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Abstract—This paper proposes to analyze the performance in
terms of soft fault detection of two chaotic signals using the
chaos time domain reflectometry. These signals which are 1)
a combination of the logistic map and Bernoulli map and 2)
the Lorenz signal are depicted in order to remind their usage
limitations. Although this paper demonstrates the relevance of the
proposed chaotic signals for the soft fault detection, we propose
also to compare the performances of each signal with a statistical
approach. The study leads to conclude than the combination of
the logistic map and Bernoulli map is more reliable than the
Lorenz signal.

Index Terms—chaos time domain reflectometry (CTDR), soft
fault detection, chaotic signals comparison

I. INTRODUCTION

Cables are still one of the most used process for the
energy or information transfer despite the wireless develop-
ment. Strong environmental aggressions can degrade cables
and corrupt the transmitted signal [1]. Therefore, the fault
detection was becoming an important challenge in the industry
as, for instance, aeronautic or telecommunications [2], [3].
Hence several methods [4]–[6] have been developed in order
to detect the faults, and, in particular their locations. Most of
them are based on the reflectometry process which is a method
which has proven its efficiency in terms of fault detection.
The reflectometry principle is based on the propagation of
an injected signal along the cable and the analysis of the
reflected signal which contains the information related to each
impedance discontinuity (load, junction, connector, fault) [7].

Among these reflectrometry-based methods, the chaos time
domain reflectometry (CTDR) method has been less studied.
In terms of fault detection, a method has been proposed
in [8]. The chaotic signal is generated using a Colpitts
oscillator. Indeed, it has been demonstrated than using a
specific input current, this oscillator can produce an output
behavior. Measurements with different hard and soft faults
leads to good results for the location of open circuits, short
circuits, impedance discontinuities and other different damage
on wires. Simulations have been also perform in order to
prove the ability for real time diagnosis. This method is quite
efficient for single cable topology, however, the oscillators

must be well designed in order to propose a chaotic behavior.
Moreover, this chaotic behavior cannot be managed as it
depends on the oscillator design. As a further matter, an
average measurement from 1000 measures must be performed
in order to reduce the noise of the test bench. Thus, another
method has been proposed in [9], [10]. In [10], it has been
demonstrated that a combination between the logistic map
and the Bernoulli map leads to a chaotic behavior ”choosing
properly” the parameters. Moreover, the orthogonality of the
generated chaotic signals has been shown modifying slightly
the parameters. Hence, simulations highlight the ability of the
hard fault detection for complex wire network. Thus, this
chaotic signal is used in [9] to demonstrate the efficiency
of the method in a high noisy cable network, and, for real
time measurements. From a measurement bench where the
chaotic signal is generated with an arbitrary wave generator,
the sensitivity analysis carried out in this article was promising
for the soft fault detection.

In this paper, we focus on soft fault detection for a simple
coaxial cable. We propose to compare the efficiency of two
chaotic signals (the one used in [9] and the Lorenz signal)
in terms of soft fault detection. Both signals have been
still studied separately. We propose here to compare their
performance for the soft fault detection. Hence, a simple
cable modeling is proposed. Thus, we build a code in the
time domain based on the transmission line theory in order
to analyze the reflected signal. Then, a sensitivity analysis is
carried out from simulations in order to compare the efficiency
of two chaotic signals in terms of soft fault detection.

First, the principle of the time domain code and the wire
fault modeling are quickly reminded in section II. In section
III, the combination of the logistic map and Bernoulli map is
depicted and a parametric study is carried out in terms of fault
detection. The same study is performed in section IV for the
Lorenz signal. Then, a comparison of the performance of each
signal for the fault detection is proposed in section V.



Fig. 1. Transmission line model of the coaxial cable.

II. CABLE MODELING

We propose to model a the three meters length cable which
a 14 mm length chafed fault located at one meter. The fault
can be represented as a impedance discontinuity. Hence, the
characteristic impedance Zc of the cable is 50 and the one
of the chafing fault Zf is 62.5658 . The value of Zf has
been computed according to the electrostatic model proposed
in [11]. we decide to build a code in the time domain based on
the transmission line theory. The simulated cable is represented
in Fig. 1. Hence, the step mesh dx is fixed to 1 mm while
the time step dt is equal to dx

2c with c the celerity. Indeed,
for chaotic signals it is better to choose dt < dx

c using the
transmission line theory. The number of iteration is Nt =
f
(
Tmax
dr

)
with, f the function which rounds the proposed

ratio to the nearest integer less than or equal to that ratio,
and, Tmax � 3000dx

c . Each segment dx is defined as an
inductance and a capacitance in parallel. Between 1 m to 1.014
m the inductance is defined as Lf =

Zf

c and the capacitance
as Cf = 1

cZf
. Outside this interval we have L = Zc

c and C =
1
cZc

. Therefore, the current and the voltage can be computed
for each segment for the injected chaotic signal solving the
following equations:

L
∂I

∂t
+RI +

∂V

∂x
= 0, (1)

C
∂V

∂t
+
∂I

∂x
= 0. (2)

Then, the correlation between the injected chaotic signal
and the obtained signal must be performed. Finally, we do
the convolution between the right-side of this signal and a
Gaussian signal. This step allows us to filter our signal and in
order to obtain a smooth reflected signal.

III. FIRST CHAOTIC SIGNAL : COMBINATION OF LOGISTIC
MAP AND BERNOULLI MAP

A. Definition

The logistic map is a chaotic second-order polynomial
using non-linear dynamical equations defined by the following
equation:

xm + 1 = kxm (1− xm) with m = 1, 2, ...,M, (3)

and, with k ∈ [0, 4] and M is the samples number.
In the other hand, the Bernoulli map is defined as follow:

yn+1 =

{
Byn + 0.5 if yn > 0

Byn − 0.5 if yn < 0
, (4)

with B a constant value.
Hence, combining the both maps using the initial conditions

{x0, ym,1}, we obtain the following equation:

ym,n+1 =

{
Bmym,n + 0.5 if ym,n > 0

Bmym,n − 0.5 if ym,n < 0
, (5)

with n = 1, 2, ..., N and Bm = 1.4 + 0.6xm.
We note that ym,1 is a random vector defined as follow:

ym,1 = U (0, 1)− 0.5 ∀m ∈ [1..M ]. (6)

This random initialization is important in order to ensure a
chaotic behavior for some k values. Indeed, with a constant
initial value the generated signal can be pseudo-periodic using
k = 2 for instance.

Finally, the chaotic signal S is defined as a vector of size
M × N from ym,n. It has been demonstrated in [9] that the
proposed definition of this signal ensures a chaotic behavior.
Thus, notwithstanding the initial conditions, the proposed
chaotic signal can be depicted with two parameters which are
the number of samples M ×N and the k parameter value.



TABLE I
PERFORMANCE INDICATORS IN TERMS OF FAULT DETECTION FOR

SEVERAL CHAOTIC SIGNALS WITH DIFFERENT NUMBER OF SAMPLES.

20k signal 40k signal 50k signal 65k signal

Apeak to peak
soft fault (V) 0.3264 0.3521 0.3516 0.3411
σ[0,0.95] (V) 0.0389 0.0348 0.0323 0.0310

∆ (dB) 18.4866 20.1130 20.7277 20.8409

B. Sensitivity analysis

First, a parametric study on the samples number is per-
formed in terms of fault detection. Four chaotic signals are
compared; 1) a 20000 samples signal noted 20k signal, 2) a
40000 samples signal noted 40k signal, 3) a 50000 samples
signal noted 50k signal, and, 4) a 65000 samples signal noted
65k signal. For each signal, N is fixed to 100 while M takes
the value 200, 400, 500 or 650 respectively for the 20k signal,
40k signal, 50 signal and 65k signal. These generated signals
using x0 = 0.1 and k = 3.9 are illustrated in Fig. 2. We note
that the same ym,1 initial vector is used for each generated
signal in order to be consistent for comparison.

Then, each signal is the injected voltage Vg of Fig. 1 and
the reflected signal is computed using the iterative procedure
presented in the section II. The obtained reflected signals are
illustrated in Fig. 3. It appears clearly the peak related to the
soft fault at one meter and the one related to the ”hard fault” at
three meters. It seems that the peak-to-peak amplitude related
to the soft fault at one meter increases with the number of
samples of the injected signal. Moreover, the noise level seems
to decrease with the number of samples of the injected signal.
In order to quantify these assumptions, we define an indicator
as follow:

∆ = 20 log

(
Apeak to peak

soft fault

σ[0,0.95]

)
(7)

with, Apeak to peak
soft fault the peak-to-peak amplitude related to the soft

fault and σ[0,0.95] the standard deviation on the interval [0,
0.95] m. Thus, the indicator ∆ can be understand as a signal
to noise ratio which is hard to define for a chaotic signal
because of its own structure. The higher the indicator ∆ is, the
better the soft fault detection is. For instance, we can consider
the fault detection acceptable while ∆ > 6 dB which lead
to a signal more than twice than the ”noise”. The results are
depicted in Table I. Indeed, the standard deviation decreases
with the increase of the number of samples of the injected
signal. However, the peak-to-peak amplitude related to the soft
fault is higher for the 40k signal than for the 50k signal or 65k
signal. Nevertheless, the ”performance indicator” ∆ can be
considered better increasing the number of samples according
to the results of Table I.

In order to be more accurate, a sensitivity analysis is
carried out for 601 injected signals from 20000 samples up
to 80000 samples with x0 = 0.1 and 601 injected signals
from 20000 samples up to 80000 samples with x0 = 0.3.
As previously, the same ym,1 initial vector is used for each
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Fig. 2. Zoom on the different generated chaotic signals
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Fig. 3. Reflected signals for several chaotic signals with different number of
samples. The inset is a zoom of the signals on the interval [0.5,1.6] m

generated signal in order to be consistent for comparison.
Fig. 1 shows the performance indicator ∆ for each signal.
We note that, as expected by chaotic signal definition, the
results are sensitive to the initial conditions. However, the
trend is the same; the performance indicator is increasing
with the sample numbers even if the curves are not strictly
increasing. From a certain number of sample, which varies
according to initial conditions, the performance indicator rise
can be considered as insignificant. This result is in agreement
with the proposed fitting equation of the noise level given in
[10]. Indeed, increasing the samples number, we increase the
information number and as a consequence we enhance the
correlation of the injected and reflected signal.

Finally, the sensitivity analysis on the k parameter of the
proposed chaotic signal is performed. We take 1) the 65k
signal with x0 = 0.1 as initial condition and a random vector
ym,1 as first seed for 41 k values from 1 to 4 and 2) the
same signal with another random vector ym,1 as second seed
for the same k values. The performance indicator and the
amplitude peak-to-peak related to the soft fault are illustrated
in Fig. 5. As previously, we note that the performance indicator
is sensitive to the initial conditions even if the trend is
relatively similar. Hence, this indicator is slightly sensitive to
the k value. However, this sensitivity can be considered as
insignificant as well as ∆� 6 dB. Furthermore, the amplitude
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Fig. 4. Performance indicator versus samples number of the injected chaotic
signal for two different initial conditions
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Fig. 5. Performance indicator and versus the k value of the injected chaotic
signal for two different initial seeds. The inset show the amplitude peak-to-
peak related to the soft fault versus the k value of the injected chaotic signal
for each seed.

peak-to-peak is interesting in order to comment the dynamic
of the problem. Indeed, for measurement point of view, the
measurement dynamic could be an issue. The results shows
than, except for k = 1, the amplitude peak-to-peak value is
higher than 0.1 V.

To conclude, the proposed chaotic signal seems to be
interesting in terms of fault detection whatever the parameters.
However, it has been shown than it should be better to increase
the number of samples of the injected signal in order to reduce
the noise level, and, as a consequence, to improve the fault
detection.

IV. SECOND CHAOTIC SIGNAL : THE LORENZ MAP

A. Definition

The second chaotic signal used is the Lorenz chaotic signal.
Edward Lorenz discovered a three nonlinear coupled ordinary
differential equations called the Lorenz model. The dynamics
of the Lorenz chaotic system can be described in the equations:

∂x

∂t
= σ (y (t)− x (t)) , (8)

∂y

∂t
= rx (t)− y (t)− x (t) z (t) , (9)

Fig. 6. Lorenz attractors for different r values

0 500 1000

t (s)

-20

0

20

x
(t

)

r=40

0 500 1000

t (s)

-20

-10

0

10

20

x
(t

)

r=28

0 500 1000

t (s)

-20

-10

0

10

20

x
(t

)

r=24.3

0 500 1000

t (s)

-10

0

10

20

x
(t

)

r=23

Fig. 7. Lorenz attractors for different r values

∂z

∂t
= −bz (t) + x (t) y (t) , (10)

with σ, b and r three parameters. Usually, σ = 10, b = 8
3 and

r is variable. Nevertheless, to obtain a chaotic behavior the r
parameter value must be higher than 24.3. Indeed, according
to the Lorenz attractor plots in Fig. 6, we note that under
this threshold value the attractor converges to one value. As
a consequence, for instance, the signal x (t) begin pseudo-
periodic as shown in Fig. 7. We note also that the chaotic
behavior can have some lags for r = 28 for example. It means
that the signal is pseudo-periodic in the first 18 seconds, then,
the signal has a chaotic behavior. Increasing the r value this
lag is reduced. At r = 40, the signal has a chaotic behavior
since zero second.

Moreover, the discussion about the threshold value and the
time lag is also related to the numerical solver of the Lorenz
equations. The previous results (Fig. 6 and Fig. 7) has been
produced solving these equations with a 4th order Runge-Kutta
algorithm. For instance, using the forward Euler method leads
to more important errors and modifies the threshold value [11].

B. Sensitivity analysis

As previosuly, a sensitivity analysis is carried out on the
samples number for two different sets of initial conditions
which are {t0 = 0, x0 = 0.1, y0 = 0.1, z0 = 0.1} and
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Fig. 8. Performance indicator versus samples number of the injected chaotic
signal for two different sets of initial conditions

{t0 = 0, x0 = 0.3, y0 = 0.3, z0 = 0.3}. Hence, we analyze
the reflected signal from an injected signal x (t) with σ = 10,
b = 8

3 and r = 40 as parameter. The injected signal is solved
with the 4th order Runge-Kutta solver, normalized between
+0.5 V and -0.5 V and compressed in the time scale with
the same dt than the used signals in the previous section.
The sensitivity analysis results are illustrated in Fig. 8. The
same comments as the ones made in section III can be made.
Even if the results are sensitive to initial conditions, the higher
the sample number, the better the soft fault detection. From a
certain number of sample, which can vary according to initial
conditions, the performance indicator rise can be considered as
insignificant. Hence, in the following each studied signal has
65000 samples with {t0 = 0, x0 = 0.1, y0 = 0.1, z0 = 0.1}
as initial conditions.

Thus, another sensitivity analysis on the r value is per-
formed for both sets of initial conditions. Fig. 9 presents the
results in terms of performance indicator and amplitude peak-
to-peak related to the soft fault. We note important variation
of the performance indicator with the r value, for instance
around 7 dB as maximum difference with {t0 = 0, x0 =
0.1, y0 = 0.1, z0 = 0.1} as initial conditions. The variation
of the performance indicator with the initial conditions is
also highlighted. However, using the Lorenz map as a chaotic
signal, the soft fault detection could be performed because of
∆� 6 dB. In a measurement point of view, we note that the
Lorenz signal leads to higher amplitudes peak-to-peak related
to the soft fault in comparison with the ones produces with the
combination of Logistic map and Bernoulli map. Nevertheless,
according to both performance indicator, the produced noise is
also higher (around the same factor) using the Lorenz signal.

V. PERFORMANCE COMPARISON

In the previous sections, we have seen in particular that the
proposed chaotic signals are sensitive to initial conditions and
their own parameters. Therefore, the performance comparison
between both signals in terms of fault detection requires a
statistical approach. As a consequence, we perform 1) 30
simulations with a random initial conditions x0 ∈ [0, 1] for
each k value of the first chaotic signal (noted Bernoulli signal),
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Fig. 9. Performance indicator (at top) and amplitude peak-to-peak related to
the soft fault (at bottom) versus the r value of the injected chaotic signal for
two different sets of initial conditions

and, 2) 30 simulations with a random set of initial conditions
{x0 ∈ [0, 1], y0 ∈ [0, 1], z0 ∈ [0, 1]} for each r value of the
second chaotic signal (noted Lorenz signal). Both signals are
built with 65000 samples. For each parameter value, the mean
of the performance indicator δ̃ is computed as well as the
standard deviation σ and its mean σ̃. Moreover, the mean
performance indicator ∆̄ and the mean standard deviation σ̄
are computed as follow:

∆̄ =
1

p

p∑
1

δ̃, (11)

σ̄ =
1

p

p∑
1

σ̃, (12)

with p the samples number of the parameters r or k which is
equal to 31.

Fig. 10 presents the mean performance indicators δ̃ for both
signals while the error bars represents the standard deviation
for each parameter value. We note that, overall, the mean
performance indicator is increasing with the r value for the
Lorenz signal in contrast with the Bernoulli signal which can
presents an important variation with the k value. Furthermore,
the Lorenz signal is more sensitive to initial conditions than the
Bernoulli signal. Overall, the Bernoulli signal is more reliable
for the soft fault detection with a better mean performance
indicator and less variation than the Lorenz signal according to
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Fig. 10. Mean performance indicator versus the parameter value of each
injected chaotic signal for 30 different sets of initial conditions. The error
bars represents the standard deviation for each 30 different sets of initial
conditions.

∆̄ and σ̄. However, the k value must be ”well chosen” in order
to obtain a relative optimum of ∆. Moreover, increasing the
r value of the Lorenz signal could lead to better results even
if the variation with initial conditions will be yet important in
our opinion. To conclude, the study shows that the Bernoulli
signal seems to be a more reliable choice than the Lorenz
signal for the soft fault detection while the k value is well
chosen. Nevertheless, both signals propose good performances
in terms of soft fault detection.

VI. CONCLUSION

We had proposed in this article a simulation analysis with
two signals 1) a combination of the logistic map and Bernoulli
map and 2) a Lorenz signal for the soft fault detection
in cables. A sensitivity analysis has lead to increase the
sample number of each chaotic signal in order to obtain
better performances. This analysis has also highlighted the
high sensitivity to initial conditions and the parameter value
of each signal. Hence, a statistical study has been carried out
in order to compare the both signals. The results demonstrates
a better reliability for the combination of the logistic map and
Bernoulli map than the Lorenz signal, in particular in terms of
sensitivity about initial conditions. However, it has been shown
in this article that the both signals could be used as they present
very good performances in terms of soft fault detection. In the
future, their performances and limitation with the impedance
value related to the soft fault will be studied as well as their
performances in a noisy environment. Moreover, it could be
interesting to study their relevance for complex wire network
and their ability in measurement.
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