
HAL Id: hal-03348524
https://hal.science/hal-03348524

Submitted on 19 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Runtime analysis of evolutionary algorithms via
symmetry arguments

Benjamin Doerr

To cite this version:
Benjamin Doerr. Runtime analysis of evolutionary algorithms via symmetry arguments. Information
Processing Letters, 2021, 166, pp.106064. �10.1016/j.ipl.2020.106064�. �hal-03348524�

https://hal.science/hal-03348524
https://hal.archives-ouvertes.fr

Runtime Analysis of Evolutionary Algorithms
via Symmetry Arguments

Benjamin Doerr
Laboratoire d’Informatique (LIX)

CNRS

École Polytechnique
Institut Polytechnique de Paris

Palaiseau
France

October 31, 2020

Abstract

We use an elementary argument building on group actions to prove
that the selection-free steady state genetic algorithm analyzed by Sut-
ton and Witt (GECCO 2019) takes an expected number of Ω(2n/

√
n)

iterations to find any particular target search point. This bound is
valid for all population sizes µ. Our result improves over the previous
lower bound of Ω(exp(nδ/2)) valid for population sizes µ = O(n1/2−δ),
0 < δ < 1/2.

1 Introduction

The theory of evolutionary algorithms (EAs) has produced a decent number
of mathematically proven runtime analyses. They explain the working prin-
ciples of EAs, advise how to use these algorithms and how to choose their
parameters, and have even led to the invention of new algorithms. We refer
to [AD11, DN20, Jan13, NW10] for introductions to this area.

Due to the complexity of the probability space describing a run of many
EAs, the majority of the runtime analyses regard very simple algorithms. In
particular, there are only relatively few works discussing algorithms that em-
ploy crossover, that is, the generation of offspring from two parents. Among

1

these, again very few present lower bounds on runtimes; we are aware of such
results only in [DT09, OW15, SW19].

In the most recent of these works, Sutton and Witt [SW19, Section 3] con-
sider a simple crossover-based algorithm called StSt

(
µ
2

)
GA0 (made precise

in Section 2 below). This steady-state genetic algorithm uses a two-parent
two-offspring uniform crossover as only variation operator. The two offspring
always replace their parents. There is no fitness-based selection and no muta-
tion in this simple process. Clearly, an algorithm of this kind is not expected
to be very useful in practice. The reason to study such algorithms is rather
that they allow to analyze in isolation how crossover works (more reasons to
study this particular algorithm are described in [SW19]).

Without fitness-based selection, and thus without regarding the problem
to be optimized, one would expect that this algorithm takes an exponential
time to find any particular search point of the search space Ω = {0, 1}n.
Surprisingly, this is not so obvious, at least not when working with a partic-
ular initialization of the population. Sutton and Witt [SW19, Theorem 10]
initialize the algorithm with µ/2 copies of the string z = (1010 . . . 10) and
µ/2 copies of the string z′ = (0101 . . . 01). They argue that this is a pop-
ulation with extremely high diversity, which could thus be beneficial for a
crossover-based algorithm. Sutton and Witt show that their algorithm with
this initialization and with population size µ = O(n1/2−δ), δ < 1/2 a con-
stant, takes an expected number of Ω(exp(nδ/2)) iterations to generate the
target string x∗ = (11 . . . 1). Apparently, this lower bound is subexponential
for all population sizes. It becomes weaker with increasing population size
and is trivial for µ = Ω(

√
n).

By exploiting symmetries in the stochastic process, we improve the lower
bound to Ω(2n/

√
n) for all values of µ.

Theorem 1. Let t, µ, n ∈ N with µ and n even. Consider a run of the
StSt

(
µ
2

)
GA0 initialized with µ/2 copies of z = (1010 . . . 10) and µ/2 copies

of z′ = (0101 . . . 01). Then the probability that the target string x∗ = (11 . . . 1)
is generated in the first t iterations is at most 2t/

(
n
n/2

)
. In particular, the

expected time to generate x∗ is at least 1
4

(
n
n/2

)
= Ω(2n/

√
n).

Our proof is based on a simple group action or symmetry argument.
We observe that the automorphisms of the hypercube {0, 1}n (viewed as
graph) commute with the operations of the StSt

(
µ
2

)
GA0. Consequently, if

an automorphism σ stabilizes the initial individuals z and z′ (that is, σ(z) = z
and σ(z′) = z′), then for any x ∈ {0, 1}n at all times t the probability that
the algorithm generates x equals the probability that it generates σ(x).

From this symmetry, we conclude that if B is the set of all x such that
there is an automorphism of the hypercube that stabilizes the initial indi-

2

viduals and such that x = σ(x∗), then at all times the probability that x∗ is
generated, is at most 1/|B|. We compute that B has exactly

(
n
n/2

)
elements.

Hence each search point generated by the StSt
(
µ
2

)
GA0 is equal to x∗ only

with probability
(
n
n/2

)−1
. A simple union bound over the 2t search points

generated up to iteration t gives the result.

2 Precise Problem Statement

The algorithm regarded in [SW19, Section 3], called StSt
(
µ
2

)
GA0, is a

selection-free variant of a steady state genetic algorithm proposed earlier
in [Wit18]. It works with the search space Ω = {0, 1}n of bit strings of
length n, which is a standard representation used in evolutionary computa-
tion. The algorithm uses a population of size µ ≥ 2. Each iteration consists of
(i) choosing two different individuals randomly from the population, (ii) ap-
plying a two-offspring uniform crossover, and (iii) replacing the two parents
with the two offspring in the population.

For two parents x and y, the two offspring x′ and y′ are generated as
follows. For all i ∈ [1..n] := {1, . . . , n} with xi = yi, we have x′i = y′i = xi
with probability one. For all i ∈ [1..n] with xi 6= yi, we have (x′i, y

′
i) = (1, 0)

and (x′i, y
′
i) = (0, 1) each with probability 1/2.

The pseudocode of the StSt
(
µ
2

)
GA0 is given in Algorithm 1. We did

not specify a termination criterion since we are interested in how long the
algorithm takes to find a particular solution when not stopped earlier. We
also did not specify how to initialize the population since we will regard a very
particular initialization later. We generally view populations as multisets,
that is, an individual can be contained multiple times and this is reflected in
the uniform random selection of individuals. Formally speaking, this means
that a population is a µ-tuple of individuals and individuals should be referred
to via their index in this tuple.

Since a typical reason why crossover-based algorithms become inefficient
is a low diversity in the population, Sutton and Witt consider an initialization
of the StSt

(
µ
2

)
GA0 which has “extremely high diversity”, namely µ/2 copies

of the string z = (1010 . . . 10) and µ/2 copies of the string z′ = (0101 . . . 01).
This population has the same number of zeros and ones in each bit position
and has the maximal number of pairs of individuals with maximal Hamming
distance n.1 Still, this initialization is fair with respect to the target of
generating the string x∗ = (11 . . . 1) in the sense that all initial individuals

1We recall that the Hamming distance H(x, y) of two bit strings x, y ∈ {0, 1}n is defined
by H(x, y) = |{i ∈ [1..n] | xi 6= yi}|.

3

Algorithm 1: The StSt
(
µ
2

)
GA0 with population size µ ≥ 2 oper-

ating on the search space {0, 1}n.

1 t← 0;
2 Initialize P0 with µ individuals from {0, 1}n;
3 for t = 1, 2, . . . do
4 Choose from Pt−1 two random individuals x and y without

replacement;
5 (xt, yt)← crossover(x, y);
6 Pt ← Pt−1 \ {x, y} ∪ {xt, yt};

have from x∗ a Hamming distance of n/2, which is the expected Hamming
distance of a random string from x∗ (and the expected Hamming distance of
any string from a random target).

3 Proof of the Main Result

We now prove our main result following the outline given towards the end of
Section 1. We do not assume any prior knowledge on groups and their action
on sets.

We view the hypercube {0, 1}n as a graph in the canonical way, that is,
two bit strings x, y ∈ {0, 1}n are neighbors if and only if they differ in exactly
one position, that is, if H(x, y) = 1. A permutation σ of {0, 1}n is called
graph automorphism if it preserves the neighbor relation, that is, if x and y
are neighbors if and only if σ(x) and σ(y) are neighbors.

Let G be the set of all graph automorphisms of the hypercube. We note
that G is a group. More precisely, G is a subgroup of the symmetric group on
{0, 1}n, that is, the group of all permutations of {0, 1}n with the composition
◦ as group operation. Since different notations are in use, we fix that by ◦ we
denote the usual composition of functions defined by (σ2◦σ1)(x) = σ2(σ1(x))
for all σ1, σ2 ∈ G and x ∈ {0, 1}n. By regarding shortest paths, we easily
observe that G preserves the Hamming distance, that is, we have H(x, y) =
H(σ(x), σ(y)) for all σ ∈ G and x, y ∈ {0, 1}n. Hence G is also the group of
isometries of the metric space ({0, 1}n, H).

There are two types of natural automorphisms of the hypercube.

� Rotations : If π is a permutation of [1..n], then σπ defined by

σπ(x) = (xπ(1), . . . , xπ(n))

4

for all x ∈ {0, 1}n is the automorphism stemming from permuting the
entries of x as given by π.

� Reflections : If m ∈ {0, 1}n, then σm defined by

σm(x) = x⊕m

for all x ∈ {0, 1}n is the automorphism stemming from adding the vec-
tor m modulo two or, equivalently, performing an exclusive-or with m.

We remark (without proof and without using this in our proofs) that the
rotations and reflections generate G, and more specifically, that each σ ∈ G
can be written as product σ = στ ◦ σm for suitable τ and m [Har00].

The stabilizer Gx of a point x ∈ {0, 1}n is the set of all permutations in
G fixing this point:

Gx := {σ ∈ G | σ(x) = x}.

To exploit symmetries in the stochastic process describing a run of the
StSt

(
µ
2

)
GA0, we now analyze the stabilizer of the initial individuals. Let

S = Gz be the stabilizer of the initial search point z = (1010 . . . 10). We
observe that S also fixes the other initial individual z′ = (0101 . . . 01).

Remark 2. S = Gz′.

Proof. Since z′ is the unique point with Hamming distance n from z and
since G is the group of isometries of the hypercube, any σ ∈ G fixing z also
fixes z′, that is, S is contained in the stabilizer Gz′ of z′. Via a symmetric
argument, Gz′ ⊆ S, and the claim follows.

We proceed by determining a sufficiently rich subset of S. Obviously, any
permutation τ of [1..n] that does not map an even number to an odd one
(and consequently does not map an odd number to an even one) has the
property that στ ∈ S. Unfortunately, these automorphisms also fix z∗ and
thus are not useful for our purposes.

However, also the following automorphisms are contained in S. Let i, j ∈
[1..n] such that i is even and j is odd. Let m(i, j) ∈ {0, 1}n such that
m(i, j)k = 1 if and only if k ∈ {i, j}. Then σm(i,j) changes zeros to ones and
vice versa in the i-th and j-th position of x and leaves all other positions
unchanged. Let τ(i, j) be the permutation of [1..n] that swaps i and j and
fixes all other numbers. Then σ(i, j) := στ(i,j) ◦ σm(i,j) is contained in S.

We use these automorphisms to give a lower bound on the size of the
orbit S(x∗) of x∗ = (1, . . . , 1) under S. We recall that if H is a group of
permutations of a set Ω and x ∈ Ω, then the orbit H(x) := {σ(x) | σ ∈ H}

5

of x under H is the set of all elements to which x can be mapped via a
permutation of H. Since it might ease understanding this notion, we note
that the orbits form a partition of Ω, but we shall not build on this fact.
Let B := S(x∗) denote the orbit of x∗ under S. We now determine B and
observe that it is relatively large.

Lemma 3. B consists of all x ∈ {0, 1}n such that H(x, z) = n/2. In partic-
ular, |B| =

(
n
n/2

)
.

Proof. We show first that B cannot contain other elements. Let x ∈ B and
σ ∈ S such that x = σ(x∗). Then, using that σ ∈ Gz, x = σ(x∗), and σ is an
isometry, we compute H(x, z) = H(x, σ(z)) = H(σ(x∗), σ(z)) = H(x∗, z) =
n/2.

We now show that each x ∈ {0, 1}n with H(x, z) = n/2 is contained
in B. Let D = {i ∈ [1..n] | xi 6= x∗i }. Since H(x, z) = H(x∗, z), we have
xi = zi 6= x∗i for exactly half of the i ∈ D and xi 6= zi = x∗i for the other half.
Consequently, |D| is even and there are k = |D|/2 distinct even numbers
i1, . . . , ik ∈ [1..n] and k distinct odd numbers j1, . . . , jk ∈ [1..n] such that
xi` = zi` and xj` 6= zj` for all ` ∈ [1..k] and these 2k positions are exactly
the positions x and x∗ differ in. Consequently, σ = σ(i1, j1) ◦ · · · ◦ σ(ik, jk) is
in S and satisfies σ(x∗) = x.

We finally argue that the actions of the rotations and reflections in G are
compatible with the operations of the StSt

(
µ
2

)
GA0. Naturally, this implies

the same compatibility statement for automorphisms that can be written as
product of rotations and reflections. While we do not need this, we remark
that via the above-mentioned result that G is generated by rotations and
reflections, the compatibility extends to the full automorphism group G.

We lift the notation of an automorphism to random search points in the
obvious way. If X is a random search point (formally speaking, a random
variable taking values in {0, 1}n), then σ(X) is the random variable σ ◦ X
defined on the same probability space. Consequently, and equivalently, we
have Pr[σ(X) = x] = Pr[X = σ−1(x)] for all x ∈ {0, 1}n. Finally, we lift
function evaluations to tuples in the obvious way so that, e.g., for the case
of pairs we have σ(x, y) = (σ(x), σ(y)) for all x, y ∈ {0, 1}n and all functions
σ defined on {0, 1}n.

We start by analyzing the crossover operation. We recall that the
crossover operator used by the StSt

(
µ
2

)
GA0 is a randomized operator that

generates a pair of search points from a given pair of search points. For all
x, y ∈ {0, 1}n, the result (X, Y) := crossover(x, y) of applying crossover to

6

(x, y) is distributed as follows. For a, b, c, d ∈ {0, 1} define p(a, b, c, d) by

p(a, b, c, d) =


1 if a = b = c = d,
1
2

if a 6= b and c 6= d,

0 otherwise.

Then for all u, v ∈ {0, 1}n, we have

Pr[crossover(x, y) = (u, v)] =
n∏
i=1

p(xi, yi, ui, vi).

We use this description of the crossover operation to show that crossover
commutes with rotations and reflections.

Lemma 4. Let σ ∈ G be a rotation or a reflection. Then for all x, y ∈
{0, 1}n, σ(crossover(x, y)) and crossover(σ(x), σ(y)) are equally distributed.
This statement remains true if x and y are random search point with random-
ness stochastically independent from the one used by the crossover operator.
These statements remain true when σ is a product of a finite number of
rotations and reflections.

Proof. Let first σ = στ be a rotation induced by some permutation τ of [1..n].
Then for all u, v ∈ {0, 1}n, we compute

Pr[crossover(σ(x), σ(y)) = (u, v)] =
n∏
i=1

p(σ(x)i, σ(y)i, ui, vi)

=
n∏
i=1

p(xτ(i), yτ(i), ui, vi),

Pr[σ(crossover(x, y)) = (u, v)] = Pr[crossover(x, y) = (σ−1(u), σ−1(v))]

=
n∏
i=1

p(xi, yi, uτ−1(i), vτ−1(i))

=
n∏
i=1

p(xτ(i), yτ(i), ui, vi),

showing the desired equality of distributions.
Let now σ = σm be a reflection induced by some m ∈ {0, 1}n. By

definition, p(a, b, c, d) = p(a⊕ r, b⊕ r, c⊕ r, d⊕ r) for all a, b, c, d, r ∈ {0, 1}.

7

Noting that σ = σ−1, we compute

Pr[crossover(σ(x), σ(y)) = (u, v)] =
n∏
i=1

p(σ(x)i, σ(y)i, ui, vi)

=
n∏
i=1

p(xi ⊕mi, yi ⊕mi, ui, vi),

Pr[σ(crossover(x, y)) = (u, v)] = Pr[crossover(x, y) = (σ−1(u), σ−1(v))]

=
n∏
i=1

p(xi, yi, ui ⊕mi, vi ⊕mi)

=
n∏
i=1

p(xi ⊕mi, yi ⊕mi, ui, vi),

showing again the desired equality of distributions. This shows the first result
in Lemma 4.

Assume now that X and Y are random search points, that is, that (X, Y)
is a random variable defined on some underlying probability space that is
independent from the randomness used by the crossover operator. Let σ be
a rotation or reflection. From the first part of Lemma 4, we deduce

Pr[crossover(σ(X), σ(Y)) = (u, v)]

=
∑

x,y∈{0,1}n
Pr[(X, Y) = (x, y)] Pr[crossover(σ(x), σ(y)) = (u, v)]

=
∑

x,y∈{0,1}n
Pr[(X, Y) = (x, y)] Pr[σ(crossover(x, y)) = (u, v)]

= Pr[σ(crossover(X, Y)) = (u, v)]

for all u, v ∈ {0, 1}n. This shows the second claim.
An elementary induction extends our claims to products of rotations and

reflections.

With Lemma 4, we now show that rotations and reflections commute (in
a suitable sense) with the whole run of the StSt

(
µ
2

)
GA0.

Lemma 5. Let σ be a product of rotations and reflections in G. Consider
a run of the StSt

(
µ
2

)
GA0 with initial population P0. Let Xt and Yt be the

random variables describing the two search points generated in iteration t.
Consider also an independent run of the StSt

(
µ
2

)
GA0 with initial population

P ′0 = σ(P0). Let X ′t and Y ′t denote the search points generated in iteration t
of this run. Then (X ′t, Y

′
t) and σ(Xt, Yt) are identically distributed.

8

Proof. Consider the two runs with independent randomness. Denote by Pt
and P ′t the populations generated in iteration t. For the sake of precision, we
now take the view that a population is a µ-tuple of individuals. We show that
if σ(Pt−1) and P ′t−1 are identically distributed, then so are σ(Xt, Yt, Pt) and
(X ′t, Y

′
t , P

′
t). Since σ(P0) and P ′0 are identically distributed by assumption,

the claim follows by induction over time.
Assume now that for some t, the populations σ(Pt−1) and P ′t−1 are iden-

tically distributed. We consider a particular outcome of Pt−1 that occurs
with positive probability. Let σ(Pt−1) be the corresponding outcome of P ′t−1.
Since both these outcomes have the same probability of appearing, we can
condition on both and show that σ(Xt, Yt, Pt) and (X ′t, Y

′
t , P

′
t) are identically

distributed in this conditional probability space.
Let i, j ∈ [1..µ] be different. The probability that these are the indices

of the two individuals chosen as crossover parents is
(
µ
2

)−1
in both runs of

the StSt
(
µ
2

)
GA0. So again we condition on this same outcome in both

runs. Now the parents (x, y) in the first run and the parents (x′, y′) in the
second run satisfy σ(x, y) = (x′, y′). By Lemma 4, σ(crossover(x, y)) and
crossover(x′, y′) are equally distributed. Since these pairs of search points
replace (x, y) and (x′, y′) in the respective populations, we see that σ(Pt)
and P ′t are identically distributed when conditioning on Pt−1, P

′
t−1, i, j, and,

as discussed above, also without conditioning. This concludes the proof.

With Lemma 5, we can easily argue that at each time t all elements of
the orbits under S have the same chance of being generated. We need and
formulate this statement only for the orbit B = S(x∗).

Corollary 6. Consider a run of the StSt
(
µ
2

)
GA0 started with the particular

initialization P0 described in Section 2. Let x ∈ B and t ∈ N. Then Pr[xt =
x] = Pr[xt = x∗] and Pr[yt = x] = Pr[yt = x∗].

Proof. Let σ ∈ S such that σ(x∗) = x. Besides the run of the StSt
(
µ
2

)
GA0

started with P0, consider a second independent run started with σ(P0). De-
note the offspring generated in this run by x′t and y′t. By Lemma 5,

Pr[xt = x∗] = Pr[σ(xt) = σ(x∗)] = Pr[x′t = σ(x∗)] = Pr[x′t = x].

Since σ is from S, by Remark 2, we also have σ(z′) = z′. Hence
P0 = σ(P0). Having the same initial population, the two runs regarded are
identically distributed. Consequently, xt and x′t are identically distributed
and we have

Pr[xt = x∗] = Pr[x′t = x] = Pr[xt = x].

9

We are now in the position to give a proof of Theorem 1 stated in the
introduction.

Proof. Since Pr[xt = x∗] = Pr[xt = x] for all x ∈ B and t ∈ N by Corollary 6,
we have

Pr[xt = x∗] =
1

|B|
∑
x∈B

Pr[xt = x] =
1

|B|
Pr[xt ∈ B] ≤ 1

|B|
. (1)

Naturally, the same estimate holds for Pr[yt = x∗]. Let the random variable
T denote the first iteration in which the search point x∗ is generated. Then
a simple union bound over time and over the two offspring generated per
iteration gives

Pr[T ≤ t] ≤
t∑
i=1

(Pr[xi = x∗] + Pr[yi = x∗]) ≤ 2t

|B|
= 2t/

(
n

n/2

)
,

where the last equality follows from Lemma 3.
For the bound on the expectation of T , we use the standard argument

E[X] =
∑∞

x=1 Pr[X ≥ x] valid for all random variables X distributed on the
non-negative integers and compute

E[T] =
∞∑
t=1

Pr[T ≥ t]

≥
∞∑
t=1

max

{
0, 1− 2(t− 1)

/(n

n/2

)}

=

1
2(n

n/2)∑
i=1

2i
/(n

n/2

)
≥ 1

4

(
n

n/2

)
.

4 Conclusion and Open Problems

We proposed an alternative approach to the problem how long the
StSt

(
µ
2

)
GA0 with a particular initialization takes to generate a particular

search point [SW19, Section 3.1]. Our lower bound of order Ω(2n/
√
n), valid

for all population sizes µ, is significantly stronger than the previous result,
which is at most Ω(exp(n1/4)) and decreases with increasing population size
until it is trivial for µ = Ω(

√
n). Our main argument based on group actions

10

is elementary and natural, which gives us the hope that similar arguments
will find applications in other analyses of EAs.

We believe that our lower bound is close to the truth, which we expect
to be Θ(2n), but we do not have a proof for this conjecture (in fact, we do
not even know if the runtime is exponential – unfortunately, the few existing
exponential upper bounds only regard mutation-based EAs, see [Doe20a]).

We note that when using a random initialization instead of the particular
one proposed in [SW19], then a lower bound of Ω(2n) follows simply from the
fact that each search point that is generated is uniformly distributed. This
argument, in a sense a toy version of ours, is apparently not widely known in
the community; it was used in [Doe20b, Theorem 1.5.3] for a problem which
previously [OW11, Theorem 5] was attacked with much deeper methods.

It thus seems that the difficulty of the problem posed in [SW19] not
only stems from the use of crossover, but also from the fact that a non-
random initialization was used. We note that so far the impact of different
initializations has not been discussed intensively in the literature on runtime
analysis of EAs. The only works we are aware of are [Sud13, dPdLDD15,
DD16].

In the light of this state of the art, the two open problems of improving
the lower bound to Ω(2n) and showing an exponential upper bound appear
interesting. Any progress here might give us a broader understanding how
to analyze EAs using crossover or non-random initializations.

Acknowledgment

This work was supported by a public grant as part of the Investissement
d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH.

References

[AD11] Anne Auger and Benjamin Doerr, editors. Theory of Random-
ized Search Heuristics. World Scientific Publishing, 2011.

[DD16] Benjamin Doerr and Carola Doerr. The impact of random
initialization on the runtime of randomized search heuristics.
Algorithmica, 75:529–553, 2016.

[DN20] Benjamin Doerr and Frank Neumann, editors. Theory of Evolu-
tionary Computation—Recent Developments in Discrete Opti-
mization. Springer, 2020. Also available at https://cs.adelaide.
edu.au/∼frank/papers/TheoryBook2019-selfarchived.pdf.

11

[Doe20a] Benjamin Doerr. Exponential upper bounds for the runtime
of randomized search heuristics. In Parallel Problem Solving
From Nature, PPSN 2020, Part II, pages 619–633. Springer,
2020.

[Doe20b] Benjamin Doerr. Probabilistic tools for the analysis of ran-
domized optimization heuristics. In Benjamin Doerr and
Frank Neumann, editors, Theory of Evolutionary Computa-
tion: Recent Developments in Discrete Optimization, pages 1–
87. Springer, 2020. Also available at https://arxiv.org/abs/
1801.06733.

[dPdLDD15] Axel de Perthuis de Laillevault, Benjamin Doerr, and Carola
Doerr. Money for nothing: Speeding up evolutionary algo-
rithms through better initialization. In Genetic and Evolution-
ary Computation Conference, GECCO 2015, pages 815–822.
ACM, 2015.

[DT09] Benjamin Doerr and Madeleine Theile. Improved analysis
methods for crossover-based algorithms. In Genetic and Evo-
lutionary Computation Conference, GECCO 2009, pages 247–
254. ACM, 2009.

[Har00] Frank Harary. The automorphism group of a hypercube. Jour-
nal of Universal Computer Science, 6:136–138, 2000.

[Jan13] Thomas Jansen. Analyzing Evolutionary Algorithms – The
Computer Science Perspective. Springer, 2013.

[NW10] Frank Neumann and Carsten Witt. Bioinspired Computation
in Combinatorial Optimization – Algorithms and Their Com-
putational Complexity. Springer, 2010.

[OW11] Pietro S. Oliveto and Carsten Witt. Simplified drift analysis
for proving lower bounds in evolutionary computation. Algo-
rithmica, 59:369–386, 2011.

[OW15] Pietro S. Oliveto and Carsten Witt. Improved time complexity
analysis of the simple genetic algorithm. Theoretical Computer
Science, 605:21–41, 2015.

[Sud13] Dirk Sudholt. A new method for lower bounds on the run-
ning time of evolutionary algorithms. IEEE Transactions on
Evolutionary Computation, 17:418–435, 2013.

12

[SW19] Andrew M. Sutton and Carsten Witt. Lower bounds on the
runtime of crossover-based algorithms via decoupling and fam-
ily graphs. In Genetic and Evolutionary Computation Confer-
ence, GECCO 2019, pages 1515–1522. ACM, 2019.

[Wit18] Carsten Witt. Domino convergence: why one should hill-climb
on linear functions. In Genetic and Evolutionary Computation
Conference, GECCO 2018, pages 1539–1546. ACM, 2018.

13

