(u, t) :=

∫
I
g(u,w; θC) ñC(w, t) dw, (4.14)

J̃T (v, t) :=

∫
I
g(v, u; η) ñC(u, t) du, K̃T (v, t) :=

∫
I
g(v, w; θT ) ñT (w, t) dw. (4.15)

Due to (4.5), if the steady-state solution (n∗C , n
∗
T ) is given by (4.6) and (4.9) then the PDE-IDE

system (4.12) reduces to
∂tñC − βC ∂2uuñC =

[
αC − γCJ∗C(u)

]
ñC , (u, t) ∈ I × (0, tf ],

∂tñT = −
[
µT K̃T (v, t)− γT J̃T (v, t)

]ρ∗T1
|I|

, (v, t) ∈ I × (0, tf ],
(4.16)

whereas if condition (4.10) is met and the steady-state solution (n∗C , n
∗
T ) is given by (4.6) and (4.11)

then the PDE-IDE system (4.12) reduces to
∂tñC − βC ∂2uuñC = −

[
µC K̃C(u, t) + γC J̃C(u, t)

]ρ∗C2

|I|
, (u, t) ∈ I × (0, tf ],

∂tñT = −
[
µT K̃T (v, t)− γT J̃T (v, t)

]ρ∗T2
|I|

, (v, t) ∈ I × (0, tf ].

(4.17)

4.2.1 Conditions for eradication of tumour cells by CTLs or coexistence between the two
cell populations

In order to determine conditions on the model parameters that may lead to the eradication of
tumour cells by CTLs or to the coexistence between the two cell populations, we study the
stability of the steady-state solutions given by (4.6) and (4.9) or (4.11) to perturbations of the
form

ñC(u, t) = εC e
λt ∀u ∈ I and ñT (v, t) = εT e

λt ∀v ∈ I with εC , εT ∈ R∗, λ ∈ C. (4.18)

Substituting the ansatz (4.18) into the PDE-IDE system (4.16) and using property (4.8) along
with the expression (4.9) of ρ∗T1 gives the following system of algebraic equations

λεC =
(
αC − γC

αT
µT

)
εC ,

λεT = −
(
µT εT − γT εC

) αT
µT

,
(4.19)
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which can be written in matrix form asαC − γC αTµT − λ 0

γT
αT
µT

−αT − λ

[εC
εT

]
=

[
0
0

]
.

For a non-trivial solution of system (4.19) to exist, the determinant of the above matrix must be
zero. This leads to the following quadratic equation for λ

λ2 −Bλ+ C = 0

with

B := αC − γC
αT
µT
− αT and C := αT

(
γC
αT
µT
− αC

)
.

Hence, the semitrivial steady-state solution given by (4.6) and (4.9) is locally asymptotically
stable if the reverse of condition (4.10) holds, that is if

γ >
µT
αT

αC
ζC
, (4.20)

since in this case B < 0 and C > 0 (i.e. Re(λ) < 0). On the other hand, performing similar
calculations on the PDE-IDE system (4.17) gives the the following system of algebraic equations

λεC = −
(
µC εC + γC εT

) (αCµT − αTγC)

γTγC + µCµT
,

λεT = −
(
µT εT − γT εC

) (αTµC + αCγT )

γTγC + µCµT
,

(4.21)

which can be written in matrix form as−µC
(αCµT − αTγC)

γTγC + µCµT
− λ −γC

(αCµT − αTγC)

γTγC + µCµT

γT
(αTµC + αCγT )

γTγC + µCµT
−µT

(αTµC + αCγT )

γTγC + µCµT
− λ

[εC
εT

]
=

[
0
0

]
.

For a non-trivial solution of system (4.21) to exist, the determinant of the above matrix must be
zero. This leads to the following quadratic equation for λ

λ2 −Bλ+ C = 0

with

B := −
[
µC

(αCµT − αTγC)

γTγC + µCµT
+ µT

(αTµC + αCγT )

γTγC + µCµT

]
and

C :=
(αCµT − αTγC)(αTµC + αCγT )

(γTγC + µCµT )2
[µCµT + γCγT ] .

Hence, if condition (4.10) is met, then the nontrivial steady-state solution given by (4.6) and (4.11)
is locally asymptotically stable, since in this case B < 0 and C > 0 (i.e. Re(λ) < 0).

4.2.2 Conditions for the emergence of patterns of phenotypic coevolution between tumour
cells and CTLs

In order to identify sufficient conditions for the emergence of patterns of phenotypic coevo-
lution between tumour cells and CTLs, we study the stability of the nontrivial steady-state
solution given by (4.6) and (4.11) to perturbations of the form

ñC(u, t) = εC e
λt ϕk(u) and ñT (v, t) = εT e

λt ϕk(v) with εC , εT ∈ R∗, λ ∈ C. (4.22)

11



Here, {ϕk}k≥1 are the eigenfunctions of the Laplace operator on I with homogeneous Neu-
mann boundary conditions indexed by the wavenumber k, that is,

ϕk(x) = cos (k x) with k =
mπ

|I|
, m ∈ N, x ∈ I. (4.23)

Substituting the ansatz given by (4.22) and (4.23) into the PDE-IDE system (4.17), using the
fact that ∫

I
g(x, y; ξ)ϕk(y) dy =

sin(kξ)

k
Ψ(x; ξ)ϕk(x) with Ψ(x; ξ) :=

2

|Lξ(x)|
,

for all x ∈ I and ξ ∈ (0, |I|], we obtain the following infinite system of algebraic equations
λ εC = −k2 βC εC −

(
µC

sin(kθC)

k
Ψ(x; θC) εC + γC

sin(kη)

k
Ψ(x; η) εT

) ρ∗C2

|I|
,

λ εT = −
(
µT

sin(kθT )

k
Ψ(x; θT ) εT − γT

sin(kη)

k
Ψ(x; η) εC

) ρ∗T2
|I|

,

(4.24)

which can be written in matrix form as−k
2 βC − µC

sin(kθC)

k
Ψ(x; θC)

ρ∗C2

|I|
− λ −γC

sin(kη)

k
Ψ(x; η)

ρ∗C2

|I|
γT

sin(kη)

k
Ψ(x; η)

ρ∗T2
|I|

−µT
sin(kθT )

k
Ψ(x; θT )

ρ∗T2
|I|
− λ

[εCεT
]

=

[
0
0

]
.

For each x ∈ I, for a non-trivial solution of the system of algebraic equations (4.24) to exist
the determinant of the above matrix must be zero. For each x ∈ I, this leads to the following
quadratic equation for λ

λ2 −Bλ+ C = 0

where

B ≡ B(k, x) := −k2 βC − µC
sin(kθC)

k

ρ∗C2

|I|
Ψ(x; θC)− µT

sin(kθT )

k

ρ∗T2
|I|

Ψ(x; θT ) (4.25)

and

C ≡ C(k, x) : = k2 βC µT
sin(kθT )

k

ρ∗T2
|I|

Ψ(x; θT )

+
ρ∗C2 ρ

∗
T2

|I|2

[
γCγT

(
sin(kη)

k
Ψ(x; η)

)2

+ µCµT
sin(kθC)

k

sin(kθT )

k
Ψ(x; θC)Ψ(x; θT )

]
.

A sufficient condition for the nontrivial steady-state solution given by (4.6) and (4.11) to be
driven unstable by perturbations of the form (4.22) (i.e. for patterns of phenotypic coevolution
between tumour cells and CTLs to be formed) is that B > 0 and/or C < 0 so that Re(λ) > 0 for
all x ∈ I. In particular, in the case where

θC = θT = θ, (4.26)

since k is defined via (4.23), for the condition B(k, x) > 0 to hold for all x ∈ I it suffices that

βC <
1

|I|
min
k∈K

{
−sin(kθ)

k

(
ρ∗C2µC + ρ∗T2µT

k2

)}
min
x∈I

Ψ(x; θ),

where K :=

{
k =

mπ

|I|
, m ∈ N : sin(kθ) < 0

}
. Since, under definition (2.7),

min
x∈I

Ψ(x; θ) =
2

max
x∈I
|Lθ(x)|

=
1

θ
,

the above condition on βC reduces to

βC <
1

|I|
min
k∈K

{
−sin(kθ)

kθ

(
ρ∗C2µC + ρ∗T2µT

k2

)}
. (4.27)
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5 Numerical simulations

In this section, we report on computational results of the individual-based model along with
numerical solutions of the corresponding continuum model given by the PDE-IDE system (3.3)
and subject to the boundary conditions (3.4). Simulations are integrated with the results of
steady-state and linear-stability analyses of the continuum model equations presented in Sec-
tion 4. In particular, we investigate the way in which the outputs of the models are affected
by key parameters whose impact on the coevolutionary dynamics between tumour cells and
CTLs is of particular biological interest. Such key parameters are: the TCR-tumour antigen
binding affinity, γ, the level of selectivity of self-regulation mechanisms acting on CTLs, 1/θT ,
the level of selectivity of clonal competition amongst tumour cells, 1/θC , and the affinity range
of TCRs, η. Moreover, we explore the existence of scenarios in which differences between the
outputs produced by the two models can emerge due to effects which reduce the quality of the
approximation of the individual-based model provided by the continuum model.

5.1 Set-up of numerical simulations

Without loss of generality we choose L = 1, so that I = [−1, 1] and |I| = 2, and consider
a discretisation of the interval [−1, 1] consisting of 1500 points (i.e. the phenotype-step is χ ≈
0.0013). Furthermore, we use the time-step τ = 0.05 and, unless otherwise specified, we choose
the final time tf = 30 days.

Building on the results of steady-state and linear-stability analyses of the continuum model
equations presented in Section 4, we carry out simulations using the following initial condition
for the individual-based model

n0C(ui) := 104(1 + a cos(Aui)), n0T (vj) := 104(2 + a cos(Avj)), a ≥ 0, A > 0. (5.1)

In Appendix B, we provide a detailed description of the methods employed to numerically
solve the PDE-IDE system (3.3) complemented with the boundary conditions (3.4) and the con-
tinuum analogue of the initial condition (5.1), i.e. the initial condition

n0C(u) := 104(1 + a cos(Au)), n0T (v) := 104(2 + a cos(Av)), a ≥ 0, A > 0. (5.2)

Unless otherwise specified, we use the parameter values listed in Table 1. Here, the values
of the parameters αC , αT , ζC and ζT are consistent with previous measurement and estimation
studies on the dynamics of tumour cells and CTLs [20, 24, 61, 86]. The values of the parameters
µC and µT and the range of values of the parameters θC and θT are chosen so as to ensure that
the equilibrium sizes and phenotype distributions of the two cell populations in isolation are
biologically relevant. The range of values of the parameter η is consistent with experimental
estimations of the precursor frequency of CTLs [11], while the values of the parameter γ are
consistent with those used in [93, 94]. The value of the parameter λC is taken from [89] and
corresponds to values of βC that are consistent with experimental data reported in [28, 30].

5.2 Main results

Eradication of tumour cells When γ is high enough so that condition (4.20) is satisfied (i.e.
condition (4.10) does not hold), after initial growth, the total number of tumour cells decreases
steadily over time until the tumour cell population is completely eradicated (cf. Figure 1a). This
is due to the fact that, in response to a rapid growth in the size of the tumour cell population,
the high TCR-tumour antigen binding affinity allows the population of CTLs to embark on
rapid expansion in size that continues until CTLs have reached the critical mass required to
push the population of tumour cells towards extinction. The expansion of the CTL population
is followed by the transition to a contraction phase, which is characterised by a decline of the
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Table 1: Parameter values used in numerical simulations and their sources
Biological meaning Value Source

αC Rate of tumour cell proliferation 1.5/day [20]
αT Rate of antigen-independent CTL proliferation 5 ×10−2/day [24]
µC Rate of death of tumour cells due to clonal competition 1.5 ×10−6µl/day ad hoc
µT Rate of death of CTLs due to self-regulation mechanisms 5 ×10−6µl/day ad hoc
ζC Killing rate of tumour cells by CTLs 5 ×10−6µl/day [61]
ζT Rate of replication of CTLs following recognition 3 ×10−5µl/day [86]
η Affinity range of TCRs [0.1, 2] [11]
θC Level of selectivity of clonal competition amongst tumour cells [0.1, 2] ad hoc
θT Level of selectivity of self-regulation mechanisms of CTLs [0.1, 2] ad hoc
γ TCR-tumour antigen binding affinity [0.1, 3.5] [93, 94]
λC Probability of phenotypic variation of tumour cells 0.01 [89]

total number of CTLs to a level corresponding to the maintenance of a form of immunological
memory. In fact, CTLs can persist after tumour eradication and could develop into memory T
cells, thus preventing tumour outgrowth [84, 110].

Hot tumour-like scenarios When γ satisfies condition (4.10) but is still sufficiently high, the
total number of CTLs attains a value large enough to keep the total number of tumour cells
steadily low. After initial growth, the total number of tumour cells decreases over time un-
til it stabilises itself around a relatively small value (cf. Figure 1b). As a result, the average
value of the immune score I defined via (2.3) and (2.4) is one order of magnitude larger than 1
(i.e. for the parameter values considered here I ≈ 12.7). In the framework of our model, this
corresponds to the emergence of hot tumour-like scenarios.

Altered tumour-like scenarios For intermediate values of γ that satisfy condition (4.10), after
initial growth, a certain number of tumour cells and a slightly larger number of CTLs stably
coexist (cf. Figure 1c). In this case, the average value of the immune score I defined via (2.3)
and (2.4) is just slightly larger than 1 (i.e. for the parameter values considered here I ≈ 1.6). In
the framework of our model, this corresponds to the emergence of altered tumour-like scenarios.

Cold tumour-like scenarios For sufficiently small values of γ that satisfy condition (4.10), in
the early stage of cell dynamics the total number of tumour cells overtakes the total number of
CTLs, and keeps expanding until saturation (cf. Figure 1d). Accordingly, the average value of
the immune score I defined via (2.3) and (2.4) is smaller than 1 (i.e. for the parameter values
considered here I ≈ 0.7), which corresponds to the emergence of cold tumour-like scenarios in
the framework of our model.

Robustness of numerical results The plots in Figure 1 demonstrate that there is an excellent
quantitative agreement between the results of numerical simulations of the individual-based
model and numerical solutions of the corresponding continuum model. Moreover, consistently
with the results of linear stability analysis of the continuum model presented in Section 4.2.1,
these numerical results show that the total numbers of tumour cells and CTLs converge either
to the steady-state values given by (4.9) (cf. Figure 1a), or the steady-state values given by (4.11)
(cf. Figure 1b-d), depending on the fact that the choices of the model parameters are such that
condition (4.20) or condition (4.10) holds, respectively. When convergence to the steady state
(ρ∗C2, ρ

∗
T2) given by (4.11) occurs, in the long run, the value of the average immune score I

defined via (2.4) reflects the value of the ratio ρ∗T2/ρ
∗
C2. Therefore, in the framework of our

tumour classification based on the average immune score I (see page 5), if condition (4.10) is
met: cold tumour-like scenarios and hot tumour-like scenarios will emerge when the values
of the model parameters are such that the ratio ρ∗T2/ρ

∗
C2 is smaller than 1 or at least about
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Figure 1: Eradication of tumour cells and emergence of hot tumour-like, altered tumour-
like and cold tumour-like scenarios. Panel a. displays the plots of the time evolution of
the total number of tumour cells (ρC) and CTLs (ρT ) of the individual-based model (solid,
coloured lines) and the continuum model (dashed, black lines) when γ is high enough that
condition (4.20) is satisfied (i.e. condition (4.10) does not hold). Here, αT = 0.5/day and all
the other parameters are as in Table 1 with γ = 3.5, η = 1.8 and θC = θT = 1.8. The grey
dotted lines highlight the steady-state values of ρC and ρT given by (4.9). Panels b.-d. display
similar plots for sufficiently large, intermediate and sufficiently small values of γ that satisfy
condition (4.10) – i.e. γ = 2 (panel b.), γ = 0.3 (panel c.) and γ = 0.12 (panel d.). All the
other parameters are as in Table 1 with η = 1.8 and θC = θT = 1.8. The grey dotted lines
highlight the steady-state values of ρC and ρT given by (4.11). Initial conditions (5.1) and (5.2)
with a = 0 were used to carry out numerical simulations. Analogous results hold when a > 0
in (5.1) and (5.2) (cf. Figure S1 in Appendix C). The results from the individual-based model
correspond to the average over two realisations and the related variance is displayed by the
coloured areas surrounding the curves.

one order of magnitude larger than 1, respectively, whereas altered tumour-like scenarios will
emerge in the remaining cases. This has been confirmed by the results of additional numerical
simulations (results not shown). Hence, independently of the specific values of the model
parameters, provided that assumption (4.10) is satisfied, cell dynamics qualitatively similar to
those of Figure 1, and corresponding to hot, altered or cold tumour scenarios, will be observed
depending on the value of the ratio ρ∗T2/ρ

∗
C2. This testifies to the robustness of the numerical

results presented here.
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Patterns of phenotypic coevolution between tumour cells and CTLs: impact of the parame-
ters θC and θT Figure 2 displays the plots of the phenotype distributions of tumour cells (top
panel) and CTLs (central panel) at the end of numerical simulations (i.e. close to numerical
equilibrium) alongside the plots of the corresponding time evolution of the total cell numbers
(bottom panel). In agreement with the analytical results presented in Section 4.2.2, when con-
dition (4.10) is satisfied and conditions (4.26) and (4.27) are met as well, patterns of phenotypic
coevolution between tumour cells and CTLs may emerge. Moreover, the top and central pan-
els of Figure 2 show that, coherently with the shape of the function B defined via (4.25) (cf.
the plots in Figure 3), smaller values of θC and θT correlate with the formation of more peaks
in the phenotype distributions of the two cell populations. The plots in Figure 2 also demon-
strate that there is a good agreement between numerical simulations of the individual-based
and continuum models.

Sample temporal dynamics of such patterns are summarised by the plots in Figure 4, which
show that clonal expansion leads to a rapid proliferation of CTLs that are targeted to the anti-
gens mostly expressed by tumour cells, whereas self-regulation mechanisms induce formerly
stimulated CTLs to decay. In turn, the antigen-specific cytotoxic action of CTLs causes the
selection of those tumour cells that are able to escape immune recognition. As a result, im-
mune competition induces the formation of multiple peaks in the phenotype distribution of
tumour cells. This concurrently shapes the phenotype distribution of CTLs with a time shift
corresponding to the time required for the CTLs to adapt to the antigenic distribution of tu-
mour cells. The plots in Figure 4 demonstrate that there is again a good agreement between
numerical simulations of the individual-based and continuum models.

Patterns of phenotypic coevolution between tumour cells and CTLs: impact of the param-
eter η The results of numerical simulations summarised by the plots in Figure 5 extend the
analytical results presented in Section 4.2.2 by showing that, when condition (4.10) is satis-
fied and η is sufficiently small, smaller values of η may induce the formation of patterns of
phenotypic coevolution between tumour cells and CTLs whereby less regular multi-peaked
phenotype distributions of the two cell populations emerge (cf. top and central panels of Fig-
ure 5). The temporal dynamics of such patterns are qualitatively similar to those presented in
Figure 4 (results not shown). Moreover, numerical simulations indicate that smaller values of η
correlate with the emergence of oscillations in the total numbers of tumour cells and CTLs, that
is, CTLs undergo a succession of expansion and contraction phases that result in an alternate
decay and growth of tumour cells (cf. bottom panel in Figure 5c). The plots in Figure 5 demon-
strate that there is a good agreement between numerical simulations of the individual-based
and continuum models.

Possible discrepancies between individual-based and continuum models The results that
have been presented so far indicate that there is a good agreement between the results of com-
putational simulations of the individual-based model and the numerical solutions of the cor-
responding continuum model. However, we expect possible differences between the outputs
of the two models to emerge in the presence of lower tumour cell numbers, which may lead
to more pronounced demographic stochasticity, and less regular multi-peaked cell phenotype
distributions, which may cause a reduction in the quality of the approximations employed in
the formal derivation of the deterministic continuum model from the individual-based model.
In order to investigate this, we carried out numerical simulations of the two models for choices
of parameter values such that condition (4.10) holds, evolution towards relatively small tumour
cell numbers occurs, and less regular cell phenotype distributions with multiple peaks emerge
(see caption of Figure 6 for more details). The results obtained are summarised by the plots
in Figure 6, which show that the individual-based model predicts eradication of the tumour
cell population, whereas the continuum model predicts coexistence between tumour cells and
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Figure 2: Patterns of phenotypic coevolution between tumour cells and CTLs: impact of
the parameters θC and θT . Top panels display the plots of the population density function
of tumour cells (nC) and central panels display the plots of the population density function of
CTLs (nT ) of the individual-based model (solid, coloured lines) and continuum model (dashed,
black lines) at the end of numerical simulations (i.e. at t = 30) when conditions (4.10) and (4.27)
are satisfied and progressively smaller values of θC and θT are considered – i.e. θC = θT = 0.5
(panels a.), θC = θT = 0.3 (panels b.) and θC = θT = 0.2 (panels c.). All the other parameters
are as in Table 1 with γ = 1.5 and η = 0.7. Bottom panels display the corresponding plots of the
time evolution of the total number of tumour cells (ρC) and CTLs (ρT ). Initial conditions (5.1)
and (5.2) with a = 1 and A = 5 were used to carry out numerical simulations. Analogous
results were obtained when using different values of the parameter A (results not shown).
The results from the individual-based model correspond to the average over two realisations
of the underlying random walk and the related variance is displayed by the coloured areas
surrounding the curves.

CTLs.

6 Discussion, conclusions and research perspectives

Discussion and conclusions We developed an individual-based model for the coevolution-
ary dynamics between tumour cells and CD8+ cytotoxic T lymphocytes that takes into account
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Figure 3: Plots of B for different values of θC and θT . Plots of the function B(k, x) defined
via (4.25) for any x ∈ argminx∈[−1,1]Ψ(x; θ) with θ = θC = θT , under the parameter values
used in Figure 2 – i.e. θ = θC = θT = 0.5 (left panel), θ = θC = θT = 0.3 (central panel) and
θ = θC = θT = 0.2 (right panel).

c
.

Figure 4: Sample temporal dynamics of patterns of phenotypic coevolution between tumour
cells and CTLs. Top panels display the plots of the population density function of tumour cells
(nC) and bottom panels display the plots of the population density function of CTLs (nT ) of
the individual-based model (solid, coloured lines) and continuum model (dashed, black lines)
at five successive time instants – i.e. t = 0.4 (panels a.), t = 4 (panels b.), t = 10 (panels c.),
t = 16 (panels d.), t = 30 (panels e.) – in the case where condition (4.10) is satisfied. Here,
θC = θT = 0.3, γ = 1.5 and η = 0.7, and all the other parameters are as in Table 1. Initial
conditions (5.1) and (5.2) with a = 1 and A = 5 were used to carry out numerical simulations.
Analogous results were obtained when using different values of the parameter A (results not
shown). The results from the individual-based model correspond to the average over two
realisations and the related variance is displayed by the coloured areas surrounding the curves.

the selectivity of antigen-specific immunity. We formally derived the deterministic continuum
counterpart of such an individual-based model, and we integrated the results of numerical
simulations of the two models with the results of steady-state and linear-stability analyses of
the continuum model equations.

The results presented in this study shed light on the way in which different parameters
shape the coevolutionary dynamics between tumour cells and CD8+ cytotoxic T lymphocytes.
In particular, we demonstrated that, ceteris paribus, higher values of the TCR-tumour antigen
binding affinity (i.e. the parameter γ in the model) promote the eradication of tumour cells by
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c.

Figure 5: Patterns of phenotypic coevolution between tumour cells and CTLs: impact of
the parameter η. Top panels display the plots of the population density function of tumour
cells (nC) and bottom panels display the plots of the population density function of CTLs (nT )
of the individual-based model (solid, coloured lines) and continuum model (dashed, black
lines) at the end of numerical simulations (i.e. at t = 30) when condition (4.10) is satisfied and
progressively smaller values of η are considered – i.e. η = 1 (panels a.), η = 0.6 (panels b.) and
η = 0.2 (panels c.). All the other parameters are as in Table 1 with γ = 1 and θC = θT = 0.7.
Bottom panels display the corresponding plots of the time evolution of the total number of
tumour cells (ρC) and CTLs (ρT ). Initial conditions (5.1) and (5.2) with a = 1 and A = 5
were used to carry out numerical simulations. Analogous results were obtained when using
different values of the parameter A (results not shown). The results from the individual-based
model correspond to the average over five realisations of the underlying random walk and the
related variance is displayed by the coloured areas surrounding the curves.

CTLs, while lower values facilitate the coexistence between tumour cells and CTLs. Specifically,
progressively reducing the TCR-tumour antigen binding affinity brings about the emergence
of: hot tumour-like scenarios, which are characterised by a large number of in situ CTLs and a
low number of tumour cells, and thus represent a more fertile ground for anticancer therapeu-
tic intervention; altered tumour-like scenarios, which reflect the intrinsic ability of the immune
system to effectively mount a CTL-mediated immune response and the ability of tumour cells
to partially escape such a response; cold tumour-like scenarios, which are characterised by an
insufficient number of in situ CTLs and are invariably associated with poor prognosis [37].
This classification of tumours is also supported by experimental works showing that in situ
immune reaction might be the strongest parameter influencing clinical outcome, regardless of
the local tumour extension and its spread to lymph nodes [82, 38, 39]. Moreover, our findings
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a.

b.

c.

Figure 6: Possible discrepancies between individual-based and continuum models. Panel a.
displays the plot of the time evolution of the total number of tumour cells (ρC) and CTLs (ρT )
of the individual-based model (solid, coloured lines) and the continuum model (dashed, black
lines) when condition (4.10) holds, evolution towards relatively small tumour cell numbers oc-
curs, and the parameter η is sufficiently small so that less regular multi-peaked cell phenotype
distributions emerge – i.e. αT = 0.5/day, µT = 2 × 10−6µl/day, γ = 1.1, η = 0.1, and all
the other parameters as in Table 1 with θC = θT = 1.8. The plots in panels b. and c. dis-
play the corresponding population density functions of tumour cells (nC) and CTLs (nT ) of
the individual-based model (solid, coloured lines) and of the continuum model (dashed, black
lines) at the end of simulations (i.e. at t = tf = 100). Initial conditions (5.1) and (5.2) with
a = 1 and A = 5 were used to carry out numerical simulations. Analogous results were ob-
tained when using different values of the parameter A (results not shown). The results from
the individual-based model correspond to the average over five realisations and the related
variance is displayed by the coloured areas surrounding the curves.

support the idea that TCR-tumour antigen binding affinity may be a good intervention tar-
get for immunotherapy that aims to turn cold or altered tumours into hot ones by enhancing
CTL response. In this regard, our findings are in agreement with the conclusions of previ-
ous experimental articles indicating that a strong binding affinity of T cells to tumour anti-
gens may play a key role in the overall immune response to the disease [45].In particular, in
altered tumours, increasing antigenicity, via the removal of co-inhibitory signals and/or the
supply of co-stimulatory signals [39, 104], may enhance in situ CTLs activity, and has proven
to be effective in the treatment of advanced-stage melanoma [107], renal cell carcinoma [80]
and non-small cell lung cancer [51]. In cold tumours, a proposed approach to overcome the
lack of a pre-existing immune response consists in combining a priming therapy that boosts
CTL responses with the removal of co-inhibitory signals through approaches such as immune
checkpoint [37]. The therapeutic success achieved by combining immune checkpoint therapy
with chemotherapy in metastatic NSCLC has demonstrated the potential strength of this dual
approach [40].

Moreover, the results presented here indicate that the affinity range of TCRs (i.e. the param-
eter η in the model), the selectivity of clonal competition amongst tumour cells (i.e. the inverse
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of the parameter θC in the model) and the selectivity of self-regulation mechanisms acting on
CD8+ cytotoxic T lymphocytes (i.e. the inverse of the parameter θT in the model) play a piv-
otal role in the formation of patterns of phenotypic coevolution, which create the substrate for
the emergence of less regular cell phenotype distributions with multiple peaks. Such patterns
are underpinned by some form of immunoediting whereby the population of CTLs evolves
and continuously adapts its receptor repertoire in order to recognise and effectively eliminate
tumour cells and, in turn, the antigen-specific selective pressure exerted by CTLs leads to the
selection of those tumour clones that are able to evade immune recognition [31]. The adapt-
ability of tumour cells and CTLs and the selective pressure they mutually exert on each other
during cancer development are emerging as crucial factors in determining cancer evolution-
ary trajectories. This has been shown in the context of chronic lymphocytic leukemia [85] and
other cancer types, as reviewed in [44]. Our results offer also a theoretical basis for the de-
velopment of anti-cancer therapy aiming at engineering TCRs so as to shape their affinity for
cancer targets [12, 22, 64, 111] and adaptive therapy aiming at altering intratumour clonal com-
petition [42, 103], in order to control the coevolutionary dynamics between tumour cells and
CD8+ cytotoxic T lymphocytes. In this respect, one of the best known treatment based on en-
gineering specific TCRs is based on CAR-T cells [102], which confer CTLs the ability to target
specific antigens. It has been demonstrated that this therapeutic strategy has several potential
advantages over conventional therapies, including specificity, rapidity, high success rate and
long-lasting effects [55, 46].

The good agreement between the results of numerical simulations of the individual-based
and continuum models, along with the quantitative information given by (4.9) and (4.11) and
the precise conditions given by (4.20) and (4.27), testifies to the robustness of the biological
insight gained in this work. We also showed that possible differences between cell dynam-
ics produced by the individual-based and continuum models can emerge under parameter
settings that correspond to less regular cell phenotype distributions and more pronounced de-
mographic stochasticity. In fact, these cause a reduction in the quality of the approximations
employed in the formal derivation of the deterministic continuum model from the individual-
based model (cf. Appendix A). This demonstrates the importance of integrating individual-
based and continuum approaches when considering mathematical models for tumour-immune
competition.

Research perspectives From a mathematical point of view, we plan to carry out a systematic
investigation of the conditions on the affinity range of TCRs that may lead to the emergence
of oscillations in cell numbers observed in the numerical simulations presented in this work.
Moreover, from a modelling point of view, our individual-based modelling framework for the
coevolutionary dynamics between tumour cells and CD8+ cytotoxic T lymphocytes, along with
the formal derivation of the corresponding continuum model, can be developed further in sev-
eral ways. For instance, a myriad of immunosuppressive strategies, the so-called immune
checkpoints, help tumour cells acquiring features that enable them to evade immune detec-
tion, which may ultimately induce the exhaustion of CTLs in the tumour micro-environment,
which impairs the immune response. The modelling approach presented here does not capture
this aspect. However, exhaustion mechanisms could be incorporated into the individual-based
model by, for example, allowing CTLs to enter a suppressed state (i.e. CTLs would become
exhausted and thus would no longer able to eliminate tumour cells). In the continuum model,
this would result in the presence of an additional loss term in the IDE (3.3)2 along with a third
equation for the dynamics of exhausted CTLs. Another track to follow to further enrich our
model would be to include a spatial structure, for instance by embedding the tumour cells in
the geometry of a solid tumour, and to take explicitly into account the effect of both spatial and
antigen-specific interactions between tumour cells and CTLs, as similarly done in [57, 71, 72].
Including a spatial structure would make it possible, inter alia, to introduce a more precise def-
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inition of the immune score that incorporates the level of CTL infiltration. Furthermore, at
this stage, the mathematical representation of the phenotypic state of tumour cells and CTLs
employed in our modelling framework is rather abstract. This might make it difficult to carry
out precise quantitative comparisons between the results of numerical simulations and experi-
mental data. This limitation could be overcome by employing a mathematical representation of
tumour antigens and TCRs similar to the one that we proposed in [62], whereby a discrete set of
tumour antigens that can be recognised by a unique repertoire of TCRs is considered. Finally, it
would be interesting to incorporate explicitly into the model the effects of immunotherapeutic
agents or other therapeutic agents. These are all lines of research that we will be pursuing in
the future.
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Appendices

A Formal derivation of the continuum model

Using a method analogous to that employed in [6, 18, 89], we show that the PDE-IDE sys-
tem (3.3) can be formally derived as the appropriate continuum limit of the individual-based
model presented in this article.

Substituting definitions (2.9) of PbC and PqC into the difference equation (3.1)1 for nhCi
and

definitions (2.10) of PbT and PqT into the difference equation (3.1)2 for nhTj yields
nh+1
Ci

=
[
1 + τ αC − τ

(
µC K

h
Ci

+ ζC γ J
h
Ci

)] [λC
2

(
nhCi+1

+ nhCi−1

)
+ (1− λC)nhCi

]
,

nh+1
Tj

=
[
1 + τ

(
αT + ζT γ J

h
Tj

)
− τ µT Kh

Tj

]
nhTi ,

(A.1)

where nhCi
≡ nC(ui, th) with (ui, th) ∈ I × (0, tf ] and nhTj ≡ nT (vj , th) with (vj , th) ∈ I × (0, tf ].

Using the fact that the following relations hold for τ and χ sufficiently small

th ≈ t, th+1 ≈ t+ τ, ui ≈ u, ui±1 ≈ u± χ, vj ≈ v,

nhCi
≈ nC(u, t), nh+1

Ci
≈ nC(u, t+ τ), nhCi±1

≈ nC(u± χ, t), ρhC ≈ ρC(t) :=

∫
I
nC(u, t) du,

JhCi
≈ JC(u, t) :=

∫
I
g(u, v; η)nT (v, t) dv, Kh

Ci
≈ KC(u, t) :=

∫
I
g(u,w; θC)nC(w, t) dw,

nhTj ≈ nT (v, t), nh+1
Tj
≈ nT (v, t+ τ), ρhT ≈ ρT (t) :=

∫
I
nT (v, t) dv,

JhTj ≈ JT (v, t) :=

∫
I
g(v, u; η)nC(u, t) du, Kh

Tj ≈ KT (v, t) :=

∫
I
g(v, w; θT )nT (w, t) dw,

where the function g is defined via (2.6), the system of equations (A.1) can be formally rewritten
in the approximate form

nC(u, t+ τ) =
[
1 + τ RC(KC(u, t), JC(u, t))

]
×

×
[
λC
2

(nC(u+ χ, t) + nC(u− χ, t)) + (1− λC)nC(u, t)

]
,

nT (v, t+ τ) =
[
1 + τ RT (KT (v, t), JT (v, t))

]
nT (v, t),

(A.2)
where u ∈ I, v ∈ I and t ∈ (0, tf ]. Here,

RC(KC , JC) := αC −
(
µC KC + ζC γ JC

)
, RT (KT , JT ) :=

(
αT + ζT γ JT

)
− µT KT . (A.3)

If the function nC(u, t) is twice continuously differentiable with respect to the variable u, for χ
sufficiently small we can use the Taylor expansions

nC(u± χ, t) = nC(u, t)± χ∂unC(u, t) +
χ2

2
∂2uunC(u, t) + h.o.t. . (A.4)
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Substituting the Taylor expansions (A.4) into equation (A.2)1 for nC(u, t+τ), after a little algebra
we find

nC(u, t+ τ)− nC(u, t)

τ
− λCχ

2

2τ
∂2uunC(u, t) = RC(KC(u, t), JC(u, t))nC(u, t)+

+
λCχ

2

2
RC(KC(u, t), JC(u, t)) ∂2uunC(u, t) + h.o.t. ,

nT (v, t+ τ)− nT (v, t)

τ
= RT (KT (v, t), JT (v, t))nT (v, t).

If, in addition, the functions nC(u, t) and nT (v, t) are continuously differentiable with respect
to the variable t, letting τ → 0 and χ → 0 in such a way that condition (3.2) is met, from the
latter system of equations we formally obtain

∂tnC(u, t)− βC∂2uunC(u, t) = RC(KC , JC)nC(u, t), (u, t) ∈ I × (0, tf ],

∂tnT (v, t) = RT (KT , JT )nT (v, t), (v, t) ∈ I × (0, tf ].

Substituting definitions (A.3) of RC(KC , JC) and RT (KT , JT ) into the above system of equa-
tions gives the PDE-IDE system (3.3). Finally, the no-flux boundary conditions (3.4) follow
from the fact that the attempted phenotypic variation of a tumour cell is aborted if it requires
moving into a phenotypic state that does not belong to the interval I.

B Details of numerical simulations of the continuum model

To construct numerical solutions of the PDE-IDE system (3.3) subject both to the no-flux bound-
ary conditions (3.4) and to the initial condition (5.2), we use a uniform discretisation of step
∆x = 0.0013 of the interval I = [−L,L] as the computational domain of the independent
variables u and v, and a uniform discretisation of step ∆t = 0.05 of the time interval (0, tf ].

We construct numerical solutions of the non-local PDE (3.3)1 for nC using a time-splitting
approach, which is based on the idea of decomposing the original problem into simpler sub-
problems that are then sequentially solved at each time-step using an explicit Euler method
with step ∆t. This leads to the following time-dicretisation of the PDE-IDE system (3.3) subject
to the Neumann boundary conditions (3.4):

n
k+ 1

2
C (u) = nkC(u) + ∆tRC(Kk

C(u), JkC(u))nkC(u), u ∈ [−L,L],

nk+1
C (u) = n

k+ 1
2

C (u) + ∆t βC ∂
2
uun

k+ 1
2

C (u), u ∈ (−L,L),

∂un
k+1
C (u) = 0, u ∈ {−L,L}

nk+1
T (v) = nkT (v) + ∆tRT (Kk

T (v), JkT (v))nkT (v), v ∈ [−L,L],

(B.1)

where

RC(Kk
C , J

k
C) := αC − µCKk

C − ζCγJkC , RT (Kk
T , J

k
T ) := αT − µTKk

T − ζTγJkT .

The system of equations (B.1) is numerically solved using a three-point finite difference ex-
plicit scheme for the diffusion term [63] and an implicit-explicit finite difference scheme for the
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remaining terms [66, 69], which leads to the following system of equations

n
k+ 1

2
Ci = nkCi

1 + ∆tRC(Kk
Ci, J

k
Ci)+

1 + ∆tRC(Kk
Ci, J

k
Ci)−

, ui ∈ [−L,L],

nk+1
Ci = n

k+ 1
2

Ci + βC∆t
n
k+ 1

2
Ci+1 − 2n

k+ 1
2

Ci + n
k+ 1

2
Ci−1

∆x2
, ui ∈ (−L,L),

nk+1
Ci = nk+1

Ci−1, ui ∈ {−L,L},

nk+1
Tj = nkTj

1 + ∆tRT (Kk
Tj , J

k
Tj)+

1 + ∆tRT (Kk
Tj , J

k
Tj)−

, vj ∈ [−L,L].

Here, RC(·, ·)+ and RT (·, ·)+ are the positive parts of RC(·, ·) and RT (·, ·), while RC(·, ·)− and
RT (·, ·)− are the negative parts of RC(·, ·) and RT (·, ·). Moreover,

Kk
Ci

=
∑
q

g(ui, uq; θC)nkCq ∆x, Kh
Tj =

∑
q

g(vj , vq; θT )nkTq ∆x

and
JhCi

=
∑
j

g(ui, vj ; η)nkTj ∆x, JhTj =
∑
i

g(vj , ui; η)nkCi ∆x.

Given the values of the parameter τ , χ and λC of the individual-based model, the value of the
parameter βC is defined so that condition (3.2) is met. The other parameter values are chosen to
be coherent with those used to carry out numerical simulations of the individual-based model,
which are specified in the main body of the paper.
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C Supplementary figures

Figure S1: Eradication of tumour cells and emergence of hot tumour-like, altered tumour-
like and cold tumour-like scenarios: the case where a > 0. Panel a. displays the plots of the
time evolution of the total number of tumour cells (ρC) and CTLs (ρT ) of the individual-based
model (solid, coloured lines) and the continuum model (dashed, black lines) when γ is high
enough that condition (4.20) is satisfied (i.e. condition (4.10) does not hold). Here, αT = 0.5
and all the other parameters are as in Table 1 with γ = 3.5, η = 1.8 and θC = θT = 1.8. Panels
b.-d. display similar plots for sufficiently large, intermediate and sufficiently small values of γ
that satisfy condition (4.10) – i.e. γ = 2 (panel b.), γ = 0.3 (panel c.) and γ = 0.12 (panel d.). All
the other parameters are as in Table 1 with η = 1.8 and θC = θT = 1.8. Initial conditions (5.1)
and (5.2) with a = 1 and A = 5 were used to carry out numerical simulations. Analogous
results were obtained when using different values of the parameter A (results not shown). The
results from the individual-based model correspond to the average over two realisations and
the related variance is displayed by the coloured areas surrounding the curves.

References

[1] G. Aguadé-Gorgorió and R. Solé. Tumour neoantigen heterogeneity thresholds provide
a time window for combination immunotherapy. Journal of the Royal Society Interface, 17
(171):20200736, 2020.

[2] M. Al-Tameemi, M. Chaplain, and A. d’Onofrio. Evasion of tumours from the control of
the immune system: consequences of brief encounters. Biology Direct, 7(1):31, 2012.

[3] N. Almuallem, D. Trucu, and R. Eftimie. Oncolytic viral therapies and the delicate bal-
ance between virus-macrophage-tumour interactions: A mathematical approach. Mathe-
matical Biosciences and Engineering, 18(1):764–799, 2021.

26



[4] P. M. Altrock, L. L. Liu, and F. Michor. The mathematics of cancer: integrating quantita-
tive models. Nature Reviews Cancer, 15(12):730–745, 2015.

[5] H. Angell and J. Galon. From the immune contexture to the Immunoscore: the role of
prognostic and predictive immune markers in cancer. Current Opinion in Immunology, 25
(2):261–267, 2013.

[6] A. Ardaševa, A. R. Anderson, R. A. Gatenby, H. M. Byrne, P. K. Maini, and T. Lorenzi.
Comparative study between discrete and continuum models for the evolution of compet-
ing phenotype-structured cell populations in dynamical environments. Physical Review
E, 102(4):042404, 2020.

[7] K. Atsou, F. Anjuère, V. M. Braud, and T. Goudon. A size and space structured model
describing interactions of tumor cells with immune cells reveals cancer persistent equi-
librium states in tumorigenesis. Journal of Theoretical Biology, 490:110163, 2020.

[8] V. P. Balachandran, M. Łuksza, J. N. Zhao, V. Makarov, J. A. Moral, R. Remark, B. Herbst,
G. Askan, U. Bhanot, Y. Senbabaoglu, et al. Identification of unique neoantigen qualities
in long-term survivors of pancreatic cancer. Nature, 551(7681):512–516, 2017.

[9] N. Bellomo and L. Preziosi. Modelling and mathematical problems related to tumor evo-
lution and its interaction with the immune system. Mathematical and Computer Modelling,
32(3-4):413–452, 2000.

[10] E. Biselli, E. Agliari, A. Barra, F. R. Bertani, A. Gerardino, A. De Ninno, A. Mencattini,
D. Di Giuseppe, F. Mattei, G. Schiavoni, et al. Organs on chip approach: a tool to evaluate
cancer-immune cells interactions. Scientific Reports, 7(1):1–12, 2017.

[11] J. N. Blattman, R. Antia, D. J. Sourdive, X. Wang, S. M. Kaech, K. Murali-Krishna, J. D.
Altman, and R. Ahmed. Estimating the precursor frequency of naive antigen-specific
CD8 T cells. The Journal of Experimental Medicine, 195(5):657–664, 2002.

[12] E. C. Border, J. P. Sanderson, T. Weissensteiner, A. B. Gerry, and N. J. Pumphrey. Affinity-
enhanced T-cell receptors for adoptive T-cell therapy targeting MAGE-A10: strategy for
selection of an optimal candidate. Oncoimmunology, 8(2):e1532759, 2019.

[13] F. Bubba, T. Lorenzi, and F. R. Macfarlane. From a discrete model of chemotaxis with
volume-filling to a generalized Patlak–Keller–Segel model. Proceedings of the Royal Society
A, 476(2237):20190871, 2020.

[14] M. Campoli and S. Ferrone. HLA antigen changes in malignant cells: epigenetic mecha-
nisms and biologic significance. Oncogene, 27(45):5869–5885, 2008.

[15] C. Cattani, A. Ciancio, and A. d’Onofrio. Metamodeling the learning–hiding competi-
tion between tumours and the immune system: a kinematic approach. Mathematical and
Computer Modelling, 52(1):62–69, 2010.

[16] M. A. Chaplain, T. Lorenzi, and F. R. Macfarlane. Bridging the gap between individual-
based and continuum models of growing cell populations. Journal of Mathematical Biology,
80(1-2):343–371, 2020.

[17] R. H. Chisholm, T. Lorenzi, and J. Clairambault. Cell population heterogeneity and evo-
lution towards drug resistance in cancer: biological and mathematical assessment, theo-
retical treatment optimisation. Biochimica et Biophysica Acta (BBA)-General Subjects, 1860
(11):2627–2645, 2016.

27



[18] R. H. Chisholm, T. Lorenzi, L. Desvillettes, and B. D. Hughes. Evolutionary dynamics
of phenotype-structured populations: from individual-level mechanisms to population-
level consequences. Zeitschrift für angewandte Mathematik und Physik, 67(4):100, 2016.

[19] R. H. Chisholm, T. Lorenzi, and A. Lorz. Effects of an advection term in nonlocal Lotka–
Volterra equations. Communications in Mathematical Sciences, 14(4):1181–1188, 2016.

[20] C. Christophe, S. Müller, M. Rodrigues, A.-E. Petit, P. Cattiaux, L. Dupré, S. Gadat, and
S. Valitutti. A biased competition theory of cytotoxic T lymphocyte interaction with tu-
mor nodules. PLoS ONE, 10(3):e0120053, 2015.

[21] P. G. Coulie, B. J. Van den Eynde, P. Van Der Bruggen, and T. Boon. Tumour antigens
recognized by T lymphocytes: at the core of cancer immunotherapy. Nature Reviews
Cancer, 14(2):135–146, 2014.

[22] R. M. Crean, B. J. MacLachlan, F. Madura, T. Whalley, P. J. Rizkallah, C. J. Holland, C. Mc-
Murran, S. Harper, A. Godkin, A. K. Sewell, et al. Molecular Rules Underpinning En-
hanced Affinity Binding of Human T Cell Receptors Engineered for Immunotherapy.
Molecular Therapy-Oncolytics, 18:443–456, 2020.

[23] L. G. de Pillis, A. E. Radunskaya, and C. L. Wiseman. A validated mathematical model
of cell-mediated immune response to tumor growth. Cancer Research, 65(17):7950–7958,
2005.

[24] L. G. de Pillis, K. Renee Fister, W. Gu, C. Collins, M. Daub, D. Gross, J. Moore, and
B. Preskill. Mathematical model creation for cancer chemo-immunotherapy. Computa-
tional and Mathematical Methods in Medicine, 10(3):165–184, 2009.

[25] M. Delitala and T. Lorenzi. Evolutionary branching patterns in predator-prey structured
populations. Discrete & Continuous Dynamical Systems-B, 18(9):2267, 2013.

[26] M. Delitala and T. Lorenzi. Recognition and learning in a mathematical model for im-
mune response against cancer. Discrete & Continuous Dynamical Systems-B, 18(4), 2013.

[27] M. Delitala, U. Dianzani, T. Lorenzi, and M. Melensi. A mathematical model for immune
and autoimmune response mediated by T-cells. Computers & Mathematics with Applica-
tions, 66(6):1010–1023, 2013.

[28] W. Doerfler and P. Böhm. DNA methylation: development, genetic disease and cancer, volume
310. Springer Science & Business Media, 2006.

[29] A. d’Onofrio. Metamodeling tumor–immune system interaction, tumor evasion and im-
munotherapy. Mathematical and Computer Modelling, 47(5-6):614–637, 2008.

[30] P. Duesberg, R. Stindl, and R. Hehlmann. Explaining the high mutation rates of cancer
cells to drug and multidrug resistance by chromosome reassortments that are catalyzed
by aneuploidy. Proceedings of the National Academy of Sciences, 97(26):14295–14300, 2000.

[31] G. P. Dunn, A. T. Bruce, H. Ikeda, L. J. Old, and R. D. Schreiber. Cancer immunoediting:
from immunosurveillance to tumor escape. Nature Immunology, 3(11):991–998, 2002.

[32] R. Eftimie, J. L. Bramson, and D. J. Earn. Interactions between the immune system and
cancer: a brief review of non-spatial mathematical models. Bulletin of Mathematical Biol-
ogy, 73(1):2–32, 2011.

[33] A. Eladdadi, P. Kim, and D. Mallet. Mathematical models of tumor-immune system dynamics,
volume 107. Springer, 2014.

28



[34] G. P. Figueredo, P.-O. Siebers, and U. Aickelin. Investigating mathematical models of
immuno-interactions with early-stage cancer under an agent-based modelling perspec-
tive. In BMC Bioinformatics, volume 14, pages 1–20. BioMed Central, 2013.

[35] F. Frascoli, P. S. Kim, B. D. Hughes, and K. A. Landman. A dynamical model of tumour
immunotherapy. Mathematical Biosciences, 253:50–62, 2014.

[36] T. F. Gajewski, L. Corrales, J. Williams, B. Horton, A. Sivan, and S. Spranger. Cancer
immunotherapy targets based on understanding the T cell-inflamed versus non-T cell-
inflamed tumor microenvironment. In Tumor Immune Microenvironment in Cancer Progres-
sion and Cancer Therapy, pages 19–31. Springer, 2017.

[37] J. Galon and D. Bruni. Approaches to treat immune hot, altered and cold tumours with
combination immunotherapies. Nature Reviews Drug Discovery, 18(3):197–218, 2019.

[38] J. Galon, A. Costes, F. Sanchez-Cabo, A. Kirilovsky, B. Mlecnik, C. Lagorce-Pagès,
M. Tosolini, M. Camus, A. Berger, P. Wind, et al. Type, density, and location of im-
mune cells within human colorectal tumors predict clinical outcome. Science, 313(5795):
1960–1964, 2006.

[39] J. Galon, B. Fox, C. Bifulco, G. Masucci, T. Rau, G. Botti, F. Marincola, G. Ciliberto,
F. Pages, P. Ascierto, et al. Immunoscore and Immunoprofiling in cancer: an update
from the melanoma and immunotherapy bridge 2015. Journal of Translational Medicine, 14
(273), 2016.

[40] L. Gandhi, D. Rodríguez-Abreu, S. Gadgeel, E. Esteban, E. Felip, F. De Angelis,
M. Domine, P. Clingan, M. J. Hochmair, S. F. Powell, et al. Pembrolizumab plus
chemotherapy in metastatic non–small-cell lung cancer. New England journal of medicine,
378(22):2078–2092, 2018.

[41] K. R. Garrod, H. D. Moreau, Z. Garcia, F. Lemaître, I. Bouvier, M. L. Albert, and P. Bousso.
Dissecting T cell contraction in vivo using a genetically encoded reporter of apoptosis.
Cell Reports, 2(5):1438–1447, 2012.

[42] R. A. Gatenby, A. S. Silva, R. J. Gillies, and B. R. Frieden. Adaptive therapy. Cancer
Research, 69(11):4894–4903, 2009.

[43] S. Génieys, V. Volpert, and P. Auger. Adaptive dynamics: modelling Darwin’s divergence
principle. Comptes Rendus Biologies, 329(11):876–879, 2006.

[44] J. T. George and H. Levine. Implications of tumor–immune coevolution on cancer evasion
and optimized immunotherapy. Trends in Cancer, 7(4):373–383, 2021.

[45] U. Gerdemann, U. Katari, A. S. Christin, C. R. Cruz, T. Tripic, A. Rousseau, S. M.
Gottschalk, B. Savoldo, J. F. Vera, H. E. Heslop, et al. Cytotoxic t lymphocytes simul-
taneously targeting multiple tumor-associated antigens to treat ebv negative lymphoma.
Molecular therapy, 19(12):2258–2268, 2011.

[46] D. Gomes-Silva and C. A. Ramos. Cancer immunotherapy using car-t cells: from the
research bench to the assembly line. Biotechnology journal, 13(2):1700097, 2018.

[47] J. I. Griffiths, P. Wallet, L. T. Pflieger, D. Stenehjem, X. Liu, P. A. Cosgrove, N. A. Leggett,
J. A. McQuerry, G. Shrestha, M. Rossetti, et al. Circulating immune cell phenotype
dynamics reflect the strength of tumor–immune cell interactions in patients during im-
munotherapy. Proceedings of the National Academy of Sciences, 117(27):16072–16082, 2020.

29



[48] A. Handel, N. L. La Gruta, and P. G. Thomas. Simulation modelling for immunologists.
Nature Reviews Immunology, 20(3):186–195, 2020.

[49] M. Hellerstein, M. Hanley, D. Cesar, S. Siler, C. Papageorgopoulos, E. Wieder, D. Schmidt,
R. Hoh, R. Neese, D. Macallan, et al. Directly measured kinetics of circulating T lympho-
cytes in normal and HIV-1-infected humans. Nature Medicine, 5(1):83–89, 1999.

[50] M. D. Hellmann, C. F. Friedman, and J. D. Wolchok. Combinatorial cancer immunother-
apies. Advances in Immunology, 130:251–277, 2016.

[51] M. D. Hellmann, T.-E. Ciuleanu, A. Pluzanski, J. S. Lee, G. A. Otterson, C. Audigier-
Valette, E. Minenza, H. Linardou, S. Burgers, P. Salman, et al. Nivolumab plus ipili-
mumab in lung cancer with a high tumor mutational burden. New England Journal of
Medicine, 378(22):2093–2104, 2018.

[52] A. C. Huang, M. A. Postow, R. J. Orlowski, R. Mick, B. Bengsch, S. Manne, W. Xu, S. Har-
mon, J. R. Giles, B. Wenz, et al. T-cell invigoration to tumour burden ratio associated with
anti-PD-1 response. Nature, 545(7652):60, 2017.

[53] S. Huang. Genetic and non-genetic instability in tumor progression: link between the
fitness landscape and the epigenetic landscape of cancer cells. Cancer and Metastasis Re-
views, 32(3-4):423–448, 2013.

[54] B. D. Hughes. Random walks and random environments: random walks, volume 1. Oxford
University Press, 1995.

[55] C. H. June, R. S. O’Connor, O. U. Kawalekar, S. Ghassemi, and M. C. Milone. Car t cell
immunotherapy for human cancer. Science, 359(6382):1361–1365, 2018.

[56] P. L. Kastritis and A. M. Bonvin. On the binding affinity of macromolecular interactions:
daring to ask why proteins interact. Journal of The Royal Society Interface, 10(79):20120835,
2013.

[57] J. N. Kather, J. Poleszczuk, M. Suarez-Carmona, J. Krisam, P. Charoentong, N. A. Valous,
C.-A. Weis, L. Tavernar, F. Leiss, E. Herpel, et al. In silico modeling of immunotherapy and
stroma-targeting therapies in human colorectal cancer. Cancer Research, 77(22):6442–6452,
2017.

[58] M. Kolev. Mathematical modeling of the competition between acquired immunity and
cancer. International Journal of Applied Mathematics and Computer Science, 13:289–296, 2003.

[59] A. Konstorum, A. T. Vella, A. J. Adler, and R. C. Laubenbacher. Addressing current
challenges in cancer immunotherapy with mathematical and computational modelling.
Journal of The Royal Society Interface, 14(131):20170150, 2017.

[60] V. A. Kuznetsov and G. D. Knott. Modeling Tumor Regrowth and Immunotherapy. Math-
ematical and Computer Modelling, 33(12):1275–1287, 2001.

[61] V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor, and A. S. Perelson. Nonlinear dynamics of
immunogenic tumors: parameter estimation and global bifurcation analysis. Bulletin of
Mathematical Biology, 56(2):295–321, 1994.

[62] E. Leschiera, T. Lorenzi, S. Shen, L. Almeida, and C. Audebert. A mathematical model
to study the impact of intra-tumour heterogeneity on anti-tumour cd8+ t cell immune
response. Journal of Theoretical Biology, page 111028, 2022.

30



[63] R. J. LeVeque. Finite difference methods for ordinary and partial differential equations: steady-
state and time-dependent problems. SIAM, 2007.

[64] D. Li, X. Li, W.-L. Zhou, Y. Huang, X. Liang, L. Jiang, X. Yang, J. Sun, Z. Li, W.-D. Han,
et al. Genetically engineered T cells for cancer immunotherapy. Signal Transduction and
Targeted Therapy, 4(1):1–17, 2019.

[65] A. H. Lin Erickson, A. Wise, S. Fleming, M. Baird, Z. Lateef, A. Molinaro, M. Teboh-
Ewungkem, and L. G. de Pillis. A preliminary mathematical model of skin dendritic cell
trafficking and induction of T cell immunity. Discrete & Continuous Dynamical Systems -
B, 12:323–336, 2009.

[66] T. Lorenzi, R. H. Chisholm, L. Desvillettes, and B. D. Hughes. Dissecting the dynamics
of epigenetic changes in phenotype-structured populations exposed to fluctuating envi-
ronments. Journal of Theoretical Biology, 386:166–176, 2015.

[67] T. Lorenzi, R. H. Chisholm, M. Melensi, A. Lorz, and M. Delitala. Mathematical model
reveals how regulating the three phases of T-cell response could counteract immune eva-
sion. Immunology, 146(2):271–280, 2015.

[68] T. Lorenzi, F. R. Macfarlane, and C. Villa. Discrete and continuum models for the evo-
lutionary and spatial dynamics of cancer: a very short introduction through two case
studies. In International Symposium on Mathematical and Computational Biology, pages 359–
380. Springer, 2019.

[69] A. Lorz, T. Lorenzi, M. E. Hochberg, J. Clairambault, and B. Perthame. Populational
adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies.
ESAIM: Mathematical Modelling and Numerical Analysis, 47(2):377–399, 2013.

[70] M. Łuksza, N. Riaz, V. Makarov, V. P. Balachandran, M. D. Hellmann, A. Solovyov, N. A.
Rizvi, T. Merghoub, A. J. Levine, T. A. Chan, et al. A neoantigen fitness model predicts tu-
mour response to checkpoint blockade immunotherapy. Nature, 551(7681):517–520, 2017.

[71] F. R. Macfarlane, T. Lorenzi, and M. A. Chaplain. Modelling the immune response to can-
cer: an individual-based approach accounting for the difference in movement between
inactive and activated T cells. Bulletin of Mathematical Biology, 80(6):1539–1562, 2018.

[72] F. R. Macfarlane, M. A. Chaplain, and T. Lorenzi. A stochastic individual-based model to
explore the role of spatial interactions and antigen recognition in the immune response
against solid tumours. Journal of Theoretical Biology, 480:43–55, 2019.

[73] S. Z. Makaryan, C. G. Cess, and S. D. Finley. Modeling immune cell behavior across
scales in cancer. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 12(4):e1484,
2020.

[74] D. Mason. A very high level of crossreactivity is an essential feature of the T-cell receptor.
Immunology Today, 9:395–404, 1998.

[75] A. Mayer, Y. Zhang, A. S. Perelson, and N. S. Wingreen. Regulation of T cell expansion
by antigen presentation dynamics. Proceedings of the National Academy of Sciences, 116(13):
5914–5919, 2019.

[76] J. L. Messerschmidt, G. C. Prendergast, and G. L. Messerschmidt. How cancers escape
immune destruction and mechanisms of action for the new significantly active immune
therapies: Helping nonimmunologists decipher recent advances. The Oncologist, 21(2):
233–243, 2016.

31



[77] B. Min. Spontaneous T cell proliferation: a physiologic process to create and maintain
homeostatic balance and diversity of the immune system. Frontiers in Immunology, 9:547,
2018.

[78] B. Mlecnik, M. Tosolini, A. Kirilovsky, A. Berger, G. Bindea, T. Meatchi, P. Bruneval,
Z. Trajanoski, W.-H. Fridman, F. Pages, et al. Histopathologic-based prognostic factors
of colorectal cancers are associated with the state of the local immune reaction. Journal of
Clinical Oncology, 29(6):610–618, 2011.

[79] B. Mlecnik, G. Bindea, H. K. Angell, M. S. Sasso, A. C. Obenauf, T. Fredriksen, L. La-
fontaine, A. M. Bilocq, A. Kirilovsky, M. Tosolini, et al. Functional network pipeline re-
veals genetic determinants associated with in situ lymphocyte proliferation and survival
of cancer patients. Science Translational Medicine, 6(228):228ra37–228ra37, 2014.

[80] R. J. Motzer, N. M. Tannir, D. F. McDermott, O. A. Frontera, B. Melichar, T. K. Choueiri,
E. R. Plimack, P. Barthélémy, C. Porta, S. George, et al. Nivolumab plus ipilimumab
versus sunitinib in advanced renal-cell carcinoma. New England Journal of Medicine, 2018.

[81] H. Oey and E. Whitelaw. On the meaning of the word ‘epimutation’. Trends in Genetics,
30(12):519–520, 2014.

[82] F. Pagès, J. Galon, and W. H. Fridman. The essential role of the in situ immune reaction
in human colorectal cancer. Journal of leukocyte biology, 84(4):981–987, 2008.

[83] R. E. Phillips. Immunology taught by Darwin. Nature Immunology, 3(11):987–989, 2002.

[84] R. T. Prehn and J. M. Main. Immunity to methylcholanthrene-induced sarcomas. Journal
of the National Cancer Institute, 18(6):769–778, 1957.

[85] N. Purroy and C. J. Wu. Coevolution of leukemia and host immune cells in chronic
lymphocytic leukemia. Cold Spring Harbor perspectives in medicine, 7(4):a026740, 2017.

[86] K. J. Schlesinger, S. P. Stromberg, and J. M. Carlson. Coevolutionary immune system
dynamics driving pathogen speciation. PLoS ONE, 9(7), 2014.

[87] B. Segal, V. Volpert, and A. Bayliss. Pattern formation in a model of competing popula-
tions with nonlocal interactions. Physica D: Nonlinear Phenomena, 253:12–22, 2013.

[88] L. Sigalotti, E. Fratta, S. Coral, S. Tanzarella, R. Danielli, F. Colizzi, E. Fonsatti, C. Traver-
sari, M. Altomonte, and M. Maio. Intratumor heterogeneity of cancer/testis antigens
expression in human cutaneous melanoma is methylation-regulated and functionally re-
verted by 5-Aza-2‘-deoxycytidine. Cancer Research, 64(24):9167–9171, 2004.

[89] R. E. Stace, T. Stiehl, M. A. Chaplain, A. Marciniak-Czochra, and T. Lorenzi. Discrete
and continuum phenotype-structured models for the evolution of cancer cell populations
under chemotherapy. Mathematical Modelling of Natural Phenomena, 15:14, 2020.

[90] B. Stockinger, T. Barthlott, and G. Kassiotis. The concept of space and competition in
immune regulation. Immunology, 111(3):241, 2004.

[91] J. D. Stone, A. S. Chervin, and D. M. Kranz. T-cell receptor binding affinities and kinetics:
impact on T-cell activity and specificity. Immunology, 126(2):165–176, 2009.

[92] S. P. Stromberg and R. Antia. On the role of CD8 T cells in the control of persistent
infections. Biophysical Journal, 103(8):1802–1810, 2012.

[93] S. P. Stromberg and J. Carlson. Robustness and fragility in immunosenescence. PLoS
Computational Biology, 2(11), 2006.

32



[94] S. P. Stromberg and J. M. Carlson. Diversity of T-cell responses. Physical Biology, 10(2):
025002, 2013.

[95] T. Takayanagi and A. Ohuchi. A mathematical analysis of the interactions between im-
munogenic tumor cells and cytotoxic T lymphocytes. Microbiology and Immunology, 45
(10):709–715, 2001.

[96] M. Tan, A. Gerry, J. Brewer, L. Melchiori, J. S. Bridgeman, A. Bennett, N. Pumphrey,
B. Jakobsen, D. Price, K. Ladell, et al. T cell receptor binding affinity governs the func-
tional profile of cancer-specific cd8+ t cells. Clinical & Experimental Immunology, 180(2):
255–270, 2015.

[97] C. Tian, Z. Ling, and L. Zhang. Nonlocal interaction driven pattern formation in a prey–
predator model. Applied Mathematics and Computation, 308:73–83, 2017.

[98] A. E. Troy and H. Shen. Cutting edge: homeostatic proliferation of peripheral T lym-
phocytes is regulated by clonal competition. The Journal of Immunology, 170(2):672–676,
2003.

[99] P. C. Tumeh, C. L. Harview, J. H. Yearley, I. P. Shintaku, E. J. Taylor, L. Robert,
B. Chmielowski, M. Spasic, G. Henry, V. Ciobanu, et al. PD-1 blockade induces responses
by inhibiting adaptive immune resistance. Nature, 515(7528):568–571, 2014.

[100] M. Urosevic, B. Braun, J. Willers, G. Burg, and R. Dummer. Expression of melanoma-
associated antigens in melanoma cell cultures. Experimental Dermatology, 14(7):491–497,
2005.

[101] R. Walker and H. Enderling. From concept to clinic: Mathematically informed im-
munotherapy. Current Problems in Cancer, 40(1):68–83, 2016.

[102] X. Wang and I. Rivière. Clinical manufacturing of car t cells: foundation of a promising
therapy. Molecular Therapy-Oncolytics, 3:16015, 2016.

[103] J. West, L. You, J. Zhang, R. A. Gatenby, J. S. Brown, P. K. Newton, and A. R. Anderson.
Towards multidrug adaptive therapy. Cancer Research, 80(7):1578–1589, 2020.

[104] T. L. Whiteside, S. Demaria, M. E. Rodriguez-Ruiz, H. M. Zarour, and I. Melero. Emerging
opportunities and challenges in cancer immunotherapy. Clinical Cancer Research, 22(8):
1845–1855, 2016.

[105] K. P. Wilkie. A review of mathematical models of cancer–immune interactions in the
context of tumor dormancy. Systems Biology of Tumor Dormancy, pages 201–234, 2013.

[106] K. P. Wilkie and P. Hahnfeldt. Mathematical models of immune-induced cancer dor-
mancy and the emergence of immune evasion. Interface Focus, 3(4):20130010, 2013.

[107] J. D. Wolchok, V. Chiarion-Sileni, R. Gonzalez, P. Rutkowski, J.-J. Grob, C. L. Cowey, C. D.
Lao, J. Wagstaff, D. Schadendorf, P. F. Ferrucci, et al. Overall survival with combined
nivolumab and ipilimumab in advanced melanoma. New England Journal of Medicine, 377
(14):1345–1356, 2017.

[108] L. Wooldridge, J. Ekeruche-Makinde, H. a. Van Den Berg, A. Skowera, J. J. Miles, M. P.
Tan, G. Dolton, M. Clement, S. Llewellyn-Lacey, D. A. Price, et al. A single autoimmune
T cell receptor recognizes more than a million different peptides. Journal of Biological
Chemistry, 287(2):1168–1177, 2012.

33



[109] Y. Yu, X. Ma, R. Gong, J. Zhu, L. Wei, and J. Yao. Recent advances in CD8+ regulatory T
cell research. Oncology Letters, 15(6):8187–8194, 2018.

[110] P. Zhang, A. L. Côté, V. C. de Vries, E. J. Usherwood, and M. J. Turk. Induction of post-
surgical tumor immunity and t-cell memory by a poorly immunogenic tumor. Cancer
research, 67(13):6468–6476, 2007.

[111] Q. Zhao, Y. Jiang, S. Xiang, P. J. Kaboli, J. Shen, Y. Zhao, X. Wu, F. Du, M. Li, C. H. Cho,
et al. Engineered TCR-T Cell Immunotherapy in Anticancer Precision Medicine: Pros
and Cons. Frontiers in Immunology, 12:812, 2021.

[112] R. M. Zinkernagel, M. F. Bachmann, T. M. Kündig, S. Oehen, H. Pirchet, and H. Hengart-
ner. On immunological memory. Annual Review of Immunology, 14(1):333–367, 1996.

34


	Introduction
	Individual-based model
	Mathematical modelling of cell division and death due to intra-population competition
	Mathematical modelling of phenotypic changes in tumour cells
	Mathematical modelling of tumour-immune competition
	Computational implementation of the individual-based model

	Corresponding deterministic continuum model
	Steady-state and linear-stability analyses of the continuum model equations
	Biologically relevant steady-state solutions
	Linear-stability analysis
	Conditions for eradication of tumour cells by CTLs or coexistence between the two cell populations
	Conditions for the emergence of patterns of phenotypic coevolution between tumour cells and CTLs


	Numerical simulations
	Set-up of numerical simulations
	Main results

	Discussion, conclusions and research perspectives
	Appendices
	Formal derivation of the continuum model
	Details of numerical simulations of the continuum model
	Supplementary figures

