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Abstract

This paper establishes a theory of nonlinear spectral decompositions by considering
the eigenvalue problem related to an absolutely one-homogeneous functional in an infinite-
dimensional Hilbert space. This approach is both motivated by works for the total vari-
ation, where interesting results on the eigenvalue problem and the relation to the total
variation flow have been proven previously, and by recent results on finite-dimensional
polyhedral semi-norms, where gradient flows can yield spectral decompositions into eigen-
vectors.

We provide a geometric characterization of eigenvectors via a dual unit ball and prove
them to be subgradients of minimal norm. This establishes the connection to gradient
flows, whose time evolution is a decomposition of the initial condition into subgradients of
minimal norm. If these are eigenvectors, this implies an interesting orthogonality relation
and the equivalence of the gradient flow to a variational regularization method and an
inverse scale space flow. Indeed we verify that all scenarios where these equivalences were
known before by other arguments – such as one-dimensional total variation, multidimen-
sional generalizations to vector fields, or certain polyhedral semi-norms – yield spectral
decompositions, and we provide further examples. We also investigate extinction times
and extinction profiles, which we characterize as eigenvectors in a very general setting,
generalizing several results from literature.

Keywords: Nonlinear spectral decompositions, gradient flows, nonlinear eigenvalue
problems, one-homogeneous functionals, extinction profiles.

AMS Subject Classification: 35P10, 35P30, 47J10.

1 Introduction

Spectral properties and spectral decompositions are at the heart of many arguments in math-
ematics and physics, let us just mention the spectral decomposition of self-adjoint linear op-
erators (cf. [34, 29]) or the eigenvalue problems for high-dimensional or nonlinear Schrödinger
equations (cf. [37]) as two prominent examples. In signal and image processing a variety of
successful approaches were based on Fourier transforms and Laplacian eigenfunctions, in im-
age reconstruction and inverse problems the singular value decomposition is the fundamental
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tool for linear problems. Over the last two decades variational approaches and other tech-
niques such as sparsity in anisotropic Banach spaces became popular and spectral techniques
lost their dominant roles (cf. [7, 18, 19, 22, 31]).

Standard examples considered in the nonlinear setting are gradient flows of the form

∂tu(t) = −p(t), p(t) ∈ ∂J(u(t)), u(0) = f,

in some Hilbert space with ∂J denoting the subdifferential of a semi-norm (without Hilbertian
structure in general) on a dense subspace, and variational problems of the form

1

2
‖u− f‖2 + tJ(u)→ min

u

with the norm in the first term being the one in the Hilbert space. As some recent results
demonstrate, the role of eigenvalue problems and even spectral decompositions may be un-
derestimated in such settings. First of all, data f satisfying the nonlinear eigenvector relation

λf ∈ ∂J(f)

for a scalar λ give rise to analytically computable solutions for such problems, which was
made precise for the TV flow (cf. [3, 5]) and is hidden in early examples for the variational
problem (cf. [32] and [6] for a detailed discussion). Secondly, for a general datum f the
solution of the gradient flow satisfies

f − f =

∫ ∞
0

p(t) dt,

i.e., the datum is decomposed into subgradients p(t) of the functional J . Here f denotes
component of the datum f which is in the null-space of J and is left invariant under the
flow, for instance the mean value of a function in the case J = TV. In the case, that these
subgradients are even eigenvectors, this is called a nonlinear spectral decomposition.

In [6] some further interesting properties of nonlinear eigenvectors (in a more general
setting) such as their use for scale estimates and several relevant examples have been provided.
A rather surprising conjecture was made by Gilboa (cf. [27]), suggesting that TV flow and
similar schemes can provide a spectral decomposition, i.e., time derivatives of the solution
are related to eigenfunctions of the total variation. This was made precise in [16] in a certain
finite-dimensional setting; furthermore, scenarios where a decomposition into eigenvectors can
be computed were investigated. In more detail, functionals of the form J(u) = ‖Au‖1 with a
matrix A such that AAT is diagonally dominant lead to such spectral decompositions.

In an infinite-dimensional setting a detailed theory is widely open and will be subject of
this paper. We will consider an absolutely one-homogeneous functional J on a Hilbert space
and the corresponding eigenvalue problem λu ∈ ∂J(u). Effectively this means we look at a
semi-norm defined on a subspace (being dense in many typical examples) of the Hilbert space
and investigate the associated eigenvalue problem and gradient flow. The basic theory does
not assume any relation between J and the norm of the Hilbert space, but we shall see that
many favourable properties of the gradient flow – such as finite time extinction, for instance
– rely on a Poincaré-type inequality. That is, after factorizing out the null-space of the func-
tional we have a continuous embedding of the Banach space with norm J into the ambient
Hilbert space. It is thus natural to think in terms of a Gelfand triple, with subgradients of J
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existing a-priori only in a dual space which is larger than the Hilbert space. The eigenvalue
problem and the gradient flow naturally lead to considering only cases with a subgradient
in the Hilbert space, which is an abstract regularity condition known as source condition in
inverse problems (cf. [17, 7]). We shall see that a key role is played by the subgradient of
minimal norm (known as minimal norm certificate in compressed sensing and related prob-
lems, cf. [24, 23, 20]). A first key contribution of this paper is a geometric characterization
of eigenvectors in such a setting, which is based on a dual characterization of absolutely one-
homogeneous convex functionals. Roughly speaking we can interpret all possible subgradients
as elements lying on the boundary of a dual unit ball (the subdifferential of J at 0) and single
out eigenvectors as those elements which are a normal vector to an orthogonal supporting
hyperplane of the ball. Thus, the eigenvalue problem becomes a geometric problem for a
Banach space relative to a Hilbert space structure.

We also show that being a subgradient of minimal norm is a necessary condition for
eigenvectors. This establishes an interesting connection to gradient flows, which automati-
cally select subgradients of minimal norm as the time derivative of the primal variable. We
hence study gradient flows in further detail and conclude that – if the above-noted geometric
condition is satisfied – they yield a spectral decomposition, i.e., a representation of the initial
data f as integral of eigenvectors with decreasing frequency (decreasing Hilbert space norm
at fixed dual norm). Moreover, we show that if the gradient flow yields a spectral decompo-
sition, this is already sufficient to obtain equivalence to the variational method as well as an
inverse scale space method proposed as an alternative to obtain spectral decompositions (cf.
[15]). With an appropriate reparametrization from the time in the gradient flow to a spectral
dimension we rigorously obtain a spectral decomposition akin to the spectral decomposition
of self adjoint linear operators in Hilbert space as discussed in [16]. We apply our theory
to several examples: in particular, it matches the finite-dimensional theory for polyhedral
regularizations in [16], and it can also be used for the one-dimensional total variation flow,
a flow of a divergence functional for vector fields, as well as for a combination of divergence
and rotation sparsity. Moreover, we visit the simple case of a flow of the L1-norm, which
gives further intuition and limitations in a case where no Poincaré-type estimate between the
convex functional and the Hilbert space norm is valid.

Finally, we also discuss the extinction times and extinction profiles of gradient flows,
a problem that was studied for TV flow in detail before (cf. [3, 25, 8]). Our theory is
general enough to allow for a direct generalizations of the results to flows of absolutely one-
homogeneous convex functionals and simplifies many proofs. In particular, we can show
that under generic conditions the gradient flows have finite extinction time and there is
an extinction profile, i.e., a left limit of the time derivative at the extinction, which is an
eigenvector. Furthermore, we give sharp upper and lower bounds of the extinction time. For
flows that yield a spectral decomposition, we obtain a simple relation between the initial
datum, the extinction time, and the extinction profile. In the case of the one-dimensional
total variation flow we get the results in [8] as special cases.

The remainder of the paper is organized as follows: in Section 2 we discuss some basic
properties of absolutely one-homogeneous functionals and the related nonlinear eigenvalue
problem, Section 3 is devoted to obtain further geometric characterizations of eigenvectors
and to work out connections to subgradients of minimal norm. In Section 4 we discuss the po-
tential to obtain spectral decompositions by gradient flows. For this sake we give an overview
of the classical theory by Brezis, which shows that gradient flows generate subgradients of
minimal norm, and we also provide equivalence results to other methods in the case of spectral
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decompositions, for which we give a geometric condition. Moreover, we discuss the appro-
priate scaling of the spectrum from time to eigenvalues in order to obtain a more suitable
decomposition. In Section 5 we show that the geometric condition for obtaining a spectral
decomposition is indeed satisfied for relevant examples such as total variation flow in one
dimension and multidimensional flows of vector fields with functionals based on divergence
and rotation. Finally, in Section 6 we investigate the extinction profiles of the gradient flows,
which we show to be eigenvectors even if the flow itself does not necessarily produce a spectral
decomposition.

2 Absolutely homogeneous convex functionals and eigenvalue
problems

In the following we collect some results about the basic class of convex functionals we consider
in this paper, moreover we provide basic definitions and results about the nonlinear eigenvalue
problem related to such functionals.

2.1 Notation

Let (H, 〈·, ·〉) be a real Hilbert space with induced norm ‖·‖ :=
√
〈·, ·〉 and J be a functional

in the class C, defined as follows:

Definition 2.1. The class C consists of all maps J : H → R ∪ {+∞} such that J is con-
vex, lower semicontinuous with respect to the strong topology on H, and absolutely one-
homogeneous, i.e.,

J(cu) = |c|J(u), ∀u ∈ H, c ∈ R \ {0}, (2.1)

J(0) = 0. (2.2)

The effective domain and null-space of J ∈ C are given by

dom(J) := {u ∈ H : J(u) <∞}, (2.3)

N (J) := {u ∈ H : J(u) = 0}. (2.4)

Note that dom(J) and N (J) are not empty due to (2.2) and that N (J) is a (strongly and
weakly) closed linear space [14] whose orthogonal complement we denote by N (J)⊥. The
effective domain dom(J) is also a linear space but not closed, in general. Given any f ∈ H,
the orthogonal projection f̄ of f onto N (J) is

f̄ := arg min
u∈N (J)

‖u− f‖ , (2.5)

and the “dual norm” of f ∈ H with respect to J is defined as

‖f‖∗ := sup
u∈N (J)⊥

〈f, u〉
J(u)

. (2.6)

Considering J as a norm on the Banach space

V = dom(J) ∩N (J)⊥, (2.7)
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the above dual norm is indeed defined on the dual space of V (respectively a predual if
it exists). Hence, we naturally obtain a Gelfand triple structure V ↪→ H ↪→ V∗ and the
eigenvalue problem can also be understood as a relation between the geometries of the Hilbert
space H and the Banach spaces V and V∗.

By ∂J(u) we denote the subdifferential of J in u ∈ dom(J), given by

∂J(u) := {p ∈ H : 〈p, v〉 ≤ J(v), ∀v ∈ H, 〈p, u〉 = J(u)} , (2.8)

and define dom(∂J) := {u ∈ H : ∂J(u) 6= ∅}. Of particular importance will be the
subdifferential in zero

∂J(0) = {p ∈ H : 〈p, v〉 ≤ J(v), ∀v ∈ H}, (2.9)

which uniquely determines J as we will see. Using the definition of the dual norm (2.6), it
can be easily seen that

∂J(0) = {p ∈ N (J)⊥ : ‖p‖∗ ≤ 1}, (2.10)

i.e., roughly speaking the subdifferential of J in 0 coincides with the dual unit ball in the
space V∗.

Lastly, we recall the definitions of the Fenchel-conjugate of a general function Φ : H →
[−∞,+∞] as Φ∗(u) := supv∈H〈v, u〉 − Φ(v) and of the indicator function of a subset K ⊂ H
as

χK(u) :=

{
0, u ∈ K,
+∞, u /∈ K.

We refer to [4] for fundamental properties.

2.2 Absolutely one-homogeneous functionals

In the following, we collect some elementary properties of functionals in the class C defined in
Definition 2.1 and their subdifferentials whose proofs are either trivial or can be found in [16].

Proposition 2.2. Let J ∈ C, u, v ∈ H, and c > 0. It holds

1. J(u) ≥ 0,

2. J(u+ v) ≤ J(u) + J(v) and J(u)− J(v) ≤ J(u− v),

3. J(u+ w) = J(u) for all w ∈ N (J),

4. J∗(u) = χ∂J(0)(u),

5. ∂J(u) is convex and weakly closed and it holds ∂J(u) ⊂ ∂J(0),

6. ∂J(cu) = ∂J(u),

7. ∂J(u) ⊥ N (J), i.e., 〈p, w〉 = 0 for all p ∈ ∂J(u), w ∈ N (J).

As already indicated, the knowledge of the set ∂J(0) suffices to uniquely determine a
functional J ∈ C. Furthermore, any such functional has a canonical dual representation,
similar to the concept of dual norms. This is no surprise since the elements of C are semi-
norms on subspaces of H and norms if and only if they have trivial null-space.
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Theorem 2.3. A functional J : H → R ∪ {∞} belongs to C if and only if

J(u) = sup
p∈K
〈p, u〉 = χ∗K(u)

for a set K ⊂ H that meets K = −K. In this case, it holds

∂J(0) = conv(K)

where conv denotes the closed convex hull of a set.

Proof. It is well-known that the Fenchel-conjugate of an absolutely one-homogeneous func-
tional J is given by J∗(u) = χ∂J(0). Hence, for the first implication we observe that by
choosing K := ∂J(0) and using that – being lower semi-continuous and convex – J equals its
double Fenchel-conjugate it holds J(u) = J∗∗(u) = χ∗K(u) = supp∈K〈p, u〉. Furthermore, K
meets K = −K which can be seen from 〈−p, u〉 = 〈p,−u〉 ≤ J(−u) = J(u) for p ∈ K.

Conversely, any J given by J(u) = supp∈K〈p, u〉 = χ∗K(u) where K = −K trivially
belongs to C and it holds J∗ = χ∗∗K = χconv(K). Hence, by standard subdifferential calculus
one concludes ∂J(0) = {p ∈ H : J∗(p) = 0} = conv(K).

Remark 2.4. Using the convexity and homogeneity of J , Jensen’s inequality immediately
implies that the generalized triangle inequality

J

(∫ b

a
u(t) dt

)
≤
∫ b

a
J(u(t)) dt (2.11)

for a function u : [a, b]→ H holds, whenever these expressions make sense.

Due to Theorem 2.3, we will from now on assume that

J(u) = sup
p∈K
〈p, u〉, u ∈ H, K := ∂J(0), (2.12)

after possibly replacing K by the closure of its convex hull.

2.3 Subgradients and eigenvectors

In this section, we will define the non-linear eigenvalue problem under consideration and
provide first insights into the the geometric connection of eigenvectors and the dual unit
ball K. We start with general subgradients of a functional J ∈ C before we turn to the special
case of subgradients which are eigenvectors.

Definition 2.5 (Subgradients). Let J ∈ C and u ∈ dom(∂J). Then the elements of the set
∂J(u) are called subgradients of J in u.

Proposition 2.6. Let p be a subgradient of J in u 6= 0 and let K be as in (2.12). Then p
lies in the relative boundary ∂relK of K, where ∂relK = K \ relint(K) and relint(K) = {p ∈
K : ∃c > 1 : cp ∈ K} denotes the relative interior of K.
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Proof. We observe that for all c ∈ [0, 1] and v ∈ H it holds

〈cp, v〉 = c〈p, v〉 ≤ cJ(v) ≤ J(v),

i.e., cp ∈ K. Let us assume that there is c > 1 such that cp ∈ K. Then, using that p ∈ ∂J(u)
yields

c〈p, u〉 = 〈cp, u〉 ≤ J(u) = 〈p, u〉

which clearly contradicts c > 1. Hence, we have established the claim

Interestingly, due to the fact that subdifferentials ∂J(u) are convex sets and lie in the
(relative) boundary of the convex set K, they are either singletons or lie in a “flat” region of
the boundary of K.

Definition 2.7 (Eigenvectors). Let J ∈ C. We say that u ∈ H is an eigenvector of ∂J with
eigenvalue λ ∈ R if

λu ∈ ∂J(u). (2.13)

Remark 2.8. Due to the positive zero-homogeneity of ∂J(u) any multiple cu of u with c > 0
is also an eigenvector of ∂J with eigenvalue λ/c. To avoid this ambiguity one sometimes
additionally demands ‖u‖ = 1 from an eigenvector u. In this work, however, we do not
adopt this normalization since it does not match the flows that we are considering. As a
consequence, all occurring eigenvalues should be multiplied by the norm of the eigenvector
to become interpretable. E.g., let p ∈ ∂J(p). Then q := p/ ‖p‖ has unit norm and is an
eigenvector of ∂J with eigenvalue λ := ‖p‖ since λq = p ∈ ∂J(p) = ∂J(q). The last equality
follows from 6. in Proposition 2.2.

Now we collect some basic properties of eigenvectors and, in particular, we show that
eigenvectors are the elements of minimal norm in their respective subdifferential. Hence, one
can restrict the search for eigenvectors to the subgradients of minimal norm; this shows a
first connection to gradient flows which select the subgradients of minimal norm, as already
indicated.

Proposition 2.9 (Properties of eigenvectors). Let u ∈ H be an eigenvector of ∂J with
eigenvalue λ ∈ R. Then it holds

1. −u is eigenvector with eigenvalue λ,

2. λ ≥ 0 and λ = 0 if and only if u = 0,

3. λu = arg min{‖p‖ : p ∈ ∂J(u)}.

Proof. We only proof the third item. It holds for all p ∈ ∂J(u) that

λ ‖u‖2 = 〈λu, u〉 = J(u) = 〈p, u〉 ≤ ‖p‖ ‖u‖

and, since λ ≥ 0, we obtain ‖λu‖ ≤ ‖p‖. The convexity of ∂J(u) shows that λu is the unique
element of minimal norm.

Remark 2.10. In the following, we will simply talk about eigenvectors whilst suppressing the
dependency upon ∂J , for brevity.
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It is trivial that all elements in the null-space of J are eigenvectors with eigenvalue 0.
However, these eigenvectors are only of minor interest as the example of total variation shows,
where the null-space consists of all constant functions. Hence, in [6] so-called ground states
where considered. These are eigenvectors in the orthogonal complement of the null-space
with the lowest possible positive eigenvalue and, hence, the second largest eigenvalue of the
operator ∂J . In our setting, these ground states correspond to vectors with minimal norm in
the relative boundary ∂relK of K which was defined in Proposition 2.6.

Proposition 2.11. Let u0 be a ground state of J , defined as

u0 ∈ arg min
u∈N (J)⊥

‖u‖=1

J(u), (2.14)

and let λ0 := J(u0). Then p0 := λ0u0 is an element of minimal norm in ∂relK and an
eigenvector.

Proof. It has been shown in [6] that ground states u0 in (2.14) exist under relatively weak
assumptions1 and are eigenvectors with eigenvalue λ0. Furthermore, λ0 is per definitionem the
smallest eigenvalue that a normalized eigenvector in N (J)⊥ can have. Hence, p0 := λ0u0 ∈
∂J(u0) = ∂J(p0) which shows that p0 is an eigenvector. Let us assume there is q ∈ ∂relK such
that ‖q‖ < ‖p0‖ = λ0. This implies with the Cauchy-Schwarz inequality and the definition of
λ0

〈q, u〉 ≤ ‖q‖ ‖u‖ < λ0 ‖u‖ = J(u), ∀u ∈ N (J)⊥.

Since this inequality is strict, we can conclude that q /∈ ∂relK. Therefore, ‖p0‖ is minimal, as
claimed.

3 Geometric characterization of eigenvectors

In this section, we give a novel geometric characterizing of eigenvectors. Simply speaking,
eigenvectors p (with eigenvalue 1) are exactly those vectors on the relative boundary of K for
which there exists a supporting hyperplane of K through p that is orthogonal to p. In other
words, there is a multiple of the Hilbert unit ball which is tangential to ∂relK at p. All other
eigenvectors are multiples of these. In particular, the eigenvalue problem can be viewed as
studying the relative geometry of the unit balls in H and V∗, respectively, where V is given
by (2.7). Since this geometric interpretation is not very handy in case of infinite dimensional
Hilbert spaces (e.g. function spaces), we will only work with an algebraic characterization,
in the following. We start with a lemma that allows us to limit ourselves to the study of
eigenvectors with eigenvalue 1 without loss of generality.

Lemma 3.1. u ∈ H is an eigenvector with eigenvalue λ > 0 if and only if p := λu is an
eigenvector with eigenvalue 1.

Proof. The statement follows directly from 6. in Proposition 2.2.

A key geometric characterization is provided by the following result:

1E.g. if J meets (6.3)
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Proposition 3.2. p ∈ K is an eigenvector with eigenvalue 1 if and only if

〈p, p− q〉 ≥ 0 ∀q ∈ K. (3.1)

Proof. It holds that p is an eigenvector with eigenvalue 1 if and only if

〈p, p〉 = J(p) = sup
q∈K
〈p, q〉.

This is equivalent to (3.1) which concludes the proof.

The statement of Proposition 3.2 is illustrated in Figure 1 which shows four different dual
unit balls K ⊂ R2 together with all eigenvectors with eigenvalue one. It is obvious from the
picture that any other vector on the boundary does not meet the boundary orthogonally.

Figure 1: Four different dual unit balls K with all eigenvectors with eigenvalue one

Proposition 3.2 can be used to obtain the following results:

Corollary 3.3. Let p be a point of maximal norm in K, i.e. ‖p‖ ≥ ‖q‖ for all q ∈ K. Then
every positive multiple of p is an eigenvector.

Example 3.4. Consider the linear eigenvalue problem for a symmetric and positively semi-
definite matrix A ∈ Rn×n. The corresponding functional is given by J(u) =

√
〈u,Au〉 and

K is an ellipsoid. Along the main axes of the ellipsoid the hypersurface p + span{p⊥} is
tangential, hence the main axes define the eigenvectors.

Remark 3.5 (Existence of nonlinear spectral decompositions). Note that unlike in the above-
noted linear case, where there are exactly n different eigendirections, nonlinear eigenvectors
in our setting may constitute an overcomplete generating set of the ambient space, as it can
be seen in Figure 1. The leftmost set corresponds to the linear case and has two different
eigendirections. In contrast, in the non-linear cases one can have significantly more differ-
ent eigendirections which makes the set of eigenfunctions an overcomplete system in these
examples. Whether this is true in general, remains an open question. However, in Section 5
we give several relevant examples where there are sufficiently many nonlinear eigenvectors to
represent any datum as linear combination of such vectors. Note that from the second and
fourth set in Figure 1 it also becomes clear that in the nonlinear case one cannot expect to
have orthogonal eigenvectors as it is the case for compact self-adjoint linear operators.

Next we investigate for which elements q ∈ K the characterizing inequality (3.1) for
eigenvectors is actually an equality.

Proposition 3.6. Let u ∈ dom(∂J) and p := arg min {‖q‖ : q ∈ ∂J(u)} be an eigenvector
with eigenvalue 1. Then it holds

〈p, p− q〉 = 0, ∀q ∈ ∂J(u), (3.2)

which can be reformulated as ∂J(u) ⊂ ∂J(p).
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Proof. The non-negativity of the left-hand side follows directly from the assumption that p
is an eigenvector and thus fulfills (3.1). For the other inequality, we let q ∈ ∂J(u) arbitrary
and consider r := λq + (1 − λ)p for λ ∈ (0, 1), which is in ∂J(u), as well, due to convexity.
Using (3.1) and the minimality of ‖p‖ yields

λ〈p, q〉+ (1− λ) ‖p‖2 = 〈p, r〉 ≤ ‖p‖2 ≤ ‖r‖2 = λ2 ‖q‖2 + (1− λ)2 ‖p‖2 + 2λ(1− λ)〈p, q〉.

Dividing this by λ(1− λ) one finds

1

1− λ
〈p, q〉+

1

λ
‖p‖2 ≤ λ

1− λ
‖q‖2 +

1− λ
λ
‖p‖2 + 2〈p, q〉,

which can be simplified to

1

1− λ
〈p, q〉 ≤ λ

1− λ
∥∥q2
∥∥− ‖p‖2 + 2〈p, q〉.

Letting λ tend to zero and reordering shows 〈p, p− q〉 ≤ 0, hence equality holds.

The converse statement of Proposition 3.6 is false in general. This can be seen by choos-
ing K ⊂ Rn to be an ellipsoid. In this case all subdifferentials ∂J(u) are singletons since
the boundary of an ellipsoid does not contain convex sets consisting of two or more points.
Hence, (3.2) is always met but not every boundary point has an orthogonal tangent hyper-
plane. However, the converse is true in finite dimensions if K ⊂ Rn is a polyhedron. In [16]
the authors introduced condition (3.2), which they termed (MINSUB), to study the case of
polyhedral functionals J , meaning that the set K is a polyhedron. Using (MINSUB) together
with another, relatively strong, condition they were able to prove the converse of Proposi-
tion 3.6, namely that all subgradients of minimal norm are eigenvectors. Below we show that
in fact the other condition is superfluous.

Proposition 3.7. Let K ⊂ Rn be a convex polyhedron such that for all u ∈ Rn the element
p := arg min {‖q‖ : q ∈ ∂J(u)} satisfies condition

〈p, p− q〉 = 0, ∀q ∈ ∂J(u) (MINSUB)

from [16]. Then p is an eigenvector.

Proof. Let us fix u ∈ Rn and let p be the element of minimal norm in ∂J(u). By the definition
of the subdifferential and by Proposition 2.6 we infer that ∂J(u) – being the intersection of
K and the hypersurface {q ∈ Rn : 〈q, u〉 = J(u)} – must coincide with a facet F of the
polyhedron. Due to (MINSUB), the set S := {q ∈ Rn : 〈q, p〉 = ‖p‖2} defines a hypersurface
through p such that F ⊂ S and S is orthogonal to p. Since K is convex, all other points in
K lie on one side of S which implies that S is supporting K and hence 〈p, p− q〉 ≥ 0 for all
q ∈ K. With Proposition 3.2 we conclude that p is an eigenvector with eigenvalue 1.

Remark 3.8. Notably, the minimality of ‖p‖ does not play a role in the proof of Proposi-
tion 3.7. However, from the Cauchy-Schwarz inequality it follows that only subgradients of
minimal norm can satisfy (MINSUB).

Figure 2 shows two polyhedrons together with a subgradient of minimal norm in the
subdifferential marked in red. The left polyhedron meets (MINSUB) but the right one does
not, because it is too distorted. Consequently, for the left polyhedron the subgradient of
minimal norm is an eigenvector whereas this is not true for the right one.

10



S p

S
p

Figure 2: Left: (MINSUB) is met since S is supporting, Right: here (MINSUB) is violated,
i.e., S is not supporting and p is no eigenvector

4 Spectral decompositions by gradient flows

The fact that eigenvectors are subgradients of minimal norms motivates to further study
processes that generate such subgradients. Indeed, the theory of maximal monotone evolution
equations shows that gradient flows have this desirable property.

4.1 Gradient flow theory from maximal monotone evolution equations

In this section we give a concise recap of the theory of non-linear evolution equations due to
Brezis [10], see also [30] for an earlier existence result due to Kōmura. The theory deals with
the solution of the differential inclusion{

∂tu(t) +Au(t) 3 0,

u(0) = f,
(4.1)

for times t > 0. Here A denotes a potentially non-linear and multi-valued operator defined
on a subset dom(A) := {u ∈ H : Au 6= ∅} and is assumed to be maximal monotone. That is,

〈p− q, u− v〉 ≥ 0, ∀p ∈ Au, q ∈ Av, (4.2)

and A cannot be extended to a monotone operator with larger domain (see [10] for a precise
definition). Furthermore, one defines

A0u := arg min{‖p‖ : p ∈ Au}, u ∈ dom(A), (4.3)

which is the norm-minimal element in the convex set Au.
For these class of operators one has the following

Theorem 4.1 (Brezis, 1973). For all f ∈ dom(A) there exists a unique function u : [0,∞)→
H such that

1. u(t) ∈ dom(A) for all t > 0

2. u is Lipschitz continuous on [0,∞), i.e., ∂tu ∈ L∞(0,∞;H) (as distributional deriva-
tive) and it holds

‖∂tu‖L∞(0,∞;H) ≤
∥∥A0f

∥∥ (4.4)

3. (4.1) holds for almost every t ∈ (0,∞)

4. u is right-differentiable for all t ∈ (0,∞) and it holds

∂+
t u(t) +A0u(t) = 0, ∀t ∈ (0,∞) (4.5)
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5. The function t 7→ A0u(t) is right-continuous and the function t 7→
∥∥A0u(t)

∥∥ is non-
increasing

Proof. For the proof see [10, Theorem 3.1].

A important instance of maximally monotone operators are subdifferentials ∂J of lower
semi-continuous convex functionals J : H → R∪ {+∞}. For these one can relax the assump-
tion f ∈ dom(∂J) to f ∈ dom(∂J) and obtains

Theorem 4.2 (Brezis, 1973). Let A = ∂J where J : H → R∪{+∞} is lower semi-continuous,
convex, and proper, and let f ∈ dom(A). Then there exists a unique continuous function
u : [0,∞)→ H with u(0) = f such that

1. u(t) ∈ dom(A) for all t > 0

2. u is Lipschitz continuous on [δ,∞) for all δ > 0 and it holds

‖∂tu‖L∞(δ,∞;H) ≤
∥∥A0v

∥∥+
1

δ
‖f − v‖ , ∀v ∈ dom(A), ∀δ > 0 (4.6)

3. u is right-differentiable for all t ∈ (0,∞) and it holds

∂+
t u(t) +A0u(t) = 0, ∀t ∈ (0,∞) (4.7)

4. The function t 7→ A0u(t) is right-continuous for all t > 0 and the function t 7→
∥∥A0u(t)

∥∥
is non-increasing

5. The function t 7→ J(u(t)) is convex, non-increasing, Lipschitz continuous on [δ,∞) for
all δ > 0 and it holds

d+

dt
J(u(t)) = −

∥∥∂+
t u(t)

∥∥2
, ∀t > 0 (4.8)

Proof. For the proof see [10, Theorem 3.2] where it should be noted that right-differentiability
of the map t 7→ J(u(t)) follows since it is Lipschitz continuous and non-increasing.

Applying Theorem 4.2 to the so-called gradient flow of the functional J
∂tu(t) = −p(t),
p ∈ ∂J(u(t)),

u(0) = f,

(GF)

yields the existence of a unique solution u : [0,∞)→ H with associated subgradients p(t) :=
−∂+

t u(t) ∈ ∂J(u(t)) which have minimal norm in ∂J(u(t)) for all t > 0.

Remark 4.3. From now on, we will denote all occurring right-derivatives with the usual
derivative symbols ∂t and d

dt to simplify our notation.

Having the geometric characterization of eigenvectors and the existence theory of gradient
flows at hand, we are now interested in the scenario that the gradient flow yields a sequence
of subgradients p(t) which are eigenvectors, i.e., p(t) ∈ ∂J(p(t)). Reformulating this using
the eigenvector characterization from Proposition 3.2 we obtain
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Theorem 4.4. The gradient flow (GF) yields a sequence of eigenvectors p(t) for t > 0 if and
only if 〈p(t), p(t)− q〉 ≥ 0, ∀q ∈ K, ∀t > 0.

Before giving examples of functionals J ∈ C that guarantee this to happen, we investigate
the consequences of such a behavior of the flow. We prove that, in this case, the gradient
flow is equivalent to a variational regularization method and an inverse scale space flow.
Furthermore, disjoint increments p(t) − p(s) of eigenvectors will turn out to be mutually
orthogonal. Finally, we will use the subgradients p(t) of an arbitrary gradient flow to define
a measure that acts as generalization of the spectral measure corresponding to a self-adjoint
/ compact linear operator in the case that p(t) are eigenvectors.

4.2 Equivalence of gradient flow, variational method, and inverse scale
space flow

First we show that if the gradient flow (GF) generates eigenvectors, this implies the equiva-
lence with a variational regularization problem (VP), and the inverse scale space flow (ISS),
given by {

v(t) = arg minv∈HEt(v)

Et(v) = 1
2‖v − f‖

2 + tJ(v),
(VP)


∂τr(τ) = f − w(τ),

r(τ) ∈ ∂J(w(τ)),

r(0) = 0, w(0) = f̄ .

(ISS)

Here t > 0 denotes a time / regularization parameter, whereas τ > 0 will turn out to
correspond to the “inverse time” 1/t. Furthermore, the initial condition w(0) = f̄ of the
inverse scale space flow denotes the orthogonal projection of f onto the null-space of J defined
in (2.5) (cf. [14] for more details). Note that all time derivatives ought to be understood in
the weak sense, existent for almost all times, or in the sense of right-derivatives that exist for
all times.

Theorem 4.5 (Equivalence of GF and VP). Let (u, p) be a solution of the gradient flow (GF)
and assume that for all t > 0 it holds p(t) ∈ ∂J(p(t)). Then for s ≤ t it holds p(s) ∈ ∂J(u(t)).
Moreover, u(t) = v(t) where v(t) solves (VP).

Proof. From (3.1) we see that in particular 〈p(t), p(t)− p(s)〉 ≥ 0 holds for all 0 < s ≤ t and
hence, using p(t) = −∂tu(t) together with 5. in Theorem 4.2,

0 ≥ 〈−p(t), p(t)− p(s)〉 =
d

dt
J(u(t))− 〈∂tu(t), p(s)〉.

Integrating from s to t yields

J(u(t))− J(u(s))− 〈u(t), p(s)〉+ J(u(s)) ≤ 0,

which is equivalent to J(u(t)) ≤ 〈u(t), p(s)〉 and hence p(s) ∈ ∂J(u(t)). That v(t) := u(t)
solves (VP) follows by observing that the Fejer mean q(t) := 1

t

∫ t
0 p(s) ds is the appropriate

subgradient for the optimality condition of v(t) being a minimizer of Et, i.e.,

v(t)− f + tq(t) = 0, q(t) ∈ ∂J(v(t)).

The fact that (GF) and (VP) posses unique solutions concludes the proof.
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Now we prove the equivalence of the variational problems and the inverse scale space
flow. To avoid confusion due to the time reparametrization connecting t and τ , we denote
the derivatives of v and q with respect to the regularization parameter t in (VP) by v′ and
q′, respectively. For instance, v′(1/τ) simply means (∂tv(t)) |t=1/τ and this expression exists
since by the previous theorem v = u and u is right-differentiable for all t > 0.

Theorem 4.6 (Equivalence of VP and ISS). Let the gradient flow (GF) generate eigenvectors
p(t) ∈ ∂J(p(t)). Let, furthermore, {v(t) : t > 0} be the solutions of the variational problem
(VP) with subgradients {q(t) : t > 0}. Then for τ := 1/t the pair (w, r), given by

w(τ) := v (1/τ)− 1

τ
v′ (1/τ) , (4.9)

r(τ) := q (1/τ) , (4.10)

is a solution of the inverse scale space flow (ISS).

Proof. From the optimality conditions of (VP) for t > 0 we deduce q(t) = [f − v(t)]/t. By
the quotient rule we obtain q′(t) = [v(t) − f − tv′(t)]/t2. Inserting t = 1/τ yields q′(1/τ) =
τ2
[
v(1/τ)− f − 1

τ v
′(1/τ)

]
. Using this we find with the chain rule

∂+
τ r(τ) = − 1

τ2
q′(1/τ) = f − v(1/τ) +

1

τ
v′(1/τ) = f − w(τ),

hence, (w, r) fulfills the inverse scale space equality. It remains to check that r(τ) ∈ ∂J(w(τ)).
We use the fact that according to Theorem 4.5 the solutions of the gradient flow and the
variational problem coincide, i.e, v = u and v′ = u′ = −p, to obtain

J(w(τ)) = J

(
v(1/τ)− 1

τ
v′(1/τ)

)
= J

(
v(1/τ) +

1

τ
p(1/τ)

)
≤ J(v(1/τ)) +

1

τ
J(p(1/τ)).

Using that the subgradients p(1/τ) are eigenvectors with minimal norm in ∂J(u(1/τ)) and
invoking Proposition 3.6 we infer J(p(1/τ)) = ‖p(1/τ)‖2 = 〈q(1/τ), p(1/τ)〉. By inserting this
and using that q(1/τ) ∈ ∂J(v(1/τ)) we obtain

J(w(τ)) ≤ 〈q(1/τ), v(1/τ)〉+
1

τ
〈q(1/τ), p(1/τ)〉 = 〈r(τ), w(τ)〉.

The fact that r(τ) = q(1/τ) ∈ K finally shows that r(τ) ∈ ∂J(w(τ)). Once again, the
uniqueness solutions of (VP) and (ISS) concludes the proof.

4.3 Orthogonality of the decomposition

Simple examples of flows with subgradients which are piecewise constant in time show that
it is false that two subgradients of a gradient flow corresponding to different time points are
orthogonal. However, we are able to show that the differences of subgradients are orthogonal
if the subgradients themselves are eigenvectors.

Theorem 4.7. If the gradient flow (GF) generates eigenvectors, it holds for 0 < r ≤ s ≤ t
that

〈p(t), p(s)− p(r)〉 = 0. (4.11)

14



Proof. As stated in Theorem 4.5, it holds p(r), p(s), p(t) ∈ ∂J(u(t)) with ‖p(t)‖ minimal in
∂J(u(t)). Hence, the assertion follows directly by employing Proposition 3.6 with u := u(t),
p̂ := p(t), and p ∈ {p(s), p(r)} to obtain 〈p(t), p(s)〉 = ‖p(t)‖2 = 〈p(t), p(r)〉.

We already know from Theorem 4.5 that if the gradient flow generates eigenvectors it
holds p(s) ∈ ∂J(u(t)) for all s ≤ t. Using Theorem 4.7 above one can even show

Corollary 4.8. If the gradient flow (GF) generates eigenvectors, it holds for all 0 < s ≤ t
that

p(s) ∈ ∂J(p(t)). (4.12)

Proof. Equation (4.11) implies ‖p(t)‖2 = 〈p(s), p(t)〉 for all 0 ≤ s ≤ t. This yields

J(p(t)) = ‖p(t)‖2 = 〈p(s), p(t)〉 ≤ J(p(t))

and hence p(s) ∈ ∂J(p(t)).

At this point the most important consequence of Theorem 4.7 is the following corollary,
which states that differences of eigenvectors generated by the gradient flow are orthogonal.

Corollary 4.9. If one defines the spectral increments

φ(s, t) = p(t)− p(s), s, t > 0,

then Theorem 4.7 implies
〈φ(s1, t1), φ(s2, t2)〉 = 0

for all 0 < s1 ≤ t1 ≤ s2 ≤ t2.

Ideally, one would like to obtain this orthogonality relation for the time derivative of p
which, however, only exists in a distributional sense. Formally, one defines

φ(t) = −t∂tp(t)

to obtain a orthogonal spectral representation of the data f in the sense of [16], i.e.,

f − f̄ =

∫ ∞
0

φ(t) dt, 〈φ(s), φ(t)〉 = 0, s 6= t.

Here, φ formally act as spectral measure. Since, however, this approach fails due to the
lacking regularity of t 7→ p(t), we will present a rigorous definition of a spectral measure in
the next section.

Remark 4.10. It remains to be mentioned that all results in Sections 4.2 and 4.3 have already
been proved in a finite dimensional setting [16] and assuming that K ⊂ Rn is a polyhedron
that meets (MINSUB) or the stronger condition that J(u) = ‖Au‖1 with a matrix A such
that AAT is diagonally dominant. However, these results are not stronger than ours because
using the results in Section 3 it is trivial to show that K satisfying (MINSUB) implies that
the gradient flow yields eigenvectors (see also Theorem 5.1). Hence, our result are a proper
generalization to infinite dimensions and, furthermore, do not require a special structure of
the functional J but only that the gradient flow produces eigenvectors.
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4.4 Large time behavior and the spectral measure

In this section we aim at defining a measure that corresponds to the spectral measure of linear
operator theory in the case that the gradient flow (GF) generates eigenvectors. However, all
statements in this section are true without this assumption. As already mentioned in the
introduction, the gradient flow (GF) gives formally rise to a decomposition of an arbitrary
datum into subgradients which takes the form

f − f̄ =

∫ ∞
0

p(t) dt, (4.13)

where f̄ is the null-space component of f ∈ dom(J) given by (2.5). This decomposition is
the basis for constructing the spectral measure, however, up to now it is formal due to the
improper integral.

In order to make (4.13) rigorous, we have to investigate the large time behavior of the
gradient flow first. First we will show that the gradient flow has a unique strong limit as time
tends to infinity which is given by f̄ . This will allow us to compute∫ ∞

0
p(t) dt = −

∫ ∞
0

∂tu(t) dt = u(0)− lim
t→∞

u(t) = f − f̄ ,

which gives the decomposition. From there on we will construct the spectral measure.

Theorem 4.11 (Large time behavior). Let u solve (GF), with f ∈ dom(J). Then u(t)
strongly converges to f̄ as t→∞.

Proof. The proof for strong convergence of u(t) to some u∞ ∈ N (J) as t→∞ is given in [13,
Theorem 5] for even and hence, in particular, for absolutely one-homogeneous J . To see that
u∞ = f̄ we observe

〈u(t)− f, v〉 =

∫ t

0
〈∂tu(s), v〉ds = −

∫ t

0
〈p(s), v〉 ds = 0, ∀v ∈ N (J), t > 0,

by using 7. in Proposition 2.2. Hence u(t) − f ∈ N (J)⊥ and by using the strong closedness
of the orthogonal complement in Hilbert spaces we infer u∞ − f ∈ N (J)⊥ and u∞ ∈ N (J).
This is equivalent to u∞ = f̄ .

Corollary 4.12. Let u solve (GF), with f ∈ dom(J). Then it holds

lim
T→∞

∥∥∥∥∫ T

0
p(t) dt− (f − f̄)

∥∥∥∥ = 0, (4.14)

which implies (4.13).

Finally, the following Lemma implies that one can without loss of generality assume f̄ = 0.

Lemma 4.13. The solution of ∂tu = −p, p ∈ ∂J(u) with u(0) = f is given by u = v + f̄
where v solves ∂tv = −p, p ∈ ∂J(v) with v(0) = f − f̄ .

Proof. The proof is trivial by using 3. and 7. in Proposition 2.2.
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Now we consider (u, p) solving ∂tu = −p with u(0) = f and, without loss of generality,
we can assume f̄ = 0. This can always be achieved by replacing f with f − f̄ and using the
previous Lemma. Note that f̄ = 0 if and only if f ∈ N (J)⊥. Then by Corollary 4.12 we infer
that

f =

∫ ∞
0

p(t) dt. (4.15)

Let us compare this to the statement of the spectral theorem for a self-adjoint linear operator
T : H → H. For these one has

Φ(T )f =

∫
σ(T )

Φ(λ) dEλf,

where σ(T ) denotes the spectrum of T , E is the spectral measure, Φ : R → R is a function,
and f ∈ H. By choosing Φ = id one obtains the spectral decomposition of the operator T
itself and by choosing Φ = 1 one obtains the decomposition of the identity instead:

f =

∫
σ(T )

dEλf. (4.16)

If T is even compact, the spectral measure becomes atomic and is given by

Eλ =
∞∑
k=1

δλk(λ)〈·, ek〉ek (4.17)

where (ek)k∈N denotes a set of orthonormal eigenvectors of T with a null-sequence of eigen-
values (λk)k∈N. Plugging this in, one can express any f ∈ H by a linear combination of
eigenvectors:

f =
∞∑
k=1

〈f, ek〉ek. (4.18)

Consequently, our aim is to manipulate the measure p(t) dt in (4.15) in such a way that it
becomes a non-linear generalization of (4.16)-(4.18) for the case of the maximal monotone
operator ∂J . In particular, it should become atomic if t 7→ p(t) is a sequence of countably /
finitely many distinct eigenvectors with eigenvalue 1. To achieve this we condense all t > 0
with the same value of ‖p(t)‖ into one atomic point λ(t) = ‖p(t)‖ which can be considered
as the corresponding eigenvalue of e(t) := p(t)/ ‖p(t)‖. Since the function t 7→ λ(t) is non-
increasing and converges to zero according to Theorem 4.2 and [11, Theorem 7], this yields
a perfect analogy to the linear situation where only orthogonality has to be replaced by
orthogonality of differences of eigenvectors.

Definition 4.14 (Spectral measure). Let (u, p) solve ∂tu = −p, p ∈ ∂J(u) with u(0) = f ∈
N (J)⊥ ∩ dom(J) and and let µ̃ be the measure

µ̃(A) =

∫
A
p(t) dt, (4.19)

for Borel sets A ⊂ (0,∞). If we set λ : (0,∞)→ [0,∞), t 7→ λ(t) := ‖p(t)‖, then the spectral
measure µ of f with respect to J is defined as the pushforward of µ̃ through λ, i.e.,

µ(B) := µ̃(λ−1B), (4.20)
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for Borel sets B ⊂ [0,∞). The spectrum of µ is given by

σ(µ) := {λ(t) : t > 0}. (4.21)

Remark 4.15. Note that t 7→ λ(t) is indeed a measurable map since it is non-increasing
according to 4. in Theorem 4.2 which makes µ well-defined.

By definition of µ it holds ∫
σ(µ)

dµ =

∫
(0,∞)

dµ̃ = f,

i.e., µ has a reconstruction property like (4.16). Furthermore, if t 7→ p(t) is a collection
of countably many distinct eigenvectors, the map t 7→ λ(t) only has a countable range.
Consequently, the measure µ – which is supported on the range of λ – becomes concentrated
in countably many points and, hence, atomic. This is the analogy to the linear case (4.17).

4.5 A necessary and sufficient condition for spectral decompositions

Before moving to examples of specific functionals whose gradient flows yield spectral decom-
positions of any data, we first give a necessary and sufficient condition on the data such that
the gradient flow of any functional computes a spectral decomposition of the data. More
precisely, we show that the necessary condition (4.12) derived in Corollary 4.8 is also suffi-
cient. This condition generalizes the (SUB0) + orthogonality condition defined in [35], which
appears to be the only sufficient condition in that line.

Theorem 4.16. Let T > 0 and assume that

f =

∫ ∞
0

p(s) ds, p(s) ∈ ∂J(p(t)), ∀0 < s ≤ t. (4.22)

Then u(t) =
∫∞
t p(s) ds solves the gradient flow (GF), i.e., ∂tu(t) = −p(t) ∈ ∂J(u(t)) for

t > 0.

Proof. Obviously, it holds ∂tu(t) = −p(t) and thus it remains to be checked that p(t) ∈
∂J(u(t)) for t > 0. We compute

J(u(t)) = J

(∫ ∞
t

p(s) ds

)
≤
∫ ∞
t

J(p(s)) ds =

∫ T

t
〈p(t), p(s)〉 ds = 〈p(t), u(t)〉.

Together with p(t) ∈ K for all t > 0 this concludes the proof.

Definition 4.17 ((SUB0) + orthogonality [35]). We say that f ∈ H meets the (SUB0) +
orthogonality condition if there are N ∈ N and positive numbers γi, λi for i = 1, . . . , N such
that

f =

N∑
i=1

γiui

where pi := λiui meet

• pi ∈ ∂J(pi) for i = 1, . . . , N ,
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•
∑N

i=j pi ∈ ∂J(0) for all j = 1, . . . , N ,

• 〈pi, pj〉 = 0 for i, j = 1, . . . , N with i 6= j.

In [35] the authors proved that the inverse scale space flow (ISS) yields a decomposition
into eigenvectors if the datum meets the conditions above. In the following we prove that
their condition is a special case of our necessary and sufficient condition (4.22).

Theorem 4.18. Any datum f fulfilling the conditions from Definition 4.17 also meets (4.22).

Proof. Any finite representation of the data as

f =
N∑
i=1

γiui

with numbers γi ≥ 0 and eigenvectors ui meeting λiui ∈ ∂J(ui) can be rewritten as

f = t1

N∑
i=1

λiui + (t2 − t1)

N∑
i=2

λiui + · · ·+ (tN − tN−1)

N∑
i=N

λiui

where ti := γi/λi and we can assume the ordering ti < tj for i < j. Consequently, we can
define

p(s) :=
N∑
i=j

λiui, s ∈ [tj−1, tj ]

for i = 1, . . . , N and t0 := 0. On one hand, this yields f =
∫ T

0 p(s) ds where T := tN . On the
other hand, using [35, Proposition 3.4] one can easily calculate that p(s) ∈ ∂J(p(t)) holds for
s ≤ t, which is condition (4.22).

4.6 Short time behavior

Finally, we investigate the consequences of a gradient flow which generates eigenvectors for
the short time behavior of the map t 7→ u(t). From the temporal continuity it is obvious that
u(t)→ u(0) = f in H as t↘ 0 which holds in general. However, in the case that f ∈ dom(J)
and the gradient flow yields a spectral decomposition into eigenvectors more can be shown.
In fact, u(t) converges to f also in the semi-norm J which generalizes known results for the
one-dimensional ROF problem [33].

Theorem 4.19. Let f ∈ dom(J) and assume that the gradient flow (GF) generates eigen-
vectors. Then it holds J(f − u(t))→ 0 as t↘ 0.

Proof. Using the definition of the gradient flow, we write f − u(t) =
∫ t

0 p(s) ds. Since all the
subgradients p(s) for s > 0 are eigenvectors, this implies together with the triangle inequality
from Remark 2.4

0 ≤ J(f − u(t)) ≤
∫ t

0
J(p(s)) ds =

∫ t

0
‖p(s)‖2 ds.

According to [9] the map s 7→ ‖p(s)‖ is in L2(0, δ) for all δ > 0 if and only if f ∈ dom(J).
Hence, the dominated convergence theorem yields limt↘0 J(f − u(t)) = 0, as desired.
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5 Examples of flows that yield a spectral decomposition

In the following we discuss some relevant examples of functionals J and corresponding flows
that yield a spectral decomposition, meaning that the decomposition

f − f̄ =

∫ ∞
0

p(t) dt

induced by the gradient flow is a decomposition into eigenvectors p(t) ∈ ∂J(p(t)) for all t > 0.

5.1 Polyhedral flow with (MINSUB)

As already indicated, we can prove that condition (MINSUB) introduced in Proposition 3.7
is already sufficient for the gradient flow yielding eigenvectors, which is an improvement of
the results in [16].

Theorem 5.1 (Polyhedral gradient flow). Let K = ∂J(0) be a polyhedron satisfying (MINSUB)
from Proposition 3.7. Then the gradient flow ∂tu = −p, p ∈ ∂J(u) with u(0) = f yields a se-
quence of eigenvectors p(t) for t > 0. Furthermore, t 7→ p(t) takes only finitely many different
values and there is T > 0 such that p(t) = 0 for all t ≥ T .

Proof. The gradient flow selects subgradients of minimal norm (see Theorem 4.2), all of them
are eigenvectors due to Proposition 3.7. According to [16] we also know that p is piecewise
constant in t and that the flow becomes extinct in finite time.

As mentioned in Remark 4.10, in finite dimensions functionals of the type J(u) = ‖Au‖1
with AAT diagonally dominant satisfy (MINSUB) and thus suffice for the gradient flow to
yield eigenvectors. Therefore, we will now study functionals of the type J(u) = ‖Au‖1 on
H = L2 where A is a suitable operator such that formally AA′ is diagonally dominant. Here
A′ denotes the adjoint of A with respect to the inner product on L2. Apart from the trivial
choice A = id which will be shortly dealt with in the following section, a natural choice is
A = div since then formally AA′ = div∇ = −∆ which is diagonally dominant. Indeed,
this does the trick as we will see. Note that in one space dimension, A reduces to the usual
derivation operator which means that J(u) = ‖u′‖1 formally becomes the total variation of
u. Since, compared to the one-dimensional case, the proof that the subgradients of minimal
norm are eigenvectors is much more technically involved in two or more space dimensions, we
give the 1D proof first to illustrate the ideas before proving the statement in arbitrary space
dimension in the subsequent section.

5.2 L1-flow

We consider H = L2(Ω) and

J(u) =

{
‖u‖L1(Ω) , u ∈ L1(Ω) ∩ L2(Ω),

+∞, else.
(5.1)

Then it can be easily seen that K = {p ∈ L2(Ω) : ‖p‖L∞ ≤ 1} and for any u ∈ dom(∂J) we
have

∂J(u) =

{
p ∈ K :

∫
Ω
pudx =

∫
Ω
|u|dx

}
,
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i.e., p(x) = u(x)/|u(x)| for u(x) 6= 0 and p(x) ∈ [−1, 1] else. The subgradient of minimal
norm in ∂J(u) fulfills p(x) = 0 in the latter case.

Proposition 5.2. Let u ∈ dom(∂J) and let p ∈ ∂J(u) be the subgradient of minimal norm.
Then it holds 〈p, p− q〉 ≥ 0 for all q ∈ K.

Proof. We calculate with Cauchy-Schwarz

〈p, p− q〉 =

∫
Ω
|p|2 dx−

∫
Ω
pq dx ≥

∫
Ω
|p|2 dx−

∫
Ω
|p| dx ≥ 0

since p only takes the values 0, −1, or +1 and thus satisfies |p| = |p|2.

Thus, we obtain the following result:

Theorem 5.3 (L1-flow). Let J be given by (5.1). Then the gradient flow ∂tu(t) = −p(t), p(t) ∈
∂J(u(t)) with u(0) = f generates as sequence of eigenvectors p(t) for t > 0.

Of course this example is of limited practical relevance, but can yield some insight since
we can explicitly compute the solutions of the gradient flow noticing that the subgradient
just equals the sign of u pointwise, hence splitting f = f+ − f− with nonnegative functions
f+ and f− of disjoint support we have

u(x, t) = (f+(x)− t)+ − (f−(x)− t)+.

5.3 L∞-flow

As before we consider H = L2(Ω) and define

J(u) =

{
‖u‖L∞(Ω) , u ∈ L1(Ω) ∩ L∞(Ω),

+∞, else.
(5.2)

It is obvious that K = {p ∈ L2(Ω) : ‖p‖L1(Ω) ≤ 1} and in order to study ∂J(u) we need to
define the set of points where |u| attains its essential maximum:

Ωmax := {x ∈ Ω : |u(x)| = J(u)}, (5.3)

which is defined up to Lebesgue measure zero. It is easy to see that for every u ∈ dom(∂J)
it holds

∂J(u) =
{
p ∈ L2(Ω) : ‖p‖L1(Ω) = 1, p = 0 a.e. in Ω \ Ωmax, sgn(p) = sgn(u) a.e. in Ωmax

}
.

Note that the subgradient of minimal norm is given by

p(x) =

{
sgn(u)
|Ωmax| , x ∈ Ωmax,

0, else,

which follows from
1 = ‖q‖2L1(Ω) ≤ |Ωmax| ‖q‖2L2(Ω) , ∀q ∈ ∂J(u)

together with the fact that ‖p‖2L2(Ω) = 1/|Ωmax|.
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Proposition 5.4. Let u ∈ dom(∂J) and let p ∈ ∂J(u) be the subgradient of minimal norm.
Then it holds 〈p, p− q〉 ≥ 0 for all q ∈ K.

Proof. Using ‖q‖L1(Ω) ≤ 1 for q ∈ K and the explicit form of the subgradient of minimal
norm, we calculate

〈p, p− q〉 = ‖p‖2L2(Ω) −
1

|Ωmax|

∫
Ωmax

sgn(u)q dx ≥ 1

|Ωmax|
− 1

|Ωmax|

∫
Ωmax

|q|dx ≥ 0.

Just as before, we obtain the following result:

Theorem 5.5 (L∞-flow). Let J be given by (5.2). Then the gradient flow ∂tu(t) = −p(t), p(t) ∈
∂J(u(t)) with u(0) = f generates a sequence of eigenvectors p(t) for t > 0.

5.4 1D total variation flow

Let I ⊂ R be a bounded interval and J be the total variation defined on L2(I), i.e. extended
by infinity outside BV (I). From [12] we infer that K = {−g′ : g ∈ H1

0 (I, [−1, 1])} and

∂J(u) = {−g′ : g ∈ H1
0 (I, [−1, 1]), g ≡ ±1 on supp((Du)±)} (5.4)

where Du = (Du)+ − (Du)− is the Jordan decomposition of Du. We start with some results
further characterizing dom(∂J) and subgradients of minimal norm in this case:

Lemma 5.6. Let u ∈ dom(∂J) and p ∈ ∂J(u) \ {0}. Moreover, let Du = (Du)+ − (Du)− be
the Jordan decomposition of Du. Then for each x± ∈ supp((Du)±) the estimate

|x+ − x−| ≥
4

‖p‖2
L2

(5.5)

holds. Moreover, the distance of x± from ∂I is bounded below by 1
‖p‖2

L2
.

Proof. We write p = −g′ according to (5.4). Thus, for x± ∈ supp((Du)±) we find with the
Cauchy-Schwarz inequality

2 = |g(x+)− g(x−)| =
∣∣∣∣∫ x+

x−

g′(x) dx

∣∣∣∣ ≤√|x+ − x−| ‖p‖L2 ,

which yields (5.5). The estimate for the distance to the boundary follows by an analogous
argument noticing that g has zero boundary values.

Lemma 5.7. Let u ∈ dom(∂J) and p = −g′ be the element of minimal L2-norm in ∂J(u).
Then g is a piecewise linear spline with zero boundary values and a finite number of kinks
where g attains the values +1 or −1.

Proof. First of all, due to (5.5) there can only be a finite number of changes of g between +1
and −1. Let y, z be two points in I such that g(y) = g(z) = 1 and (y, z) ∩ supp(Du)− = ∅.
Let

g̃(x) =

{
max(g(x), 1), if x ∈ (y, z),

g(x), else.
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Then −g̃′ ∈ ∂J(u) and ∫
I
(g̃′)2 dx−

∫
I
(g′)2 dx = −

∫ z

y
(g′)2 dx ≤ 0,

with equality if and only if p = −g′ vanishes in (y, z). Due to the minimality of g′ we find
that g ≡ 1 on (y, z). By an analogous argument we can show that g ≡ −1 on each interval
(y, z) such that g(y) = g(z) = −1 and (y, z) ∩ supp((Du)+) = ∅. Now let y, z ∈ I be such
that g(y) = 1, g(z) = −1 and (y, z) ∩ supp(Du) = ∅. Then we can define

g̃(x) =

{
g(y) + x−y

z−y (g(z)− g(y)), if x ∈ (y, z),

g(x), else,

and see again that ∫
I
(g̃′)2 dx ≤

∫
I
(g′)2 dx.

A similar argument shows that g is piecewise linear close to the boundary of I, changing from
0 to +1 or −1, which completes the assertion.

Lemma 5.8. Let u ∈ dom(∂J) and p be the element of minimal L2-norm in ∂J(u). Then
〈p, p− q〉 ≥ 0 for all q ∈ K.

Proof. Let the jump set of p = −g′ be {xi}Ni=1 in ascending order. Then g ∈ H1
0 (I, [−1, 1])

satisfies either g(x) = 1 or g(x) = −1 in x = xi and is piecewise linear in between. Denoting
by x0 and xN+1 the boundary points of I we can use g(x0) = g(xN+1) = 0 and have g as the
piecewise linear spline between all the xi. Now we can write any q ∈ ∂J(0) as q = −h′ for
some h ∈ H1

0 (I, [−1, 1]). Thus, we have

〈p, p− q〉 =

∫
I
g′(g′ − h′) dx =

N∑
i=0

∫ xi+1

xi

g′(g′ − h′) dx.

Since g′ is piecewise constant we find∫ xi+1

xi

g′(g′ − h′) dx =
g(xi+1)− g(xi)

xi+1 − xi
(g(xi+1)− g(xi)− h(xi+1) + h(xi))

If g(xi+1) = g(xi), then the integral vanishes. If 0 < i < N and g(xi+1) 6= g(xi), then∫ xi+1

xi

g′(g′ − h′) dx =
4

xi+1 − xi
− g(xi+1)− g(xi)

xi+1 − xi
(h(xi+1)− h(xi))

≥ 4− 2|h(xi+1)− h(xi)|
xi+1 − xi

≥ 4
1− ‖h‖∞
xi+1 − xi

≥ 0.

A similar argument for the boundary terms i = 0 and i = N finally yields

〈p, p− q〉 ≥ 0.
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Remark 5.9. Analogously, similar computations can be made in case of an unbounded in-
terval I or the case I = R where the subgradients are given by p = −g′ where |g(x)| ≤ 1 and
g′ ∈ L2(R).

Theorem 5.10 (One-dimensional total variation flow). Let J be given by the one-dimensional
total variation on an interval I ⊂ R. Then the gradient flow ∂tu(t) = −p(t), p(t) ∈ ∂J(u(t))
with u(0) = f yields a sequence of eigenvectors p(t) for t > 0.

Remark 5.11 (Geometric structure of eigenvectors). From the characterization of the sub-
differential (5.4) of the one-dimensional total variation, we conclude that p is an eigenvector
if and only if p = −g′ where g ≡ ±1 on supp((−g′′)±). In particular, this implies that p is a
step function which jumps at the kinks of g.

5.5 Divergence flow

Let n≥ 2 and Ω ⊂ Rn be an open and bounded set. We consider the gradient flow

∂tu = −p, p ∈ ∂J(u), (5.6)

where

J(u) :=

∫
Ω
|div u| := sup

{
−
∫

Ω
u · ∇v dx : v ∈ C∞c (Ω, [−1, 1])

}
, u ∈ L2(Ω,Rn), (5.7)

and u(0) ∈ L2(Ω,Rn). It holds that u ∈ dom(J), i.e., J(u) <∞, if and only if the distribution
div u can be represented as a finite Radon measure (cf. [12]). The null-space N (J) of J is
infinite dimensional since it contains all vector fields of the type∇v+w where v is an harmonic
function and w is a divergence-free vector field. Note that J can be cast into the canonical
form J = χ∗K by setting

K :=
{
−∇v : v ∈ H1

0 (Ω, [−1, 1])
}
. (5.8)

Hence, a subgradient p of J in u fulfills p ∈ K and
∫

Ω p · u =
∫

Ω |div u| dx. To understand the
meaning of v in (5.8), we perform a integration by parts for smooth u to obtain∫

Ω
p · udx = −

∫
Ω
∇v · udx =

∫
Ω
v div udx.

Therefore, v should be chosen as

v(x) ∈


{1}, div u(x) > 0,

{−1}, div u(x) < 0,

[−1, 1], div u(x) = 0,

x ∈ Ω. (5.9)

In the general case, one considers the polar decomposition of the measure div u, given by
div u = θu |div u|, where θu(x) := div u

|div u|(x) denotes the Radon-Nikodym derivative, which

exists |div u|-almost everywhere and has values in {−1, 1}. This allows us to define the sets

E±u := {x ∈ Ω : θu(x) exists and θu(x) = ±1}. (5.10)
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Note that trivially it holds E+
u ∪E−u ⊂ supp(div u) and one can easily prove that supp(div u) =

E+
u ∪ E−u . In [12] the authors showed that, in full analogy to (5.9), the subdifferential of J in
u ∈ dom(J) can be characterized as

∂J(u) =
{
−∇v : v ∈ H1

0 (Ω, [−1, 1]), v = ±1 |div u|-a.e. on E±u
}
. (5.11)

If p = −∇v is a subgradient of J in u we refer to v as a calibration of u.

Remark 5.12. Since v ∈ H1
0 (Ω, [−1, 1]) can be defined pointwise everywhere except from a

set with zero H1-capacity and the measure div u vanishes on such sets (cf.[1, Ch. 6] and [21],
respectively), the pointwise definition of v in (5.11) makes sense.

Since the gradient flow selects the subgradients with minimal norm, we are specifically
interested in

p0
u = arg min

{∫
Ω
|p|2 dx : p ∈ ∂J(u)

}
.

Using (5.11) one has

p0
u = −∇arg min

{∫
Ω
|∇v|2 dx : v ∈ H1

0 (Ω, [−1, 1]), v = ±1 |div u|-a.e. on E±u
}
, (5.12)

which implies that p0
u = −∇v where v minimizes the Dirichlet energy and, in particular, is

harmonic on the open set ΩH := Ω \ (E+
u ∪ E−u ).

Now we show that the gradient flow (5.6) indeed generates eigenvectors. We have the
following

Proposition 5.13. Let u ∈ dom(∂J) and p = p0
u. Then p ∈ ∂J(p).

To prove the proposition, by means of Proposition 3.2 it suffices to check that 〈p, p−q〉 ≥ 0
for all q ∈ K. We start with an approximation Lemma.

Lemma 5.14. Let 0 < ε < 1 and define

ψε(t) =


0, |t| > 1,

1, |t| < 1− ε,
1
ε (1− |t|), 1− ε ≤ |t| ≤ 1,

φε(t) =

∫ t

0
ψε(τ) dτ. (5.13)

If v ∈ H1
0 (Ω, [−1, 1]) then vε := φε ◦ v ∈ H1

0 (Ω, [−1, 1]) and vε → v strongly in H1 as ε↘ 0.

Proof. The membership to H1
0 (Ω, [−1, 1]) follows directly from the chain rule for compositions

of Lipschitz and Sobolev functions. For strong convergence it suffices to show ∇vε → ∇v in
L2(Ω). Using ∇vε = ψε(v)∇v this follows from

‖∇vε −∇v‖2L2 = ‖(ψε(v)− 1)∇v‖2L2 =

∫
{1−ε≤|v|≤1}

[
1− |v(x)|

ε

]2

︸ ︷︷ ︸
≤1

|∇v|2 dx

≤
∫
{1−ε≤|v|≤1}

|∇v|2 dx→
∫
{|v|=1}

|∇v|2 dx = 0, ε↘ 0.
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Proof of Proposition 5.13. We write p = p0
u = −∇v with v as in (5.12) and define vε as in

the previous Lemma. Any q ∈ K can be written as q = −∇w with w ∈ H1
0 (Ω, [−1, 1]) and

thanks to Lemma 5.14 we have

〈p, p− q〉 =

∫
Ω
∇v · ∇(v − w) dx = lim

ε↘0

∫
Ω
∇vε · ∇(v − w) dx. (5.14)

As a first step, we replace v − w by a smooth z with compact support, to obtain with the
product rule: ∫

Ω
∇vε · ∇z dx =

∫
Ω
ψε(v)∇v · ∇z dx

=

∫
Ω
∇v · (∇[ψε(v)z]− ψ′ε(v)z∇v) dx

=−
∫

Ω
ψ′ε(v)z|∇v|2 dx

For the last equality we used that ψε(v)z is a test function for the minimization of the Dirichlet
energy in (5.12) and that the first variation of the Dirichlet integral in direction of the test
function vanishes consequently.

Strongly approximating v − w by smooth and compactly supported functions in H1
0 (Ω)

and using above-noted calculation, results in∫
Ω
∇vε · ∇(v − w) dx = −

∫
Ω
ψ′ε(v)(v − w)|∇v|2 dx. (5.15)

Note that

ψ′ε(t) =
1

ε


1, t ∈ [−1,−1 + ε]

−1, t ∈ [1− ε, 1],

0, else,

which we can use to calculate

−
∫

Ω
ψ′ε(v)(v − w)|∇v|2 dx

=

∫
{−1≤v≤−1+ε}

1

ε
(w − v)|∇v|2 dx+

∫
{1−ε≤v≤1}

1

ε
(v − w)|∇v|2 dx

≥−
∫
{1−ε≤|v|≤1}

|∇v|2 dx

→−
∫
{|v|=1}

|∇v|2 dx = 0, ε↘ 0. (5.16)

Putting (5.14)–(5.16) together, we have shown that

〈p, p− q〉 = lim
ε↘0

∫
Ω
∇vε · ∇(v − w) dx = lim

ε↘0
−
∫

Ω
ψ′ε(v)(v − w)|∇v|2 dx ≥ 0,

as desired.

Theorem 5.15 (Divergence flow). Let J be given by (5.7). Then gradient flow ∂tu(t) =
−p(t), p(t) ∈ ∂J(u(t)) with u(0) = f generates a sequence of eigenvectors p(t) for t > 0.
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Remark 5.16 (Geometric structure of eigenvectors). From (5.11) we infer that p ∈ ∂J(p) if
and only if p = −∇v where v ∈ H1

0 (Ω, [−1, 1]) and v = ±1 on (div u)± = (−∆v)±. Note that
−∆v is a finite Radon measure in this situation whose support cannot contain an open set
since otherwise v would be locally constant there and hence have zero Laplacian. Therefore,
eigenvectors are gradients of functions v which are harmonic everywhere on Ω \ Γ where
Γ := supp(−∆v) is a closed exceptional set, not containing any open set.

5.6 Rotation flow

Now we fix the dimension n = 2 and consider the functional

J̃(u) :=

∫
Ω
|rotu| := sup

{∫
Ω
u · ∇⊥v dx : v ∈ C∞c (Ω, [−1, 1])

}
, u ∈ L2(Ω,Rn), (5.17)

where formally rotu = ∂1u2 − ∂2u1 and ∇⊥ = (∂2,−∂1)T . Defining the rotation matrix

R =

(
0 1
−1 0

)
which fulfills ∇⊥ = R∇ it holds J̃(u) = J(Ru), where J is given by (5.7). As

before, J̃ can be expressed by duality as J̃ = χ∗
K̃

where K̃ := {∇⊥v : v ∈ H1
0 (Ω, [−1, 1])}

and it holds K̃ = RK. Due to the invertibility of R, the gradient flows with respect to J
and J̃ are fully equivalent and the respective solutions are connected via the rotation R. In
particular, the results from the previous section directly generalize to J̃ , meaning that the
rotation flow ∂tu = −p, p ∈ ∂J̃(u) also generates eigenfunctions p ∈ ∂J̃(p).

Theorem 5.17 (Rotation flow). Let J̃ be given by (5.17). Then the gradient flow ∂tu(t) =
−p(t), p(t) ∈ ∂J̃(u(t)) with u(0) = f generates a sequence of eigenvectors p(t) for t > 0.

5.7 Divergence-Rotation flow

Now we define the functional

J (u) :=

∫
Ω
|div u|+

∫
Ω
|rotu| = J(u) + J̃(u) (5.18)

which measures the sum of the distributional divergence and rotation of a vector field u ∈
L2(Ω,Rn). Its null-space still contains all gradients of harmonic functions and we denote
K := ∂J (0).

Proposition 5.18. It holds for all u ∈ dom(∂J )

∂J (u) = ∂J(u) + ∂J̃(u). (5.19)

Furthermore, the sets ∂J(u) and ∂J̃(u) are orthogonal.

Crucial for the proof of this sum rule is the Helmholtz decomposition, which can be phrased
as follows.

Theorem 5.19 (Helmholtz decomposition). Let Ω ⊂ Rn be an arbitrary domain and let

L2
σ(Ω,Rn) := {ϕ ∈ C∞c (Ω,Rn) : divϕ = 0}‖·‖L2

,

G2(Ω,Rn) := {−∇v ∈ L2(Ω,Rn) : v ∈ L2
loc(Ω)}.
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Then the Helmholtz decomposition

L2(Ω,Rn) = L2
σ(Ω,Rn)⊕G2(Ω,Rn)

holds and is orthogonal. The orthogonal projection onto the closed subspace L2
σ(Ω,Rn) of

L2(Ω,Rn) is called Helmholtz projection and denoted by Πσ.

Proof. The proof can be found in [36, Lemma 2.5.1, 2.5.2].

Proof of Proposition 5.18. Let u ∈ dom(∂J ) and p ∈ ∂J (u). In particular, p ∈ K and hence
it holds for arbitrary v ∈ L2(Ω,Rn) that

〈p, v〉 ≤ J (v) = J(v) + J̃(v).

In particular, one has

〈(1−Πσ)p, v〉 = 〈p, (1−Πσ)v〉 ≤ J((1−Πσ)v) = J(v),

〈Πσp, v〉 = 〈p,Πσv〉 ≤ J̃(Πσv) = J̃(v),

where we used 3. in Proposition 2.2 and the self-adjointness of projections. This shows
(1−Πσ)p ∈ K and Πσp ∈ K̃ and hence

〈(1−Πσ)p, u〉 ≤ J(u),

〈Πσp, u〉 ≤ J̃(u).

If we assumed that one of the inequalities was strict, then using 〈p, u〉 = J (u) implied

J(u) + J̃(u) = J (u) = 〈p, u〉 = 〈(1−Πσ)p, u〉+ 〈Πσp, u〉 < J(u) + J̃(u)

which is a contradiction. Therefore, we have

〈(1−Πσ)p, u〉 = J(u),

〈Πσp, u〉 = J̃(u),

which lets us conclude that (1−Πσ)p ∈ ∂J(u) and Πσp ∈ ∂J̃(u). Hence, we have established
p ∈ ∂J(u) + ∂J̃(u) which concludes the first part of the proof. Orthogonality of ∂J(u) and
∂J̃(u) follows from the fact that any subgradient pJ and pJ̃ in these sets can be written as
pJ = −∇v and pJ̃ = ∇⊥w with v, w ∈ H1

0 (Ω, [−1, 1]) respectively. Approximating w strongly
by compactly supported and smooth functions, it follows from an integration by parts using
div∇⊥w = 0 and the zero boundary conditions of v that

〈pj , pJ̃〉 = −〈∇v,∇⊥w〉 = 〈v,div∇⊥w〉 = 0.

Corollary 5.20. Let u ∈ dom(∂J ). Then the subgradient of minimal norm in ∂J (u) is
given by the sum of the subgradients of minimal norm in ∂J(u) and ∂J̃(u), respectively.

Proof. The proof follows directly from Proposition 5.18.

Lemma 5.21. Let pJ and pJ̃ be eigenvectors with eigenvalue 1 of ∂J and ∂J̃ , respectively.
Then it holds
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1. 〈pJ , pJ̃〉 = 0,

2. pJ ∈ N (J̃), pJ̃ ∈ N (J),

3. p := pj + pJ̃ is an eigenvector with eigenvalue 1 of ∂J

Proof. Ad 1.: According to Proposition 5.18 this holds for general subgradients.
Ad 2.: We only proof pJ ∈ N (J̃), the proof of the second inclusion working analogously.

We calculate
J̃(pJ) = J(RpJ) = sup

p∈K
〈p,RpJ〉 = sup

p∈K
〈RT p, pJ〉.

Due to the definition of K we can write pJ = −∇v and p = −∇w with v, w ∈ H1
0 (Ω, [−1, 1]).

This yields
〈RT p, pJ〉 = 〈R∇w,−∇v〉 = −〈∇⊥w,∇v〉.

By the same density argument as above we obtain 〈RT p, pJ〉 = 0 and hence J̃(pJ) = 0.
Ad 3.: Using that pJ and pJ̃ are eigenvectors, it holds

〈p, p〉 = 〈pJ , pJ〉+ 〈pJ̃ , pJ̃〉+ 2

=0︷ ︸︸ ︷
〈pJ , pJ̃〉

= J(pJ) + J̃(pJ̃)

= J(p) + J̃(p)

= J (p).

For the third equality we used 2. together with 3. in Proposition 2.2.

From here on we easily infer

Theorem 5.22 (Div-Rot flow). Let J be given by (5.18). Then the gradient flow ∂tu(t) =
−p(t), p ∈ ∂J (u(t)) with u(0) = f yields a sequence of eigenvectors p(t) for t > 0. Further-
more, (1−Πσ)p(t) and Πσp(t) are eigenvectors of ∂J and ∂J̃ , respectively.

Proof. The gradient flow selects subgradients of minimal norm, all of which are given by the
sum of the subgradients of minimal norm in ∂J(u) and ∂J̃(u) according to Corollary 5.20.
Due to Thms 5.15 and 5.17, each subgradient of minimal norm is an eigenvector of ∂J and
∂J̃ , respectively, and by 3. in Lemma 5.21 we conclude that their sum is an eigenvector of
∂J . The uniqueness of the Helmholtz decomposition concludes the proof.

6 Finite extinction time and extinction profiles

Let us now consider a general gradient flow ∂tu(t) = −p(t), p(t) ∈ ∂J(u(t)), with arbitrary
J ∈ C and initial condition u(0) = f , where the class C is defined in Definition 2.1. It is well-
known (cf. [6, 14], for instance) that if the datum f is an eigenvector fulfilling λf ∈ ∂J(f),
the corresponding solution of the gradient flow is given by u(t) = max(1 − λt, 0)f . Hence,
there exists a time T := 1/λ, referred to as extinction time, such that u(t) = 0 = f̄ for all
t ≥ T . In general, Theorem 4.11 tells us that u(t) only converges to f̄ strongly as t → ∞.
In the following, we will investigate under which conditions on the data f and the functional
J ∈ C this limit is attained in finite time, i.e.,

T ∗(f) := inf{t > 0 : u(t) = f̄} <∞.
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Furthermore, we derive lower and upper bounds of the extinction time which will depend
on the (dual) norm of the data f . Scale invariant upper bounds in the special case of total
variation flow and related equations were shown in [25, 26].

6.1 Finite extinction time

First, we give a statement that can be interpreted as conservation of mass under the gradient
flow.

Lemma 6.1 (Conservation of mass). Let u solve (GF). Then it holds u(t) = f̄ for all t > 0.

Proof. Since p(t) lies in N (J)⊥ for all t > 0, the same holds for u(t) − f = −
∫ t

0 p(s) ds.

Therefore, 0 = u(t)− f = u(t)− f̄ , by the linearity of the projection.

Theorem 6.2 (Upper bound of extinction time). Let u solve (GF). If there is C > 0 such
that ∥∥u(t)− f̄

∥∥ ≤ CJ(u(t)), ∀t > 0, (6.1)

then it holds

T ∗(f) ≤ C
∥∥f − f̄∥∥ (6.2)

Proof. The proof is analogous to the finite dimensional case, treated in [16]. Using (6.1), it
follows

1

2

d

dt

∥∥u(t)− f̄
∥∥2

= 〈u(t)− f̄ , ∂tu(t)〉 = −〈u(t)− f̄ , p(t)〉

=− 〈u(t), p(t)〉 = −J(u(t)) ≤ − 1

C

∥∥u(t)− f̄
∥∥ .

This readily implies
d

dt

∥∥u(t)− f̄
∥∥ ≤ − 1

C
and, integrating this equation, ∥∥u(t)− f̄

∥∥ ≤ ∥∥f − f̄∥∥− t

C
.

Therefore, for t ≥
∥∥f − f̄∥∥C it holds u(t) = f̄ which concludes the proof.

Remark 6.3. By Lemma 6.1, a sufficient condition for (6.1) to hold is the validity of the
Poincaré-type inequality

‖u− ū‖ ≤ CJ(u), ∀u ∈ H. (6.3)

Remark 6.4. Revisiting the example of a datum fulfilling λf ∈ ∂J(f), we observe that the
upper bound (6.2) is sharp. It holds u(t) = max(1− λt, 0)f and consequently we have∥∥u(t)− f̄

∥∥
J(u(t))

=
‖u(t)‖
J(u(t))

=
‖f‖
J(f)

and, hence, the smallest possible constant in (6.1) is given by C = ‖f‖
J(f) . This implies that

C
∥∥f − f̄∥∥ = C ‖f‖ =

‖f‖2

J(f)
=

1

λ
= T ∗(f).
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Example 6.5. Since any J ∈ C is a norm on the subspace V = dom(J) ∩ N (J)⊥ ⊂ H, the
Poincaré inequality (6.3) always holds if H is finite dimensional.

Example 6.6. Since for n = 1, 2 and u ∈ BV (Ω) where Ω ⊂ Rn is a bounded domain one
has the Poincaré inequality [2]

‖u− ū‖ ≤ C TV(u),

where ū := |Ω|−1
∫

Ω udx and C > 0, the one and two-dimensional TV-flow ∂tu(t) = −p(t), p(t) ∈
∂TV(u(t)) becomes extinct in finite time for all initial conditions u(0) = f ∈ L2(Ω).

Example 6.7. Since not even on bounded domains there is an embedding from L1(Ω) to
L2(Ω), one cannot expect finite extinction time for the L1-flow introduced in Section 5.2.
Indeed one has

u(t) = f −
∫ t

0
p(s) ds

where ‖p(s)‖L∞ ≤ 1. This yields u(t) ≥ f−t almost everywhere in Ω for all t ≥ 0. Hence, if f
is an unbounded L2-function, the extinction time is infinite. Hence, the quite strong property
of a flow yielding a sequence of non-linear eigenvectors still does not imply a finite extinction
time.

We can also give a converse statement of Theorem 6.2, namely that the existence of a
finite extinction time implies the validity of a Poincaré-type inequality.

Proposition 6.8. Let u solve (GF) and assume that there exists T > 0 such that the solutions
of the gradient flow satisfies u(t) = f̄ for all t ≥ T . Then, one has the estimate∥∥u(t)− f̄

∥∥ ≤ √T − t√J(u(t)), ∀0 ≤ t ≤ T. (6.4)

In particular, for t = 0 and initial data satisfying
∥∥f − f̄∥∥ = 1 it this implies∥∥f − f̄∥∥ ≤ TJ(f).

Proof. It holds u(t) − f̄ =
∫ T
t p(s) ds which implies with the Hölder inequality and 5. in

Theorem 4.2 ∥∥u(t)− f̄
∥∥ ≤ ∫ T

t
‖p(s)‖ ds

≤
√
T − t

√∫ T

t
‖p(s)‖2 ds

=
√
T − t

√∫ t

T

d

ds
J(u(s)) ds

=
√
T − t

√
J(u(t)).

Noticing
∥∥f − f̄∥∥ = 1 =

∥∥f − f̄∥∥2
we obtain the assertion for t = 0.

While upper bounds of the extinction time like (6.2) which depend on some Poincaré
constant have already been considered in the literature [3, 28], we can also give a sharp lower
bound of the extinction time which is novel to the best of our knowledge.
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Proposition 6.9 (Lower bound of extinction time). It holds

T ∗(f) ≥ ‖f‖∗ , (6.5)

where ‖f‖∗ := supp∈N (J)⊥
〈f,p〉
J(p) denotes the dual norm of f with respect to J .

Proof. Using f − f̄ =
∫ T ∗(f)

0 p(t) dt it holds

‖f‖∗ = sup
p∈N (J)⊥

〈f, p〉
J(p)

= sup
p∈N (J)⊥

1

J(p)

∫ T ∗(f)

0
〈p(t), p〉 dt ≤ T ∗(f),

where we used that due to (2.9) it holds 〈p(t), p〉 ≤ J(p) for all t > 0.

Remark 6.10. Since according to [14] the variational problem (VP) has the minimal extinc-
tion time ‖f‖∗, we conclude that the extinction time of the gradient flow is always larger or
equal the extinction time of the variational problem. Furthermore, this lower bound is sharp
since in the case of a spectral decomposition the gradient flow and the variational problem
have the same primal solution according to Theorem 4.5.

6.2 Extinction profiles: the general case

Let us now assume that the gradient flow becomes extinct in finite time and to simplify
notation we consider the case of a datum f fulfilling f̄ = 0 without loss of generality
(cf. Lemma 4.13). In [3] it was shown for the special case of 2D total variation flow with
initial condition f ∈ L∞(Ω) that T ∗(f) <∞ and there is an increasing sequence of times tn
such that tn → T ∗(f) and

lim
n→∞

w(tn) = p∗ (6.6)

strongly in L2(Ω) where

w(t) :=

{
u(t)

T ∗(f)−t , 0 < t < T ∗(f),

0, else.
(6.7)

Here p∗ 6= 0 is an eigenvector and is referred to as extinction profile. Note that w(t) approx-
imates the negative of the left-derivative of t 7→ u(t) at t = T ∗(f) which—opposed to the
right-derivative—is not guaranteed to exist. The proof in [3] is highly technical and uses a
lot of structure that comes from the explicit form of the functional J = TV . However, in our
general framework this result can be harvested very easily and for general functionals J ∈ C.
First, we show that, if the strong limit (6.6) exists, it is an eigenvector.

Theorem 6.11. Let u(t) solve the gradient flow (GF) with extinction time T ∗(f) <∞, and
assume that there is an increasing sequence tn → T ∗(f) such that w(tn) → p∗ as n → ∞
holds for some p∗ ∈ H. Then p∗ ∈ ∂J(p∗) and if the Poincaré inequality (6.1) holds one has
p∗ 6= 0.

Proof. Let us show p∗ ∈ K, first. Due to u(T ∗(f)) = 0 and p(t) = −∂tu(t) for t > 0 it holds

u(tn) =

∫ T ∗(f)

tn

p(t) dt
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and, hence, we calculate for arbitrary v ∈ H〈
u(tn)

T ∗(f)− tn
, v

〉
=

1

T ∗(f)− tn

∫ T ∗(f)

tn

〈p(t), v〉dt ≤ J(v), ∀n ∈ N,

where we used that p(t) ∈ K for all t > 0. By the closedness of K we infer that also p∗ ∈ K
holds.

To show that p∗ ∈ ∂J(p∗), we calculate using lower semi-continuity of J :

J(p∗) ≤ lim inf
n→∞

1

T ∗(f)− tn
J(u(tn))

= lim inf
n→∞

1

T ∗(f)− tn
〈p(tn), u(tn)〉

= lim inf
n→∞

〈p(tn), w(tn)〉.

Now we claim (cf. Lemma 6.12 below) that limt↗T ∗(f) ‖p(t)− w(t)‖ = 0 which, together with
the strong convergence of w(tn) to p∗, immediately implies

J(p∗) ≤ lim inf
n→∞

〈p(tn), w(tn)〉

= lim inf
n→∞

〈p(tn)− w(tn), w(tn)〉+ ‖w(tn)‖2

= lim
n→∞

‖w(tn)‖2 = ‖p∗‖2 ,

and, hence, p∗ is an eigenvector. Here we used that 〈p(tn)−w(tn), w(tn)〉 ≤ ‖p(tn)− w(tn)‖ ‖w(tn)‖
which converges to zero since ‖w(tn)‖ is uniformly bounded in n.

To show that p∗ 6= 0 in case of (6.1), we observe that

d

dt

1

2
‖u(t)‖2 = 〈∂tu(t), u(t)〉 = −〈p(t), u(t)〉 = −J(u(t))

holds, which implies with (6.1) that

d

dt
‖u(t)‖ =

−J(u(t))

‖u(t)‖
≤ − 1

C
.

Integrating this inequality from 0 ≤ t < T ∗(f) to T ∗(f) yields

−‖u(t)‖ ≤ − 1

C
(T ∗(f)− t)

and, hence,

‖w(t)‖ =
‖u(t)‖

T ∗(f)− t
≥ 1

C
> 0, ∀0 ≤ t < T ∗(f).

This implies that p∗ 6= 0 holds.

Lemma 6.12. Under the conditions of Theorem 6.11 it holds ‖p(t)− w(t)‖ → 0 as t↗ T ∗(f).
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Proof. Using the relation ∂tw(t) = (∂tu(t) + w(t))/(T ∗(f) − t), the chain rule, and p(t) ∈
∂J(u(t)), we obtain the estimate

d

dt

(
J(w(t))− 1

2
‖w(t)‖2

)
=

d

dt

(
J(u(t))

T ∗(f)− t
− 1

2
‖w(t)‖2

)
=
〈p(t), ∂tu(t)〉
T ∗(f)− t

+
J(u(t))

(T ∗(f)− t)2
− 〈w(t), ∂tw(t)〉

=
〈p(t), ∂tu(t)〉
T ∗(f)− t

+
〈p(t), u(t)〉

(T ∗(f)− t)2
− 〈w(t), ∂tw(t)〉

= 〈p(t), ∂tw(t)〉 − 〈w(t), ∂tw(t)〉 = −〈∂tu(t) + w(t), ∂tw(t)〉

= −(T ∗(f)− t) ‖∂tw(t)‖2 = −‖p(t)− w(t)‖2

T ∗(f)− t
≤ 0 (6.8)

Since u(t) ∈ dom(J) for all t > 0, we can without loss of generality assume that u(0) = f ∈
dom(J), as well. This implies

J(w(t))− 1

2
‖w(t)‖2 ≤ J(w(0))− 1

2
‖w(0)‖2 ≤ C, 0 ≤ t < T ∗(f),

for a constant C > 0 since w(0) = u(0)/T ∗(f) = f/T ∗(f). Integrating (6.8) yields∫ t

s

‖p(τ)− w(τ)‖2

T ∗(f)− τ
dτ = J(w(s))− 1

2
‖w(s)‖2 − J(w(t)) +

1

2
‖w(t)‖2

≤ C +
1

2
‖w(t)‖2 ≤ C ′, 0 ≤ s < t < T ∗(f),

for a constant C ′ > 0. Letting t tend to T ∗(f), this implies that t 7→ ‖p(t)−w(t)‖2
T ∗(f)−t ∈

L1(0, T ∗(f)). Hence, necessarily limt↗T ∗(f) ‖p(t)− w(t)‖ = 0 has to hold.

The weak limit in (6.6) always exists, as the following proposition states.

Proposition 6.13. There exists a increasing sequence tn → T ∗(f) and p∗ ∈ H such that

w(tn) ⇀ p∗, n→∞,

weakly in H.

Proof. From u(t) =
∫ T ∗(f)
t p(s) ds it follows using 2. in Theorem 4.2 and that s 7→ ‖p(s)‖ is

non-increasing

‖w(t)‖ =

∥∥∥∥ u(t)

T ∗(f)− t

∥∥∥∥ ≤ 1

T ∗(f)− t

∫ T ∗(f)

t
‖p(s)‖ ds ≤ ‖p(t)‖ ≤ 2

T ∗(f)
‖f‖ ,

which holds for all T ∗(f)/2 < t < T ∗(f). Hence, by the weak compactness of the closed
unit ball in Hilbert spaces, there is a increasing sequence (tn) converging to T ∗(f) and some
p∗ ∈ H such that w(tn) ⇀ p∗ weakly in H.

To ensure the existence of the strong limit one needs additional regularity, as the following
corollary states.
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Corollary 6.14. Assume that there is some compactly embedded space X b H and c > 0
such that supn∈N ‖w(tn)‖X ≤ c. Then the convergence of w(tn) to p∗ is strong in H and
Theorem 6.11 is applicable.

Using our abstract framework, we can obtain the results in [3] for more-dimensional total
variation flow very straightforwardly.

Example 6.15 (Total variation flow in arbitrary dimension). We consider the TV-flow in
dimension n ≥ 3 with bounded domain Ω ⊂ Rn. In this case, there is no general Poincaré
inequality available and, hence, no finite extinction time can be expected for arbitrary initial
datum f ∈ L2(Ω). However, for f ∈ L∞(Ω) one can show a finite extinction time. It is well-
known that in this case the essential supremum of the solution u(t) of the TV-flow remains
uniformly bounded in t. Hence, we show that the Poincaré inequality

‖u− ū‖L2(Ω) ≤ CTV(u)

holds for functions u ∈ {u ∈ BV (Ω) ∩ L∞(Ω) : ‖u‖L∞(Ω) ≤ c}. Assume there is a sequence
of functions uk ∈ BV (Ω) ∩ L∞(Ω) with zero mean such that

‖uk‖L2(Ω) > kTV(uk), ‖uk‖L∞(Ω) ≤ c, ∀k ∈ N.

Since ‖uk‖L2(Ω) ≤
√
|Ω| ‖uk‖L∞(Ω) ≤

√
|Ω|c < ∞, we can set ‖uk‖L2(Ω) = 1. Passing to

a subsequence, we can furthermore assume that uk converges strongly to some u in L1(Ω).
Since TV(u) ≤ lim infk→∞TV(uk) = 0, by the lower semi-continuity of the total variation,
we infer that u is in BV (Ω) and is constant almost everywhere in Ω. Having zero mean, u ≡ 0

has to hold. Furthermore, from 0 ≤ ‖uk‖L2(Ω) ≤
√
c ‖uk‖L1(Ω) → 0 as k → ∞ we infer that

uk → 0 in L2(Ω) which is a contradiction to ‖uk‖L2(Ω) = 1 for all k ∈ N. Now Theorem 4.11
shows the existence of a finite extinction time.

To show that the strong limit limn→∞w(tn) exists on some increasing sequence tn → T ∗(f)
and is a non-trivial eigenvector of TV, it suffices to observe that the space X := L∞(Ω) ∩
BV (Ω) is compactly embedded in H := L2(Ω) and use [3, Eq. (5.4)] in order to apply
Corollary 6.14 and Theorem 6.11.

Remark 6.16 (Sharp convergence rate). We would like to remark that the results of this
section imply that the solution of the gradient flow u(t) converges with rate T ∗(f) − t and if
the Poincaré inequality (6.1) holds this rate is sharp. The upper rate is established through
the boundedness of ‖w(t)‖ as shown in the proof of Proposition 6.13. The sharpness follows
from the lower bound on ‖w(t)‖ as established in the end of the proof of Theorem 6.11.

6.3 Extinction profiles: the spectral decomposition case

Now we again specialize on the case that the gradient flow generates a sequence of eigenvectors
and assume that it becomes extinct at time T ∗(f) <∞. In this case, we prove that extinction
profiles are always eigenvectors without any compactness assumptions. In addition, since the
gradient flow is equivalent to the variational problem, it holds T ∗(f) = ‖f‖∗ according to
[14]. However, we can give another formula in terms of the extinction profile which allows us
to classify all possible extinction profiles as maximizers of a certain functional.
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Theorem 6.17. Let the gradient flow (GF) generate a sequence of eigenvectors p(t) for
t > 0 and have the minimal extinction time 0 < T ∗(f) < ∞. Furthermore, let p∗ ∈ H be
such that w(tn) ⇀ p∗, where (tn) is an increasing sequence converging to T ∗(f) as n → ∞
(cf. Proposition 6.13). Then the following statements are true:

1. If (6.1) holds, then p∗ 6= 0,

2. p(t) ∈ ∂J(p∗) for all 0 < t < T ∗(f),

3. p∗ ∈ ∂J(p∗),

4. T ∗(f) = 〈f,p∗〉
J(p∗) = supp∈N (J)⊥

〈f,p〉
J(p) .

Proof. For a concise notation we abbreviate T := T ∗(f). Ad 1.: We have already seen in the
proof of Theorem 6.11 that the Poincaré inequality (6.1) implies that ‖w(t)‖ ≥ 1

C > 0 for all
0 ≤ t < T ∗(f). Since, however, w(t) converges only weakly to p∗ this is not yet sufficient to
prove p∗ 6= 0. Instead we consider the scalar product 〈w(t), f〉 and use the identities

w(t) =
1

T − t

∫ T

t
p(s) ds,

f =

∫ T

0
p(r) dr

to infer

〈w(t), f〉 =
1

T − t

∫ T

0

∫ T

t
〈p(s), p(r)〉 dsdr

=
1

T − t

[∫ t

0

∫ T

t
〈p(s), p(r)〉ds dr +

∫ T

t

∫ T

t
〈p(s), p(r)〉ds dr

]
=

1

T − t

[∫ t

0

∫ T

t
‖p(s)‖2 ds dr +

∫ T

t

∫ T

t
〈p(s), p(r)〉 ds dr

]
, (6.9)

where we used the orthogonality of increments (cf. Theorem 4.7). Now we observe that by
the Cauchy-Schwarz inequality

‖w(t)‖ ≤ 1

T − t

∫ T

t
‖p(s)‖ ds ≤ 1√

T − t

(∫ T

t
‖p(s)‖2 ds

) 1
2

,

and, hence,

1

T − t

∫ T

t
‖p(s)‖2 ds ≥ ‖w(t)‖2 ≥ 1

C2
. (6.10)

Furthermore, we calculate the following integral by splitting the square integration domain
[t, T ]2 into integration over two triangles∫ T

t

∫ T

t
〈p(s), p(r)〉 dsdr =

∫ T

t

∫ s

t
〈p(s), p(r)〉 dr ds+

∫ T

t

∫ r

t
〈p(s), p(r)〉ds dr

=

∫ T

t
(s− t) ‖p(s)‖2 ds+

∫ T

t
(r − t) ‖p(r)‖2 dr

≥ 0, (6.11)
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where we used Theorem 4.7 again. Combining (6.9), (6.10), and (6.11), we infer

〈w(t), f〉 ≥ t

C2
, 0 ≤ t < T,

and, thus, w(tn) cannot converge weakly to zero for n→∞.
Ad 2.: According to Theorem 4.5 it holds p(t) ∈ ∂J(u(s)) for t ≤ s. This implies

J(p∗) ≤ lim inf
n→∞

J(w(tn)) = lim inf
n→∞

1

T ∗(f)− tn
J(u(tn)) = lim inf

n→∞

1

T ∗(f)− tn
〈p(t), u(tn)〉

= lim inf
n→∞

〈p(t), w(tn)〉 = 〈p(t), p∗〉, ∀0 ≤ t < T ∗(f),

which shows p(t) ∈ ∂J(p∗).
Ad 3.: The equality J(p∗) = 〈p(t), p∗〉 implies

J(p∗) =
1

T ∗(f)− s

∫ T ∗(f)

s
〈p(t), p∗〉dt = 〈w(s), p∗〉, ∀0 ≤ s < T.

Using this with s = tn and taking the limit n → ∞ yields J(p∗) = ‖p∗‖2 due to the weak
convergence of w(tn) to p∗.

Ad 4.: We use 2. together with f =
∫ T ∗(f)

0 p(t) dt to compute

〈f, p∗〉 =

∫ T ∗(f)

0
〈p(t), p∗〉 dt =

∫ T ∗(f)

0
J(p∗) dt = T ∗(f)J(p∗),

which is implies T ∗(f) = 〈f, p∗〉/J(p∗). On the other hand, by Theorem 4.5 the solution u(t)
of the gradient flow coincides with the solution of the variational problem (VP) which has
the extinction time T ∗(f) = ‖f‖∗ = supp∈N (J)⊥ 〈f, p〉/J(p) according to [14].

Corollary 6.18. Under the conditions of Theorem 6.17 any extinction profile p∗ is a maxi-
mizer of the functional

N (J)⊥ 3 p 7→ 〈f, p〉
J(p)

or, equivalently,
f

‖f‖∗
∈ ∂J(p∗).

In particular, the extinction profile is uniquely determined if f/ ‖f‖∗ lies in the intersection
of ∂J(0) and exactly one other subdifferential.

Corollary 6.19. Under the conditions of Theorem 6.17 any extinction profile p∗ meets

J

(
p∗

‖p∗‖

)
≤ ‖f‖
‖f‖∗

.

This estimate is sharp which can be seen by choosing f to be an eigenvector.

Example 6.20 (One-dimensional total variation flow). Since according to Section 5.4, the
one-dimensional total variation flow yields a spectral decomposition into eigenvectors, The-
orem 6.17 and Corollary 6.18 are applicable. Bonforte and Figalli in [8] studied the case
of a non-negative initial datum f ∈ BV (R) which lives on the (minimally chosen) interval
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[a, b]. They showed that in this case, the extinction time is given by T = 1
2

∫ b
a f dx and that

w(t) = u(t)/(T − t) converges to p∗ := 2
b−aχ[a,b] for t → T . This follows directly from our

results after observing that f/ ‖f‖∗ can only lie in the subdifferential of a constant function
on [a, b] which therefore coincides with p∗. The extinction time is consequently given by

T =
〈f, p∗〉
TV(p∗)

=
1

2

∫ b

a
f dx.

To see that g := f/ ‖f‖∗ cannot lie in the subdifferential of a non-constant function, let us
assume that there is p such that g ∈ ∂TV(p) and p′(x0) 6= 0 (in the sense of measures) for
some x0 ∈ (a, b). Writing g = −v′ with |v| ≤ 1 and v = ±1 where p′ is positive / negative,
we find that v(x0) = ±1 and v is non-increasing since g = −v′ is non-negative on R. Hence,
it holds v = 1 on (−∞, x0) or v = −1 on (x0,∞) which is a contradiction to the fact that
g = −v′ takes on strictly positive values on a subset in [a, x0] and [x0, b] that has positive
Lebesgue measure. Otherwise, the interval [a, b] would not be minimally chosen.
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