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Point Clouds With Color: A Simple Open Library for Matching RGB
and Depth Pixels from an Uncalibrated Stereo Pair

Jordan Nowak1,2, Philippe Fraisse1, Andrea Cherubini1, Jean-Pierre Daures2

Abstract— Current day robots often rely – for visual percep-
tion – on the coupling of two cameras: one for color and one
for depth. While for custom RGB-D cameras, the manufacturer
takes care of aligning the two images, this is not done when
two commercial cameras are coupled (e.g., on the Pepper robot)
without having been calibrated beforehand. In this article, we
present a simple open library for reconstructing the 3D position
of RGB pixels without knowing the parameters of the two
cameras. The library requires a simple preliminary calibration
step based on pixel-to-pixel matching, and then automatically
reconstructs 3D colored point clouds from a given set of pixels
in the RGB image. The source code is available at the following
link https://github.com/jordan-nowak/OpenHSML.

I. INTRODUCTION

A. RGB-D perception

For many technological applications (e.g., in the fields of
robotics, navigation, cartography, augmented reality...), it is
essential to perceive effectively the environment. Multimodal
perception refers to processes which relate two or more
senses (sight, hearing, touch...). This process may aid in
building a representation of the environment. In this article,
we focus on multimodal perception using an RGB and a
depth camera. We propose a library that finds the point
correspondences between an RGB and depth image without
using a checkerboard and without knowledge of the camera
parameters. This open-source library is called OpenHSML:
Open-source Hybrid Stereovision Matching Library [9].

Depth cameras are designed to output a three-dimensional
representation of a scene. These sensors use either active or
passive methods. In the first case, a direct depth measurement
is obtained via structured light or laser beams, such as TOF
(Time Of Flight). The second relies on the principle of
stereovision. It is considered passive because it does not use
direct measurements. It estimates the depth from two images
taken simultaneously from different points of view.

We have tested our library with depth cameras using
structured light projection. Yet, the library can work with any
pair of RGB and depth images of the same scene, including
TOF cameras. A grayscale image can also be used in place
of the RGB image. Figure 1 shows the output of OpenHSML
as it estimates the 3D position (in depth camera frame) of
points selected in the RGB image. In our case, the world
frame coincides with the depth camera frame.

1LIRMM, Univ Montpellier, CNRS, Montpellier, France. Emails:
firstname.lastname@lirmm.fr

2Clinique Beau Soleil, Montpellier, France. Emails:
jean-pierre.daures@umontpellier.fr

Fig. 1. Output generated by our library from the images obtained by the
Pepper robot cameras. Top left: original RGB image with points manually
selected from the scene’s objects. Top right: the points are matched to the
corresponding ones in the depth image. Bottom: two different views of the
colored point cloud in 3D.

B. Motivation

A depth camera using structured light projection technol-
ogy is often coupled with a camera providing a color image.
This coupling is called an RGB-D camera. The color image
is directly associated with the corresponding depth image,
by an embedded library designed and provided by the RGB-
D camera manufacturer. The most well-known camera of
this type is the Kinect. It was created in 2010 by Microsoft
to make users interact without a joystick with the video
game console Xbox 360. Other RGB-D cameras include
the RealSense1 series from Intel and the Xtion series from
Asus2 . The manufacturers propose libraries, often open-
source, to allow their customers to use the cameras and/or
program their own applications. For the Asus cameras, the
manufacturers propose to use OpenNI 2 SDK [10]. For the
Kinect, Microsoft proposes a specific SDK [1]. Intel also
developed an open-source library for RealSense [5].

These libraries use the camera’s physical properties to
align the RGB and depth images. These physical properties
are the RGB-D intrinsic and extrinsic parameters. The intrin-
sic parameters define the internal properties of each camera
(such as focal length, optical center, image distortion...).
The extrinsic parameters define the position and orientation
of one camera with respect to the other one. To obtain
these parameters, the user can refer to the datasheet of the

1https://www.intelrealsense.com/
2https://www.asus.com/me-en/3D-Sensor/
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manufacturer. However, in some cases, this datasheet may be
non-existent, difficult to access, imprecise compared to the
reality in the field, or even incomplete.

This is typically the case if one wants to couple a depth
camera (regardless of the technology used) with a clearly
dissociated RGB camera. An example of such coupling is
shown in section IV-A, where we couple a structured light
depth camera with the webcam of a computer. Another
example is the humanoid robot Pepper. This robot – in its
version 1.8a – features an Xtion camera from Asus along
with an RGB camera. As with the Kinect, we aim at aligning
the depth image with the RGB image. Pepper’s SDK3 does
not allow this. One could use the intrinsic and extrinsic
parameters of the system, which are available online in the
Pepper technical documentation4. Yet, these are theoretic and
can be quite different from reality. This type of problems
has inspired us in developing the library OpenHSML. We
contribute by proposing this open-source library allowing the
user to match an RGB image and depth image observing
a same scene, using the stereovision principle and without
knowledge of the camera parameters.

II. OVERVIEW OF OUR APPROACH

In this section, we present the methodology used to solve
our problem. First, we present the previous works addressing
this type of problem. Then, we recall the principles of
stereovision. Finally, we present our method.

A. Related work

One of the simplest libraries for calibrating one or more
RGB or gray-scale cameras is OpenCV: Open Computer
Vision Library5 [8], [15]. This library is widely used by
the scientific community in the field of vision. Camera
calibration is possible in OpenCV, via a test pattern whose
properties are perfectly known [3]. The test pattern can be
built in different ways like a classic black-white chessboard,
symmetric or asymmetric pattern of circles. It can also be
a set of easily detectable markers, as ArUco markers [2],
[12], [22]. These markers allow an improvement over the
other methods, since calibration is possible despite partial
occlusions of the test pattern. In all cases, the algorithm
will retrieve the intrinsic parameters of the camera. It is also
possible to calibrate a stereovision system using two RGB
cameras. Since the marker is known, it is possible to estimate
their position and orientation to the camera. This makes it
easy to have extrinsic parameters of the cameras. However, a
depth camera cannot be calibrated directly with this method
because the checkerboard is not detectable with the proposed
patterns (ArUco markers or classic checkerboard). Indeed,
the image provided by this camera does not allow the patterns
to be viewed in the same way as with an RGB camera.

3https://www.softbankrobotics.com/emea/en/
support/pepper-naoqi-2-9/downloads-softwares

4http://doc.aldebaran.com/2-5/family/pepper_
technical/video_overview.html

5https://opencv.org/

Structured light technologies include a projector and an
infrared (IR) camera. To obtain the depth image, the embed-
ded software estimates the disparity between the projected
pattern and the pattern observed by the IR camera. Some
researchers have used conventional calibration to find the
camera parameters and to estimate the distortion of the depth
image. This, to improve the alignment of the two images.
For example, Khoshelham, Elberink [19], and Smisek et al.
[23] propose to calibrate the depth sensor of the Kinect
camera. Their calibration reduces lens and depth distortion.
To find the depth camera’s parameters with conventional
camera calibration, the authors first obstruct the camera
projector. Then, with the use of a halogen light source, they
illuminate the test pattern. This simplifies the extraction of
the test pattern from the infrared camera image. It is possible
to use this method with ROS: Robot Operating System6

with tutorial [6]. This idea works, but only for this type of
technology. We aim at calibrating the camera pair directly
from the depth image and not from the infrared camera.

Wu et al. [24] propose a different approach to calibrate
the Kinect, via a semi-transparent test pattern. This can be
easily visible in both images without using a halogen light
source. Indeed, with a digital tool, the user shows where the
test pattern is in both the RGB and in the depth image. Then,
s/he can obtain the parameters of the cameras.

With depth sensors, it is possible to have an error that
may be due to distortion or a systematic measurement error
of the sensor. Various works have been carried out to date
to correct this type of error by calibrating the system from
a drawing [13], [18], [21], [25]. They all offer the use of a
checkerboard attached to a surface such as a simple wall, a
swivel table, or a table. The checkerboard provides a ground
truth after calibration of the RGB camera. This way, authors
attenuate the depth distortion by estimating an undistorted
model. Indeed, they seek intrinsic and extrinsic RGB-D
camera parameters using only one plane with a checkerboard.

Herrera et al. provide a Matlab toolbox [7] to calibrate a
pair of camera RGB-D and to take a distortion correction by
identifying parameters. Basso et al. provides a C++ toolbox
implementable on ROS [11]. They calibrate also an RGB-D
camera system to reduce distortion in depth image and to
refine the constructor parameters.

Compared with these libraries, we do not calibrate the
cameras and do not search to determine parameters. Indeed,
we propose an alternative method to link data from the two
cameras without knowing the system’s nominal parameters.
We use the principles of stereovision with the epipolar lines.

Liu et al. [20] is the more recent work. They use a sphere
to calibrate their system RGB-D. Their framework is capable
to detect the sphere in the two images. It estimates the
intrinsic and extrinsic parameters simultaneously and also
corrects the depth measurement error. However, compared
with us, they do not provide a toolbox.

It is also interesting to mention the work of Bauer et al.
on improving the vision of the Pepper robot [14]. In their

6https://www.ros.org/
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Fig. 2. Principle of stereovision: disparity observed between two color
images looking at the same object but from different points of view.

work, they seek to improve 3D perception by fusion method
between the depth image raw data with the monocular depth
prediction from the RGB image.

All our developments are open-source and provided in
a library which automatically matches relevant pixels from
an RGB and a depth camera, to output the corresponding
”colored point cloud”.

B. Principles of stereovision

Before going into the general explanations of our algo-
rithm, let us present the strategy used to tackle this problem.
The configuration of our system is as follows: an RGB
camera and a depth camera observe a common scene from
two different points of view. This arrangement allows us to
use the principles of stereovision[17]. Indeed, stereoscopy
exploits two cameras to estimate the scene depth from the
disparity between the two images (see Fig. 2).

An RGB-D camera provides a depth and a color image, but
the two are not linked. We investigated a strategy to detect the
same object in both images. Yet, the existing libraries require
knowing both the intrinsic and extrinsic parameters. In our
work, we try to go beyond this requirement. Nevertheless, we
need two matrices well known in this field: the Fundamental
matrix F and the Projection matrix P. Both can be defined
without the use of the nominal parameters, but if they are
not known beforehand, a calibration step (also implemented
in our library) is needed.

For each point in one of the two images, there exists a
corresponding epipolar line in the other image (figure 2 show
an example of this line). This gives us a first information:
in the second image, the point is on this line. However,
this information is not sufficient alone, since it gives infinite
solutions along this line. The correct solution can be deter-
mined knowing the exact depth of this point.The equation
of the epipolar line of a point can be determined using the
Fundamental matrix F. Let us name mL (respectively, mR)
the coordinates of the point respectively in the left camera
(right) image. The coefficients a, b and c define the epipolar
line equation as au+ bv+ c = 0. These can be obtained for
each image by the following relation:{

[aL, bL, cL]
>
= F ∗mR

[aR, bR, cR]
>
= FT ∗mL

(1)

Matrix F is defined from projection matrices of two cameras
(PR and PL) and epipolar point eL = [eLx, eLy, eLz]

>

(projection of camera’s origin left in image plane right) via

F = eL
×PLP

+
R, (2)

with PL and PR expressed as{
mL = PL [x, y, z]

>

mR = PR [x, y, z]
>

and

eL
× =

 0 −eLz eLy

eLz 0 −eLx

−eLy eLx O

 .
Furthermore, we use the P matrix. For any 3D point of

world frame coordinates p = [x, y, z]T , that allow to find its
image projection m = [u, v]T , up to a scale factor λ:

λ

uivi
1

 = P


xi
yi
zi
1

 =

P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34



xi
yi
zi
1

 (3)

Matrix P can be obtained from the intrinsic parameters
(contained in the camera matrix K) and extrinsic parameters
(rotation matrix R and translation vector t between camera
and world frame) via:

P = K ∗ [R|t], (4)

with

K =

fx γ cx
0 fy cy
0 0 1

 . (5)

In (5), fx and fy are the focal lengths along the x and y-axis,
cu, and cv the coordinates in pixels of the optical center in
the image plane, and γ is the skew between the axes (often
set to 0).

In Sec. II-D, we will explain in more detail how we obtain
these two matrices. In the next section, we explain how we
use them to obtain “colored point clouds” from an pair of
RGB and depth cameras.

C. Point matching algorithm

Here, we outline the method used in our library; the
corresponding pseudocode is given in Algorithm 1.

The first step is the calibration if it has not been done
before. A function asks the user to enter the parameters
necessary for the calibration (w, h, HFOV , VFOV , cu and
cv) to the line 1 in Algorithm 1. Then, it is asked to match
points in the calibration images and a function estimates,
at the end of this step, the two matrices F and P (line 2).
Then, the algorithm saves all these parameters, and these two
matrices in the Parameter file (lines 3 and 4).

The user must input n points of the RGB image in pixel
coordinates (mi = [ui, vi]

T ); these are represented as a
vector (rgb px). The library return the Cartesian coordinates
of the corresponding 3D points in the depth camera frame.

To this end, the library needs the fundamental and projec-
tion matrices, F and P. These are given in a Parameter file



. Input: rgb px = { m1, m2, ..., mn }
. Output: depth pt = { p1, p2, ..., pn }

if calibration step then
1 HFOV , VFOV , cu, cv, w, h = SetParameters();
2 F,P = SetCalibration();
3 ParameterF ile← HFOV , VFOV , cu, cv, w, h;
4 ParameterF ile← F,P;

end
5 F,P← Parameter File;

for k = 1,2, ..., n do
6 [a, b, c]

> = computeEpipolarLine(mk, F);
7 sp = SampleEpipolarLine(a, b, c, w, h, s);
8 pj = ProjectPointInRGB(sp, P);
9 index = GetNearestPoint(pj, mk);

10 lk = pj[index];
11 pk = Get3DPointCoordinates(pj[index]);

end
Algorithm 1: Pseudocode of the algorithm returning, for
a given set of pixels in the RGB image, the Cartesian
coordinates of the corresponding 3D points in the depth
camera frame.

(in YAML format), which is loaded at initialization (line 5
in Algorithm 1). To generate this file, if s/he does not know
the values of F and P, the user should calibrate the stereo
pair by manually matching as many points as possible in the
two images. This step is explained in Sec. II-D.

We use the epipolar lines in the depth image corresponding
to the RGB pixels. Each epipolar line is defined by its
coefficients a, b and c such that the epipolar line equation is:
au+ bv + c = 0. To determine a, b and c, we use OpenCV
function computeCorrespondEpilines()7, which takes as input
the fundamental matrix F (line 6).

Then, we sample the segment of the epipolar line within
the depth image bounds (line 7). This function needs the a, b,
and c coefficients of the epipolar line to be sampled, the size
of the depth image given by w and h and the sampling step
s. To determine which depth image pixel on this sampled
epipolar line corresponds to the desired point, we project all
these points in the RGB image (line 8). This is done via the
P matrix and equation (3); since these pixels are in the depth
image, we can determine their 3D coordinates in the depth
camera frame. There exist two types of depth images:

• Some depth cameras directly give the point 3D coordi-
nates in the depth camera frame, i.e. the coordinates xi,
yi, and zi of each pixel i.

• Other depth cameras return only the z coordinate of
each pixel i, noted zi. In such cases, the user must
provide: the fields of view (VFOV for the vertical axis
and HFOV for the horizontal axis), the optical centre
(cu, cv), and the image resolution in pixels (w and h).
Then, the xi and yi coordinates at pixel i are determined

7https://docs.opencv.org/3.4.12/d9/d0c/group__3d.
html

via:{
xi = zi ∗ (ui − cu) ∗ tan(HFOV )/(w/2)
yi = zi ∗ (vi − cv) ∗ tan(VFOV )/(h/2)

(6)

In fact, if the user only provides a depth image on the z-
axis, the parameters HFOV , VFOV , cu and cv are required.
Indeed, in this case, these parameters permit to estimate the
position of the 3D points on the x and y-axis (relation given
by the equation 6). However, it is possible not to make this
step if we directly give to the algorithm the depth images
with the 3D point coordinates following axes x, y, and z.

Finally, we calculate the distance in the RGB image
between each of these projected points and the selected pixel
mi. The projected point that is the closest to the original
point in the RGB image is the best candidate (lines 9,
10 and 11 in Algorithm 1), and we consider it to be the
one (li) corresponding to mi. The algorithm returns the
corresponding 3D pi.

D. Calibration method for estimating F and P

The resolution can be different between the color image
and the depth image. However, this resolution must be
the same during calibration and experimentation. This is
necessary for F and P to work properly otherwise these
matrices are no longer valid and must be estimated with the
correct image sizes.

In this section, we explain how to calibrate the RGB-
D camera to obtain the F and P matrices saved in the
Parameter file to be loaded by the library. This step is very
important and must be carried out as precisely as possible.
To obtain a good calibration:
• the user must select many points, with a good distribu-

tion both in the image and depth space;
• s/he should select points easily observable in both

images (e.g., vertices, specific shapes, ...).
• it is advisable to use an uncluttered background, such

as a wall.
• to make the correspondence manually, the user must

take an object that is easily detectable in both images.
For example, it is possible to use a sheet of paper, a
box, or a semi-transparent checkerboard as [24], whose
edges and vertices are easily visible in the depth image.

This set of points is used to determine F and P. Indeed,
to obtain the Fundamental Matrix F, we simply apply the
OpenCV function: cv::findFundamentalMat()8 to the set of
points. To estimate the Projection Matrix P we proceed
as follows. Generally, this matrix is determined via the
camera’s intrinsic and extrinsic parameters. Yet, it can also
be defined experimentally applying least squares to the points
selected during calibration, i.e. the pixels of the RGB image
associated to their 3D coordinates in the depth camera frame
(derived from the depth image). By developing (3), for n
points we obtain 2n independent linear equations with twelve
unknowns (the elements of P). Since (3) is defined up to a

8https://docs.opencv.org/3.4.12/d9/d0c/group__3d.
html
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scale factor, we can normalize all coefficients by P34. We
then obtain a new matrix equation with 11 unknowns.

Ax = b, (7)

with:

x =

[
P11

P34

P12

P34

P13

P34

P14

P34

P21

P34
. . .

P33

P34

]>
,

A =


0, 0, 0, 0, x1, y1, z1, 1,−v1x1,−v1y1,−v1z1,−v1
x1, y1, z1, 1, 0, 0, 0, 0,−u1x1,−u1y1,−u1z1,−u1

. . .
0, 0, 0, 0, xn, yn, zn, 1,−vnxn,−vnyn,−vnzn,−vn
xn, yn, zn, 1, 0, 0, 0, 0,−unxn,−unyn,−unzn,−un

 ,

b =
[
u1 v1 . . . un vn

]T
.

The solution of (7) can be obtained via pseudo-inversion:

x = (A>A)−1A>b = A†b (8)

To estimate all the elements of x we need a minimum of 6
points. From x, we derive P via:

P =

X11 X12 X13 X14

X21 X22 X23 X24

X31 X32 X33 1

 . (9)

III. THE OPENHSML LIBRARY

A. Overview

The library OpenHSML described in this article is avail-
able online [9] and is open-source under the GNU Lesser
General Public License version 3 (LGPLv3) [4]. This license
allows integration with open- or closed-source software as
long as any modification is shared with the community.

OpenHSML is written in C++ and developed on the
Unix system Ubuntu 18.04. It is packaged using PID9, a
build and deployment system based on CMake. It allows
to automatically deploy all dependencies that the project
needs to run. The user can use this environment for his
developments or install the project in an autonomous way,
that is to say without having to manually create a PID
workspace. A ReadMe file explains the steps needed to install
OpenHSML, its dependencies (OpenCV, Eigen and yaml-
cpp) and launch the demonstration.

The OpenHSML project hierarchy is the following:
• apps: examples to help get started with OpenHSML.
• build: build directory.
• share: files/folders necessary for calibration.
• src: source files.
• include: header files, with the same structure as src.
A set of images is provided along with the library, in

the following folders: share/resources/calibration/2d for the
RGB images and share/resources/calibration/depth for the
depth images.

If the user wants to save his/her own calibration images,
s/he must save these images correctly as follows. The RGB
images can be saved in any image format readable by

9http://pid.lirmm.net

OpenCV (for example .png or .jpg). The depth images are
save in a YAML file with storage class10 in OpenCV.

B. Tutorial
Within the library OpenHSML, we provide a tutorial for

testing its functionalities. It includes both the calibration and
matching steps. We present both steps hereby.

1) Calibration step: First, the program asks the
user to modified the default values of the parameters
(HFOV , VFOV , cu, cv, w and h) if necessary. Then, the pro-
gram asks the user if s/he wants to calibrate the model by
doing point matching in the scrolling images. In this step, the
algorithm displays the two images side by side. The image
on the left will be the image with which the user can always
interact to select points. Therefore, when selecting a point
in the left image, the images swap places to allow selection
of the point in the second image. To facilitate calibration,
it is possible to activate several selection modes, via the
keyboard:
• the p key activates the point mode, which is the default

mode, and allows stitch by stitch selection;
• the l key activates the line mode, allowing a certain

number of points to be sampled homogeneously be-
tween two selected points;

• the q key activates the quadrilater mode, allowing
a multitude of points to be sampled homogeneously
within four selected points.

For these digital tools to work properly, the user must
select the points in both images in the same order. To move
to the next image, s/he should press the ESC key.

Once the user ends the calibration (s/he considers the
selected points to be sufficient), the algorithm saves the
estimated F and P matrices in the Parameter file

2) Point Matching step: Once the calibration is com-
pleted, the point matching step can start.

To use the library, the user must be provided the RGB
image, and depth image in cv::Mat, the basic image container
in OpenCV. The program displays only the RGB image and
asks to select the points that the user wishes to be found
in the depth image. Note that it is again possible to use the
digital selection modes presented above.

When the user is done selecting the points, a simple press
on the ESC key will launch the estimation. To visualize
the steps, as well as the result obtained, one can add the
argument −display in the execution command. If one wants
to save these images, s/he can add the argument −save
<path/to/backup folder>. This last argument will also record
an overview of the distribution of the calibration points and
the estimated epipolar lines for these points.

Figure 3 shows the results of the matching step, obtained
with a tutorial test image (acquired by Pepper’s cameras)
after calibration. It shows two intermediate steps of the
matching phase, which is qualitatively successful: the algo-
rithm automatically finds, in the depth image, the skeleton
detected (with OpenPose process [16]) in the RGB image.

10https://docs.opencv.org/3.4.12/da/d56/classcv_1_
1FileStorage.html
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Fig. 3. Results obtained with Pepper’s cameras (the front camera and its
Asus Xtion). Image 1 presents the input point selected in the RGB image
(with OpenPose). Image 2 represents all epipolar lines determined in the
depth image. Image 3 shows the sample lines projected in the RGB image.
Image 4 the points estimated in the depth image (i.e., output of OpenHSML)
and Image 5 two different views of the colored point cloud in 3D.

IV. RESULTS AND DISCUSSION

A. Experiments with three different RGB-D stereo pairs

In this part, we present experiments carried out with
different pairs of cameras. We tested three different pairs.
The first is the Intel RealSense D435, a compact RGB-D
system with structured light depth camera. The second is
composed of the Asus Xtion depth camera of the humanoid
robot Pepper, coupled with it front camera. The last pair
couples a computer webcam with the depth camera of the
RealSense D435 to show that our system can work on many
types of hybrid (RGB and depth) stereo pairs.

After calibrating our three pairs of cameras, we capture
test images where an object is present in the scene. Figure 4
presents the results obtained with the three pairs of cameras.

B. Discussion

Despite these nice results, we observed two types of
frequent errors. The first is caused by “holes” in the depth
map. It mean that the depth information for these pixels is
missing. They may be due to the estimation error of the
structured light depth camera system. The second reason is
that if the two cameras are too far apart, a 3D point may
be located farther behind the object being observed (e.g.
on a wall in the background). It can therefore be hidden
in the RGB image, which can be problematic for projection.
Indeed, this point can be projected onto the object in the RGB
image and the algorithm can select it as the corresponding
point in the depth image.

We assumed that the depth and RGB images are not
distorted. In some cases, the user may need to calibrate these

Fig. 4. Some results obtained from three different camera pairs. For each
row, the first column shows the area in which the pixels were selected. The
second column shows the final estimate in the depth image. Finally, the last
column shows the point cloud obtained with this estimate.

cameras beforehand to improve their rendering. However, in
our experiments with the RealSense D435 and with Pep-
per’s camera, we did not perform standard intrinsic/extrinsic
parameter calibration. Yet, we obtained consistent results at
reasonable distances (less than 2 meters) and with objects
centered in the image. Indeed, depth estimation is better in
the centre of the image and at shallower depths. It can also
depends on the calibration step and if the calibration points
cover several depths of the area to be analyzed.

Also, as calibration is carried out at a certain distance from
the camera, this can cause estimation errors for more distant
areas. In our examples we do not exceed two metres during
calibration for example. However, these cameras are known
to be more accurate indoors and at short range.

V. CONCLUSION

A lot of work has been done in recent years to considerably
improve the calibration of RGB-D cameras. This has enabled
more and more applications to be realized with better accu-
racy and depth estimation. Indeed, one of the major concerns
with this type of device is its high distortion and noise in
the depth image data.

In our study, we propose a simple approach for finding the
point correspondence between an RGB and a depth image.
This approach uses the principles of stereovision to find the
points of interest in the depth image without going through
image alignment. Our method requires a quick and simple
calibration, without the need for a checkerboard, to determine
the stereo model. This model allows us to solve our problem
without having to determine the camera parameters.

The advantage of our library is that it is very easy to use. It
does not depend on any particular camera. It is quite possible
to couple an RGB camera with a depth camera of any type.

However, our library does not currently allow for the
correction of errors due to distortion in the depth image.
It also does not estimate the systematic error in the depth
measurement of the used system.
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