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X-ray diffraction tomography is a well-developed technique to study the structure of heterogeneous materials which 

makes it a tool of choice for the non-destructive investigation of cultural heritage microsamples. Characterizing such 

complex materials with a high enough spatial resolution requires acquiring large amounts of diffraction images, followed 

by a complex sequence of data management to localize the crystalline phases in the sample. Here we propose to use 

multivariate analysis in order to automatically decompose the data in a small set of components, each representing the 

diffraction pattern of one or a small number of phases. This makes phase identification and quantification of each 

component much more efficient and leads to a quantitative knowledge of the phase content in each voxel of the 

tomographic reconstruction. We show that Non-negative Matrix Factorization is very efficient for this purpose, with a 

computing time well compatible with in-line data analysis in order to assess the quality of measurements during 

experiments at synchrotron beamlines. Here, we apply the method to the investigation of microsamples from medieval 

applied brocade decors selected from a wooden statue, and the results are validated a posteriori by comparison with ex 

situ destructive techniques.

1. Introduction 

For almost a century, X-ray powder diffraction has been the 

technique of choice for the structural investigation of solid 

matter, starting from simple phase identification to the ab 

initio structure solution of complex organic molecules, 

quantification of multiphase mixtures, or investigation of 

microstructures. These developments have been closely linked 

to the improved performances of x-ray sources, instruments 

and analytical methods, being in the laboratory or at dedicated 

synchrotron facilities.  

More recently, with the progresses of powerful 3rd generation 

synchrotron sources offering micron size monochromatic 

beams of very high intensities, measurements allowing 3D 

computed tomographic reconstructions from x-ray diffraction 

data have become possible
1,2,3

. In such XRD-CT experiments, a 

small pencil x-ray beam is scanned through the sample and at 

each scan position, XRD patterns are recorded while the 

sample is rotated over an axis perpendicular to the beam. 

Reconstruction algorithms allow building 3D graphical 

representations of the crystalline and amorphous phase 

distribution in the sample, based on the selection of a 

characteristic diffraction peak or diffuse scattering signal. The 

quality of the reconstructions mainly depends on the size of 

the rotation angular step, and the spatial resolution is 

determined by the beam size and hence the translation scan 

step. Allowing to obtain a 3D map of the crystalline as well as 

amorphous phases in a sample, XRD-CT is complementary to 

other x-ray based tomographic techniques such as absorption-

based x-ray tomography (X-CT) and fluorescence x-ray 

tomography (XRF-CT). The former informs on the variations of 

electron density in the sample, while the latter provides the 

distribution of chemical elements.  

Since the appearance of the XRD-CT technique, a number of 

efficient software has been developed to perform the 

reconstruction and examination of the measurements
4,5

. The 

data are generally organized as a 3D matrix (or data cube), 

named as (T,R,D) hereafter in the text  where 2 dimensions 

represent the coordinates of a scan points in translation (T) 

and rotation (R) and the 3rd dimension represents the XRD 

pattern (D) as function of the scattering parameter (e.g. the 2θ 

angle or Q=4.π.sinθ/λ, λ being the radiation wavelength) 

measured at each (T, R) point. The data cube can be 

represented graphically as 2D R-T sinograms for a particular 

slice in 2θ of the XRD pattern, showing the distribution of the 

crystalline phases having characteristic Bragg peaks in the 

selected slice. The same can be also visualized in real space 

after tomographic reconstruction using well-known 

algorithms. This procedure allows identifying and locating the 

different crystalline phases in the sample. Since nowadays 2D 

diffraction images are generally recorded, a preliminary step 

consists in azimuthally integrating the data to yield 1D 

diffraction patterns which can then be inserted in the data 
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cube. In addition, the XRD patterns corresponding to an 

arbitrary volume of the sample can be obtained by summing 

the patterns from the voxels chosen in the real space 

reconstruction. By separating the contributions from the 

different phases, this so-called reverse analysis provides a way 

to identify the minor ones with better accuracy than would be 

feasible on the pattern from the whole sample, and to 

dramatically improve the detection limit of the technique.  

Cultural Heritage Sciences are developing a growing interest 

for the technical skills shown by ancient artists and craftsmen 

in the fabrication of artworks and artefacts. In the need to 

identify recipes and material sources and to understand their 

degradation over time for restoration purpose, the 

contribution of x-ray based techniques has become more and 

more important. With the recent advent of mobile XRF and 

XRD instruments, non-invasive measurements can now be 

performed in situ, avoiding the need to move the artwork from 

its location. 2D mapping of artworks with flat surfaces 

(paintings, frescoes, manuscripts...) now allows observing the 

distribution of pigments, binders, etc. at micron size 

resolutions
6,7

. However, in many cases the detailed 

investigations of the sample design, stratigraphy or 

degradation damages require obtaining a three-dimensional 

picture from microsamples carefully selected from the 

investigated artwork. X-ray based tomographic methods are 

then very well suited to thoroughly determine the phase 

composition and stratigraphy of such microsamples in a non-

destructive way, leaving them untouched for complementary 

analyses. They allow, for example, to visualize the full 3D 

arrangement of pictorial layers, without having to 

destructively prepare the microsample
8,9

. 

With the development of new generation synchrotron 

machines, the availability to submicron size beams allowing to 

rapidly perform such kind of experiments at higher resolutions 

is quite an enthusiastic perspective for the investigation of 

complex materials such as those from the Cultural Heritage 

field. However, with the foreseen new beamlines’ 

performances, scanning a 1 mm size sample with 1 µm 

translation and 360 rotation steps (a quite typical case) yields 

in a few minutes 360 000 XRD patterns. This overwhelming 

amount of data has then to be processed in an efficient way in 

order to extract in a realistic timespan a usable, if possible 

quantitative information. Furthermore, despite the obvious 

interest of XRD-CT for Cultural Heritage Science, several 

technical difficulties still exist which can limit its use. Due to 

the relatively large gauge size, the voxels may contain more 

than one phase. It must be noted here that decreasing the 

gauge size for XRD-CT has a limit, since a sufficient number of 

grains must be contained in the gauge volume for powder 

averaging. Micron-size layers are not rare, for example in 

gilding layers. Hence, some quantitative (e.g. Rietveld) 

refinement of the XRD patterns calculated for each voxel is 

necessary to reach a precise, at least semi-quantitative 

description of the variation of sample composition and 

structure. Even when a quantitative knowledge of phase 

proportion is not required, such fitting may be necessary to 

identify minor phases. If sequential Rietveld refinement would 

be possible in theory, in practice it seems quite unrealistic 

given the very large amount of data, the random variation of 

phase contents (phases can appear and disappear abruptly 

from one voxel to the next) and the possibly large number of 

phases. Furthermore, such heavy data processing with no 

guarantee of rapid success requires a long time and cannot be 

considered for quality check of the data during experiments.  

Bearing these problems in mind, we have investigated the use 

of multivariate analysis techniques for the processing of XRD-

CT data collected on microsamples taken from ancient 

artworks. Here we compare the use of various algorithms, like 

Principal Component Analysis (PCA), supervised and non-

supervised Multivariate Curve Resolution - Alternating Least-

Squares (MCR-ALS) and Non-Negative Matrix Factorization 

(NMF). Using the latter, we show that a typical data cube can 

be automatically decomposed in a small number of 

crystallographically significant components within few 

minutes. These components which may contain more than one 

phase, can be submitted to quantitative analysis using Rietveld 

refinement, leading to a complete description of the 3D phase 

distribution in the sample. 

Multivariate analysis techniques have been used recently in 

Materials Science in a wealth of problems describing the 

evolution of a chemical system as a function of an external 

parameter, such as time, temperature, pressure, etc., which 

involves processing large experimental data sets coming from 

various types of measurements. For these techniques to be 

relevant, it must be possible to find a small number of 

invariable components so that each individual measurement 

representing a state of the system can be described as a linear 

combination of the invariable components. Only the 

concentrations (or weights) of the components vary with the 

external parameter. The problem is thus to determine from 

the measurements the nature of the components and their 

weights for each value of the external parameter. This can be 

expressed mathematically by the relation:  

D = CS+E 

where D is a n.m matrix representing the measurements, n 

being the number of data sets (spectra, diffractograms, etc.) 

and m the number of points in each of them (as a function of 

2θ, Q, etc.), C is a n.d concentration matrix containing the 

concentrations of each or the d components for each of the n 

measurements, S is a d.m matrix containing the d components 

of dimension m. E is the error matrix which represents the 

difference between the experimental and computed data and 

must be minimized by the algorithm.  

Among many other applications, one of the most widespread 

technique in Chemometrics, PCA, has been used for more than 

20 years for the processing of X-ray absorption data (XAS)
10

. 

For PCA, the components are considered as orthogonal and do 

not necessarily have a direct physical meaning. The optimal 

number of components to use for the decomposition (d) can 

be estimated from the norm of E(d) and by visual inspection of 

the components. For higher rank components, the signal 

becomes essentially noise and does not carry relevant 

information. This procedure is indeed a way to reduce the 

statistical noise from a dataset by reconstructing it using a 
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limited number of components. The selected number of 

components can be then used to launch a MCR-ALS 

minimization
11-14

. Like PCA, the MCR-ALS algorithm maximizes 

the explained variance in the data, but physical or chemical 

constraints can be applied to C and/or S matrices, rather than 

the orthogonality constraint used in PCA. In the ALS process, C 

is least-squares refined with fixed D and S, and then S is 

refined with fixed D and the previously refined C. The 

refinements are alternately carried out until convergence is 

reached. The main interest of the process lies in the possibility 

to input constraints such as e.g. positivity to S and/or C, which 

at the end will lead to physically/chemically sensible results
15

. 

A set of components defining a starting S matrix must be 

provided to launch the process, for which purpose, several 

kinds of algorithms have been devised
12

. One interesting 

feature of MCR-ALS is the possibility to introduce predefined 

components in the starting S matrix, for example diffraction 

patterns from isolated phases measured in the same 

condition. In this so-called “supervised” case, the components 

are not refined and only their weights are computed.  

However, although they have been largely used for various 

types of spectral analyses, these techniques have been only 

scarcely applied to diffraction data. Burley et al. applied PCA to 

the analysis of time-resolved XRPD data
16

. Chapman et al. also 

applied PCA to the analysis of pair distribution function data
17

. 

Rodriguez et al. used MCR-ALS for an operando XRD study of 

battery discharge
18

, and Taris et al. for time-resolved XRD data 

of cementing reactions
19

. Long et al. used a similar technique: 

Non-Negative Matrix factorization (NMF) for the identification 

of crystalline phase mixtures from thin film by XRD
20

. More 

recently, the same was successfully applied to combinatorial 

phase diagram investigations
21

. Opposite to PCA or MCR, the 

number of components must be supplied a priori to NMF but 

no starting values for the components are required. Therefore, 

no supervised process is possible. Due to the non-negativity 

constraints on the S and C matrices inherent to the algorithm, 

the components contained in S are expected to bear a physical 

meaning, i.e. they will consist in the scattering signal from one 

or a few phases from the mixture.  

We report herein the application of multivariate analysis to 

XRD-CT data obtained from microsamples taken from Cultural 

Heritage artefacts. Such samples can be composed of many 

different phases of different natures, from mineral to organic, 

and with various crystallinity states, from fully amorphous to 

large crystal grains. They can be intimately mixed at the 

micron scale and the knowledge of their respective location, 

layer’s thicknesses, etc., is important for the identification of 

the recipe used by the ancient craftsmen. Therefore, Cultural 

Heritage samples constitute an excellent playground for 

developing and testing these techniques.  

Here, this experimental strategy has been applied to 

investigate the local specificities of manufacturing so-called 

applied brocade decors in the Savoy duchy. Applied brocade is 

a tin relief medieval polychromy technique developed during 

the first half of the 15th century in the Low Countries which 

then spread into all western Europe, which allowed to mimic 

the rendering of the sumptuous medieval clothes embroidered 

with gold or/and silver yarns. Its basic component is generally 

a sheet of tin foil pressed into a mold previously incised with 

the decorative pattern. The tin sheet is then filled with some 

pasty material, unmolded and applied on the surface to be 

decorated. It is then gilded with a gold/silver foil and 

sometimes highlighted with a colored glaze. These complex 

artefacts have been submitted to several kinds of degradations 

over time, such as extensive over-paintings, oxidation of 

metallic layers, etc. As part of an ongoing interdisciplinary 

study, our work aims at a detailed description of applied 

brocade in 15th and 16th century Savoy Duchy
22-25

. 

2. Experimental 

2.1. Sample 

For this study, we have focused our attention on a wooden 

Pièta statue coming from the Montrottier castle located in 

Lovagny, France (Figure S1), onto which applied brocade 

decorations had been identified by visual inspection. In the 

course of its restoration at the ARC-Nucleart laboratory (CEA, 

Grenoble), the statue was submitted to detailed in situ 

inspection using a portable XRD/XRF instrument, confirming at 

specific places the presence of tin-containing phases and gold, 

characteristic of the presence of applied brocades
25

. In order 

to gain insight into the composition, stratigraphy, 

manufacturing and degradation of these artefacts, several 

microsamples were collected for further investigations using 

synchrotron XRD/XRF-CT, at various locations were the 

presence of brocades had been confirmed using the portable 

x-ray instrument. These microsamples are chips of millimetric 

size in their larger dimension and a few hundred microns thick. 

They were sampled so as to preserve the entire stratigraphy 

from the preparation layers to the brocade system itself, 

including possible overpaintings. The selected microsample 

locations on the statue are shown in Figure S1, and a typical 

one is shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 
 

Figure 1: Reference microsample, Montrottier Pièta, Saint Mary Magdalene’s dress, 

“continuous brocade”, S2018-157. Left: front view showing the presence of gold traces. 

Center: Back view showing the preparation layer. The nylon Mitegen micromount is 

visible at the bottom. Right: side views revealing the sample stratigraphy 

In addition, SEM-EDX measurements were also performed on 

some microsamples. The sample was cut at the level of a 

chosen layer, imbedded in resin and polished for Scanning 

electron microscopy (SEM) examination. SEM was carried out 



ARTICLE Journal Name 

4 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

using a Zeiss Ultra+ microscope. Microanalysis (EDX) 

measurements were performed using a Silicon Drift (SDD) 

detector. In order to identify the organic materials, Fourier 

Transform Infrared (FTIR) measurements were also performed. 

 

2.2. XRD/XRF-CT measurements  

XRD/XRF-CT measurements were performed at the BM02-

D2AM French CRG beamline
26

 of the European Synchrotron 

Radiation Facility (ESRF, Grenoble, France). The microsamples 

were mounted on a Mitegen micromount covered with a thin 

layer of wax avoiding any invasive intervention and allowing 

the possibility to perform further complementary analyses, 

fixed on a goniometer head and aligned at the center of the 

D2AM 6-circle diffractometer. For XRD measurements, a 2D 

ImXPAD D5 pixel detector was attached to the diffractometer 

2θ arm at a sample-detector distance of 215 mm and a 2θ 

angle of 3.5°. The geometry and beam wavelength were 

calibrated from the XRD measurement of a NIST-660c LaB6 

capillary sample using the PyFAI library
27

. The XRF detector 

(KETEK SDD AXAS-M1) was located at 100 mm from the sample 

in reflection geometry at an angle of 40° from the direct beam. 

The energy scale was calibrated using the PyMCA software
28

 

from the positions of a few well identified fluorescence peaks. 

The energy of the monochromatic beam was tuned at 20 keV 

(or 0.61992 Å) with a flux of about 10
10

 photons/s. This energy 

has been chosen in order to allow good detection efficacy for a 

large number of elements using XRF, and to access a wide 

range of reciprocal space for XRD. The beam was focused by a 

set of Kirkpatrick–Baez mirrors down to a probe size of 25 x 40 

µm
2
 offering a gauge volume containing a sufficiently large 

number of crystallites for powder diffraction averaging and 

allowing to perform in a reasonable time frame a thorough 

study of the microsamples. With these conditions, each 

measurement point required a 1s exposure time. In order to 

improve the resolution of the image, and since we used the 

smallest available beam size on the instrument, we applied the 

oversampling method
3
 and decreased the translation step size 

down from 40 µm to 25 µm, leading to a final voxel size of 25 x 

25 x 25 µm
3
 in the tomographic reconstructions. In order to 

reduce the time spent for sample rotation, a continuous 

rotation scan was used with a 2° rotation step. Thus, the 

tomographic data collection of a microsample slice of 1 mm 

maximum length, using e.g. 45 translation points each 25 µm 

(a few points are added on each side out of the sample), 

required approximately 2.5 hours. Five microsamples from the 

Montrottier Pièta were investigated, in which several slices 

were measured to obtain a more precise 3D description, their 

locations being chosen by visual inspection. For example, the 

positions of the slices for the microsample S2018-157 are 

shown in Figure 1. In the following, we will concentrate on the 

slice #2 of sample 2018-157. 

 

2.3. Pre-treatment of the XRD/XRF-CT data 

After collection, the data were treated to account for various 

effects and organized as data cubes (i.e. 3D matrices) for their 

subsequent investigation using multivariate analysis. All 

treatments were made using scripts written in Python 3, and 

the initial and treated data were stored in HDF5 format. For 

the XRF data, the recorded spectra (4096 points each) were 

stored as data cubes without modification. The XRD data 

required first the transformation from 2D to 1D diffraction 

patterns which was carried out by radial integration using 

PyFAI. The 1D patterns contain 3000 points extending from 2θ 

=0° to 33 ° with a step size of ≈0.011°. During this process, it 

was realized that many diffraction images showed the 

presence of strong Bragg spots coming from relatively large 

isolated grains. Although these grains (identified as mostly 

gypsum grains) represent a minor volume of the sample, the 

strong Bragg peaks they produce can greatly reduce the quality 

of the powder patterns and tomographic reconstructions. 

Therefore, their contribution was filtered out using the 

function ‘separate’ from the PyFAI library. The 1D XRD 

patterns were then stored as (T, R, D) data cubes. For our 

microsample S2018-157 which required a 2.05 mm translation 

scan, a data cube contained 82 x 180 = 14760 pattern of 3000 

points each, i.e. 44 280 000 points. The XRD data cubes were 

submitted to further pre-treatments including:  

-limiting the 2θ range;  

-automatic background subtraction. In such tomographic 

experiment, the background level and shape can fluctuate 

quite strongly during the rotation of complex shaped samples, 

due to variations in x-ray absorption, shadowing of diffuse x-

ray scattering, etc. This can greatly complicate the task of 

identifying a limited number of components for the 

multivariate analysis algorithms. Therefore, it is mandatory to 

remove background beforehand. After several attempts, we 

adapted a 1D rolling ball algorithm applied sequentially to all 

patterns, after Savitzky-Golay smoothing. This proved to be 

efficient and robust, especially to take account of abrupt 

background changes between adjacent points in the sinogram;  

-zeroing the data outside the sample area, which improves 

the quality of the tomographic reconstruction; 

-applying a center-of-mass correction to account for off 

centering of the sample rotation axis with respect to the x-ray 

beam, leading to a dissymmetry of the sinogram and artefacts 

in the reconstructed image.  

The sinograms were then transformed to reconstructed 

images and displayed using the inverse radon transform iradon 

implemented in the scikit-image python library
29

 (Figure 2). At 

this stage, it is possible to examine the sinograms or 

corresponding reconstructions to look for the location of 

specific features as phases (for XRD) or chemical elements 

(XRF).  
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Figure 2: XRD pattern (top), sinogram (bottom left) and tomographic reconstruction 

(bottom right) for the sum of all XRD-CT data after data reduction. The approximate 

shape of the sample is shown as a grey line. 

2.4. Element / phase identification and Rietveld refinements of 

summed data 

The XRF spectrum summed over all voxels is shown in Figure 

S2 and was used to identify the chemical elements present in 

the sample. The spectrum is strongly dominated by heavy 

elements such as lead and mercury. Gold seems to be present 

as a shoulder on the left side of the mercury peaks. Iron and 

calcium are the most prominent lighter elements, with minor 

ones such as copper, nickel and chromium probably coming 

from contamination by the experimental setup rather than 

from the sample. Finally, sulfur, tin and traces of chlorine are 

detectable by their Lα lines at 3.44 keV (Sn) and Kα lines at 

2.31 keV (S) and 2.62 keV (Cl), respectively. The peak at 2.98 

keV may be attributed to ArKα from air scattering, though the 

Lα lines of silver may contribute at the same position. These 

data being the sum of a layered sample rotated in the beam 

during experiment, a tentative XRF quantification of the 

elements would be rather inaccurate. Moreover, the elements 

detected can participate to several phases located at different 

places and with different purposes. In order to get further 

insight into the sample organization, it is necessary to make 

use of the diffraction data. 

The XRD data summed over all voxels of the sinogram were 

used for a first identification of the crystalline phases with the 

EVA software
30

 and the PDF4+ database
31

 (Figure S3). For 

complex samples such as those investigated here, which are 

made of several metallic and painted layers deposited on a 

substrate, the number of phases can be quite large. It may be 

difficult to identify all the phases, since Bragg peaks from 

minor constituents can be hidden among the strong peaks 

from major ones (see Figure S3). Here, seven phases could be 

identified: cinnabar (HgS), gypsum (CaSO4,2H2O), the two tin 

oxides cassiterite (SnO2) and romarchite (SnO), two lead 

carbonates: cerussite (PbCO3) and hydrocerussite 

(Pb3(CO2)2,(OH)2) and beeswax identified as n-paraffin. The 

presence of gold, which is expected from visual inspection of 

the sample and from the XRF data, can be only assessed by a 

small shoulder on the right side of a peak from cassiterite at 2θ 

= 15.1°. To ascertain the phase identification, a Rietveld 

refinement was carried out using the FullProf software
32

 

allowing to better identify the minor phases (Figure 3). Thanks 

to quantitative analysis, it also allows obtaining an estimate of 

the mass fraction of the crystalline phases in the sample. 

Finally, diffractograms from the individual phases can be 

extracted for subsequent use in the supervised MCR-ALS 

procedure. For these refinements, a Pseudo-Voigt profile 

function was used and the background was determined by 

linear interpolation between selected points. Only the scale 

factor, an overall atomic displacement parameter, the cell and 

profile parameters were refined for each phase, the atomic 

structure parameters being kept fixed. To compare with the 

results from multivariate analysis (see below) three additional 

phases were also included in the refinement, although they 

were not clearly identified in the search-match analysis: 

minium (Pb3O4), goethite (FeOOH) and chlorargyrite (AgCl) 

resulting in a total of 11 phases. The latter two phases are also 

compatible with the observation of iron, silver and chlorine in 

the XRF data. In decreasing order of weight fraction: beeswax 

(41%), gypsum  

 

 

 

 

 

 

Figure 3: Rietveld refinement of the summed XRD-CT data including 11 phases.  

Rp=12.4, Rwp=16.0, Rexp=9.78, Chi2=2.69.  

(23%), cassiterite (15%), romarchite (8%), cinnabar (8%), 

goethite (2%), hydrocerussite, cerussite and chlorargyrite (1%), 

minium and gold (<1%). 

In the case of beeswax, for which no crystal structure has been 

published, we recorded a XRPD pattern on a Bruker D8 

Endeavor diffractometer, with CuKα radiation in Bragg-

Brentano geometry, for a natural beeswax sample (purchased 

from C.T.S., Italy) mixed with corundum powder. This allowed 

us to check that the XRPD pattern of natural beeswax is very 

close to those observed in our samples as well as to that of 

n-paraffin in the PDF4+ database
33

. The corundum powder was 

used to calibrate the beeswax pattern Bragg peak intensities 

for the determination of its weight fraction by Rietveld analysis 

of the tomographic data. 
 

2.5. 3D analysis of the XRD-CT data using PCA/MCR-ALS and NMF 

The data cube was used for PCA decomposition using the 

scikit-learn python library
34

. Figure 4a shows that most of the 

data variance is explained by a small number of components. 

The plot of the first two components (figure 4b&c) also 

demonstrates that this type of decomposition is not suitable 

for phase identification, with strong negative signal in 

component 2, since the orthogonality constraint used in PCA is 

not adapted to this kind of physical data. Nevertheless, this 

can be used to estimate the number d of components to be 

used in a further analysis using e.g. MCR-ALS.  

MCR-ALS was applied using the pyMCR python package
35

 and 

non-negative least-squares regressor. Non-negativity 

constraints were applied to both the C and S matrices (i.e. 

concentrations and components).  
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Figure 4: Results of the PCA decomposition: a) cumulative sum of explained variance vs 

component number; b & c) first and second components. 

To provide a starting estimate of the S matrix, we used the first 

d components found by PCA and change all negative values to 

a small positive one to respect the non-negativity constraint. 

Different numbers of components were tested. In principle, d 

cannot exceed the number of phases in the sample, i.e. close 

to 9 for the present sample if we consider the 11 phases used 

in the Rietveld refinement of the sum data. However, given the 

large size of the voxels, the presence of components consisting 

in a mixture of phases expected to be adjacent in the sample 

(e.g. the two tin oxides) is highly probable, which will reduce 

the number of components to be found. Figure S4 shows that 

the data can be successfully described using either 6 or 9 

components. 

The individual patterns for the components can be seen in 

Figures S5 and S6, as well as their concentration maps for the 

sinogram and real space reconstructions. For the 9 

components case, components 1 and 4 consist almost 

exclusively in gypsum, while components 0 and 8 contain 

mainly cinnabar, components 6 and 7 are mixtures of 

cassiterite and romarchite, etc. As suggested above, the 

process is not able to decompose the data into individual 

phases. Figure S7 shows a part of the XRD patterns for 

components 1 and 4. The patterns are very similar and can be 

indexed as gypsum, but the peaks are obviously shifted 

between the two patterns. This might be attributed to an 

apparent change of position of the diffraction center occurring 

during sample rotation, due to the very anisotropic sample 

shape, which modifies the distance to the detector. Since the 

data can be equally well described with only 6 components a 

choice of a larger number is not justified. In any case, the 

location of individual phases in the sample requires an 

additional step consisting in the identification and 

quantification (e.g. by Rietveld refinement) of the different 

phases in each component pattern. However, this task is now 

much easier than the previous one carried on the sum data, 

since the number of phases in each single pattern is much 

smaller and less peak overlapping occurs. This also allows 

identifying additional phases which could have been 

overlooked previously. 

In principle, the MCR-ALS method with these positivity 

constraints used here should give equivalent results as NMF. In 

order to check this, we have used the NMF python 

implementation in the scikit-learn library
29

. Here only the 

number of components has to be provided. As shown in figure 

S8 for the case of 6 components, the set of patterns obtained 

after NMF analysis and their location in the reconstructed slice 

are similar to those obtained by MCR-ALS, although the order 

and scaling are different. 

This provides an excellent test of the procedure 

reproducibility. It is also quite interesting to compare the 

execution times for both methods: using a standard laptop 

computer under Windows10® (i7 at 2.6 GHz, 16 Go of RAM) 

the MCR-ALS process took 863 s and the NMF 9.3 s. Weather 

such a large difference is due to the algorithm or to the 

programming or implementation efficiency is beyond the 

scope of this paper, but obviously, the NMF algorithm used 

here is able to decompose a large data cube in a quite short 

time, well compatible with the requirements for assessing data 

quality during a synchrotron experiment.  

 

 

 

 

 

 

 

 

 

 

 
Figure 5: Rietveld refinements of the 6 component patterns extracted by NMF. 

Component # 0 to 5 from left to right and top to bottom. Chi2=19.5, 6.0, 12.4, 11.3, 

11.4 and 14.6, respectively. 

The physico-chemical significance of the obtained component 

patterns found by NMF with 6 components has now to be 

checked by using them for phase identification and 

quantification. The phase matching search results can be seen 

in figure S9, while the Rietveld plot are shown in Figure 5. In 

figure S9, the main phases found in the sum pattern analysis 

can be clearly identified in the component patterns. Moreover, 

minor phases which cannot be directly observed on the sum 

pattern can also be detected here. For example, on the pattern 

of component 5, gold can be clearly seen with 3 peaks at 

2θ=15.11°, 17.5° and 24.8° and chlorargyrite with 3 peaks at 

2θ=11.1°, 12.8° and 18.2°. A small peak at 2θ=5.7° can be 

tentatively attributed to minium. In components 0, 2 and 4, 

two peaks at 2θ=8.5° and 14.5° suggest the presence of 

goethite. Rietveld refinements of the 6 component patterns 

were carried out to validate their presence and determine the 

mass fractions of the phases in each component, which are 

reported in Table 1. From this table, the phase concentration 

matrix Cp representing the concentration of each phase in each 

voxel of the sample tomographic reconstruction can be 

obtained by the Cp=C. 
t
P matrix multiplication, where C is the 

concentration matrix of the components found by NMF and 
t
P 

is the transpose of the P matrix containing the phase 

concentrations of each components. The P matrix, 

corresponding to Table 1, is of dimensions p.d, p being the 

number of phases and d the number of components. However, 

before proceeding to this calculation, the components have to 

be properly scaled with respect to each other, since no 

physical scaling is provided by the algorithm. 
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 Table 1: Mass fractions in % of the different phases for each of the 6 components 

found by NMF after Rietveld refinement. 

In order to scale the components, we derived a method similar 

to the Reference Intensity Ratio (RIR) method which uses the 

ratio of the strongest peak of a given phase a to the strongest 

peak of a standard c (usually corundum)
36

. However, using the 

strongest peak height here proved to be quite inaccurate 

because of large variations between the peak widths of 

different phases, and we rather used the scale factors 

obtained from the Rietveld refinement instead. For each 

component, the scaling is calculated using the phase a with 

the largest weight fraction. The ratio between the scale factors 

of phase a and corundum c for an equimass mixture can be 

easily computed as: 

 

   
  

  
 
       

       
 

where ATZ and V are the molecular mass and the volume of 

the unit cell as computed by the Fullprof program, 

respectively. The scale factor to be applied to each component 

i can then be obtained as: 

   
      

     
 

where Wa is the mass fraction of phase a in the component i. 

The intensity values from the pattern of each component i is 

divided by the corresponding Si value, while the component 

concentrations from matrix C are multiplied by the same 

values, so that the calculated C.S matrix containing the 

reconstructed patterns for all pixels remains unchanged. The 

correctly scaled C matrix can then be used to compute the Cp 

matrix containing the phase concentrations in all voxels as 

shown above. The distribution of the 11 phases in the layer are 

shown in Figure 6. The composition of any voxel or its 

evolution along line cuts can be obtained to facilitate the 

interpretation of the results. 

 
Figure 6: Tomographic reconstruction of the concentrations of the 11 phases quantified 

by Rietveld analysis of the 6 component patterns obtained by NMF. From left to right 

and top to bottom: gypsum, cinnabar, beeswax, romarchite, cassiterite, cerussite, 

hydrocerussite, goethite, minium, gold, chlorargyrite. The approximate sample shape is 

shown as a grey line. The color hue is scaled to maximum concentration for each plot. 

3. Discussion 

Supervised MCR-ALS analysis can provide a good check for the 

validity of the phase concentrations extracted using 

(unsupervised) NMF. For this analysis, the patterns of the 11 

individual phases introduced in the S matrix were simulated 

using the results of the previous Rietveld refinement of the 

sum pattern, with a 0 intensity background. MCR-ALS was 

applied using the pyMCR python package
35

 and non-negative 

least-squares regressor. Non-negativity constraints were 

applied to the C matrix, while the S matrix was kept fixed.  

 

 

 

 

 

Figure 7: Comparison of the experimental sum data with the reconstructed sum 

pattern after supervised MCR-ALS decomposition using 11 components from Rietveld 

refinement. Blue: experimental pattern, orange: calculated, green: difference (shifted 

by -10% of the maximum). 

One can see in Figure 7 that the global agreement on the sum 

pattern is similar to the one obtained by Rietveld refinement.  

Moreover, this process directly yields for each voxel of the 

sample the concentration of the phases which have been 

introduced in the calculation. A small remaining background is 

Component 0 1 2 3 4 5 

Gypsum 7(1) 99(2) - - 72(10) 0.22(7) 

Cinnabar 64 (2) - - 8.2(8) 7(1) 0.25(3) 

Beeswax - - 51(4) - 7(14) 94(12) 

Goethite 26(2) - 3.0(3) - 13(3) - 

Cerussite - 0.48(3) - 7.3(7) - - 

Minium - - - - - 0.12(2) 

Hydrocerus

site 

- - - 23(2) - - 

Chlorargyri

te 

- - - - - 1.0(1) 

Gold - - 0.11(3) - - 0.39(4) 

Romarchite 2.6(5) - 22(1) 23(7) - 0.30(3) 

Cassiterite - - 24(1) 39(3) - 3.8(3) 
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still present at low angles which cannot be accounted for by 

the component set for which the background is fixed at 0. 

The observed background is the sum of the remaining signal 

after background subtraction of the 7380 individual patterns, 

and will be hard to completely eliminate. Since it varies in an 

erratic way from pattern to pattern, it cannot be accounted for 

by introducing an additional background component in the 

calculation. Also, the peak profile from the Rietveld refinement 

of the sum data may have difficulty to represent small 

variations of profile or scattering center during the 

tomographic data collection. Figure S10 shows the distribution 

of phase concentrations to be compared with those of Figure 6 

found by NMF. The distributions of the phases with the 

strongest concentrations (gypsum, cinnabar, beeswax, 

romarchite, cassiterite, cerussite and hydrocerussite) are quasi 

identical for the two methods. Gold, goethite and chlorargyrite 

are only partly similar, and the distribution of minium for the 

supervised analysis is somewhat erratic. Given the small 

concentrations of these phases and the only approximate 

agreement of the decomposition using the supervised method 

as seen from Figure 7, it is no surprise that these phases could 

not be modelized accurately. On the other hand, the very good 

agreement for the major phases determined independently by 

the two methods constitute a satisfactory validation test. 

Table 2 shows the mass fractions of the phases as determined 

by Rietveld refinement of the sum data and by multivariate 

analysis using NMF decomposition (6 components) and 

supervised MCR-ALS. The overall agreement is quite 

satisfactory given the large differences between the methods. 

The NMF values show a somewhat poorer agreement with the 

Rietveld ones, especially due to an overestimation of beeswax, 

a phase that mainly appears as 2 Bragg peaks in the diffraction 

patterns and may be difficult to estimate accurately. As phase 

quantification through NMF requires an additional step  

 
Table 2: Mass fractions in % of the different phases determined by Rietveld refinement 

of the sum data and by multivariate analysis using NMF decomposition (6 components) 

and supervised MCR-ALS. 

Phases 
Rietveld 

(sum data) 

NMF  

(6 components) 

MCR-ALS 

supervised 

Gypsum 23.1(1) 18.0 25.6 

Cinnabar 7.8(3) 1.3 8.3 

Beeswax 40.9(4) 57.5 40.0 

Goethite 1.9(1) 1.8 3.4 

Cerussite 0.9(7) 0.5 1.1 

Minium <0.01 0.1 0.3 

Hydrocerussite 1.3(1) 1.6 1.5 

Chlorargyrite 1.0(1) 0.5 0.8 

Gold 0.2(2) 0.2 0.3 

Romarchite 8.3(4) 7.6 8.8 

Cassiterite 14.6(7) 10.9 9.9 

 

(Rietveld fitting of the components) as compared to supervised 

MCR-ALS, the obtained precision maybe decreased. 

Although it can look appealing, using the supervised method 

seems to be prone to several drawbacks. It first requires to 

correctly identify all the phases present in the sample, through 

search-match analysis of the sum pattern and to prepare the 

individual patterns for all these phases. This necessitates to 

perform the Rietveld refinement of the sum pattern, since the 

line profiles depend on the experimental resolution function 

and on the crystalline quality of each phase. This work can be 

rather long and the description of minor phase profiles cannot 

be very accurate. Furthermore, as we have seen above, the 

diffraction center of a given phase can vary during the 

tomographic experiment, depending on the phase distribution 

in the sample. The peak shifts due to these variations will yield 

a broadening and distortion of the peak profiles of the sum 

pattern. Finally, the presence of a remaining background in the 

sum pattern may lead to inaccuracies in the localization of 

minor phases. This method should thus be restricted to 

relatively simple and small samples where such drawbacks 

would be limited. 

The phase distribution in the sample chip can now be 

examined on the basis of the NMF multivariate analysis 

results. From bottom to top of the chip (the bottom is on the 

right side in Figure 8a) the first feature consists in a 

preparation layer made of gypsum, followed by a layer of 

cinnabar mixed with some gypsum and goethite. One does not 

observe a strong signal in the center of the sample, which may 

be due to the presence of a non-diffracting/amorphous phase, 

mixed locally with cinnabar, lead white and goethite. More to 

the top, one observes a strong layer of beeswax, mixed with a 

somewhat disturbed distribution of tin oxides. Gold mixed 

with silver chloride and maybe minium are located as two 

strong spots on top of the tin oxide layer. Finally, on top of the 

gold spot, a mixture of cinnabar and lead white is observed. 

This stratigraphy can be interpreted in the following way: a 

preparation layer made of gypsum was covered by a vermillion 

paint, on which the brocade system was applied. It consisted in 

two filling layers, one made of an amorphous phase mixed 

with various pigments, and a second one made of beeswax on 

which the tin foil and gilding were attached. The tin layer is 

now fully degraded into a mixture of the two tin oxides. The 

gilding was made of gold and silver, possibly zwischgold, 

consisting in two thin sheets of gold and silver hammered 

together
37

. Finally, the brocade is covered by an overpainting 

layer containing lead white and cinnabar. Despite their limited 

spatial resolution, these observations (such as the nature of 

the preparation layer, the presence and composition of two 

brocade filling layers and the use of zwischgold) already 

constitute important markers which can be used to identify 

fabrication techniques specific to local craftsmen or schools. 

In order to compare these results with those which can be 

obtained by more classic investigation techniques, we 

sacrificed the sample 2018-157 which was cut at the level of 

layer 2, for SEM-EDX and FTIR measurements. The results of 

optical microscopy and SEM are shown in Figure 8, and the 

results of the analyses are summarized in Table 3. The 
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observations made with these techniques are in very good 

agreement with the results of the XRD-CT investigation. The 

organic phases present in the two brocade filling layers could 

be identified by FTIR as beeswax (as found by XRD-CT) and an 

organic layer loaded with lead soaps. For x-ray diffraction, lead 

soap compounds are known to yield strong Bragg peaks only at 

d spacing larger than 40 Å
38

, leading to too small angles to be 

detected in our geometrical configuration. This is also seen as 

a dip in phase concentrations observed on the profile of Figure 

8f showing the major phase concentrations obtained by NMF. 

On this profile taken from a virtual cut at the middle of the 

sample, the succession of phases and the layers thicknesses 

correspond well to what is observed on the optical microscopy 

image. This demonstrates that the NMF method for analysis of 

XRD-CT data is able to perform quantitative phases 

reconstruction in very complex systems without the need to 

destroy the sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8: Observation with optical microscopy (a) and SEM (b & c) of the stratigraphy of sample 2018-157 at the level of layer 2. The number refers to analysis points detailed in 

Table 3. Right FTIR spectra measured at points 3 (e) and 4 (d), compared with a measurement of pure beeswax (in red). In f, a profile taken at the middle of the sample showing 

the major phase concentrations obtained by NMF (the scale is in pixel, 1 pixel=24 µm). The concentrations are scaled to 1. 

 Table 3: results from the optical microscopy, SEM and FTIR investigations of sample 

S2018-157 layer 2. 

4. Conclusion 

The results shown above demonstrate the utility of using 

multivariate analysis methods, and particularly NMF, for the 

treatment of large data sets from XRF/XRD-CT experiments. 

Especially concerning XRD, the method allows to obtain in very 

reasonable computing time and in an automatic process the 

decomposition of the data cube into a small set of physically 

meaningful components representing diffraction patterns 

which can be used for search-match identification of phases 

and even Rietveld refinements and quantitative analysis. 

Depending on the sample complexity and experimental 

resolution (i.e. beam size vs characteristic size of sample 

inhomogeneity) the extracted components will consist of 

single or mixed phases. Using the quantitative analysis results 

for the components, the complete set of phase concentrations 

can be retrieved. Applied here to XRD-CT, the same method 

can be used to any kind of XRD data collection leading to large 

data sets, such as 2D mapping of large areas which is now 

often performed on artworks such as paintings or frescoes, 

etc. and can also be applied to XRF data. 

layer color nature Main chemical 

elements (from 

EDX) 

9 red Red overpainting (20 μm) : 

with vermillion (HgS) and 

lead white  

Pb, Si, Hg, S, Ca  

8 golden Gilding (1-2 μm) made of 

zwischgold or a gold-silver 

alloy 

Au, Ag, Cl  

7 grey Organic gluing layer 

between tin and gilding  

-  

6 grey Tin layer (≈50 μm)  Sn 

5 grey/ 

brown 

Organic layer containing 

lead. Gluing paste for the tin 

foil? 

Pb, Cl, Si  

4 black First brocade filling layer, 

pure beeswax as from FTIR  

Cl, Ca  

3 dark 

brown 

Second brocade filling layer, 

mixture of lead soap in an 

inorganic binding (most 

likely saponified oil, as from 

FTIR) and various pigments. 

Si, Fe, Ca, Al, Pb 

2 red Colored layer made of 

vermillion mixed with 

gypsum. 

Hg, S 

1 white Preparation layer (75-110 

µm), gypsum 

Ca, S 
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