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Abstract11

Phase change material-based heat sinks are widely used in several industrial applications
such as in the �eld of industrial automation and mechatronics. Nowadays, several researchers
aim to obtain an optimal design of these systems in order to ameliorate its performances.
Nevertheless, uncertainties are not considered for the majority of these studies. Furthermore,
it has been con�rmed that deterministic multi-objective optimization (DMOO) may lead to
an unreliable design. In this study, a new methodology that leads to perform the Multi-
Objective Reliability-Based Design Optimization (MORBDO) for thermal management of
a passive cooling system is proposed. It consists in coupling the Finite Element Model
(FEM), MORBDO procedures and surrogate approaches. Kriging predictor is used to
construct metamodels and then validated using Cross-Validation (CV) and error predictions.
A numerical investigation is carried out to study the di�erent DMOO and MORBDO
approaches. In this study, a 3D PCM-based round pin-�n heat sink is detailed. The
aim of this problem is to minimize two objective functions: the cost (total volume V )
and the �nal cooling time tf by considering both thermal and physical constraints. For
this purpose, geometrical uncertain parameters are considered such as length L, height H
and φ pin diameter of the heat sink. This study leads to develop a well-distributed reliable
Pareto solutions by combining the Robust Hybrid Method (RHM) and the Constrained Non-
dominated Sorting Genetic Algorithm (C-NSGA-II). Then, the e�ciency of the proposed
MORBDO-RHM approach for PCM-based heat sink is veri�ed.
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Nomenclature

Abbreviations

ANN Arti�cial neural networks
Cov Covariance
CV Cross-validation
DDO Deterministic design optimization
DOE Design of experiments
FES Finite element simulation
HDS Hybrid design space
HM Hybrid method
HS Heat sink
HSU Heat storage unit
LHS Latin hypercube sampling
MAE Maximum absolute error
MCS Monte Carlo simulation
MHM Modi�ed hybrid method
MSE Mean squares error
PCM Phase change material
QRS Quadratic response surface
RBDO Reliability-based design optimization
RHM Robust hybrid method
RME Relative mean error
RMSE Root mean squared error
RSM Response surface methodology
SPTs Set point temperatures
TM Thermal management
Symbols

ŷ(x) The predictor of the model
F Model matrix
f(x) Vector of regression basis function
K Matrix of correlation functions
r(x) Vector of correlation functions
x Design variables vector
xs Set of samples
ys Responses of the sample set
Am Mushy region
Cp Speci�c heat of fusion
f(x) Objective function
g Gravitational acceleration
Gi(x, y) Performance functions
H Height of heat sink
H Total enthalpy of PCM
hs Speci�c enthalpy
hj(x) Deterministic constraints
hs,ref Referential enthalpy
L lenght of heat sink

Lf Laten heat of fusion
lb Lower bound
m Dimensional problem
n Number of design points
P Pressure
p Number of kriging coe�cients
P T
i Target failure probability
Pr[.] Probability operator
S Source term
Sg Global safety factor
Sh Energy source term
T Temperature
t Time
Tl Liquid temperature
Ts Solid temperature
Tamb Ambient temperature
Tmax Maximum temperature
Tref Referential temperature
u, v, w Velocity components in x, y and z

directions
ub Upper bound
V Volume
x Deterministic design variables
x∗ Optimal point
y Random variables
y∗ Failure point
Z(x) Stochastic process
Greek symbols

αw Thermal expansion coe�cient
βt Target reliability level
β Vector of regression coe�cients
θ Vector of the correlation function

parameters
∆H Latent heat
λ Thermal conductivity
µ Dynamic viscosity
φ Pin �n diameter
ρ Density
σ2 Variance of the stochastic model
ε Normal random error
ξ Liquid fraction of PCM
dβ(x, y) Distance between the optimal

and design points
L(β, σ2,θ) Likelihood function



1. Introduction14

In recent years, thermal management in the �eld of mechatronics has become an important15

factor for researchers in electronic packages design. In this context, electronic components16

are getting ever-smaller with more design features in size due to the development of modern17

technologies of electronic equipment. In fact, a high power and performance dissipated by the18

electronic component can lead, not only to reduce their lifetime, but also to its immediate19

failure. To this end, an e�cient and novel cooling technology is needed to overcome the20

overheating phenomenon and to avoid the deterioration of the device. Furthermore, the21

choice of such a cooling system is based on many factors such as material cost, heat22

dissipation rate, maintenance and space [1].23

24

In the literature, several technics of passive cooling are developed to ensure the smooth25

operation of electronic devices using PCM-based heat sinks [2�4]. However, standard cooling26

methods would not be su�cient. Therefore, to improve the performance of passive cooling27

electronic device technologies, many studies are developed and some of them are based on28

Phase Change Materials (PCM) [5, 6]. An experimental study is investigated in [7], to29

improve and ensure the reliability and functionality of the installed features. A parametric30

study leads to improve the thermal performance of PCM-based heat sinks by changing the31

PCM volume fraction and pin thickness at various heat �uxes. A numerical and experimental32

studies are presented by Thomas et al. [8] in order to evaluate the thermal performance33

of a PCM-based heat sink using n-Eicosane at many constant input power levels. In this34

study, the e�ect of natural convection has been discussed. Nowadays, PCM-based heat sink35

optimization presents a huge challenge for developers. A numerical study is presented in36

[9] which an optimal model is proposed in a passive cooling application using PCM-based37

plate �n matrix for charging and discharging phases. The main purpose of this study is38

to improve the thermal performance of the heat storage unit (HSU) by changing the input39

power level, PCM material, PCM volume fraction and heat sink geometry.40

41

Integration of reliability methods in the optimization algorithm presents a new challenge42

in mechatronics problem. The Reliability-Based Design Optimization (RBDO) aims then43

to �nd the best compromise between cost and safety [10]. In this context, an e�cient44

RBDO study for PCM-based heat-sink is presented in [11, 12]. These studies lead to45

determine an optimal and reliable design of a cooling system where two-dimensional Finite46

Element Simulations (FES) are performed. These studies prove that, Deterministic Design47

Optimization (DDO) approach leads to determine an optimal solution, but it represents a48

missing level of con�dence and a signi�cant risk of failure, due to non-considering uncertainties.49

Hence, to overcome this issue, it is recommended to integrate, during the optimization50

process, the reliability analysis. Using the classical RBDO approach and, to obtain optimal51

results, coupling of physical space and normalized space is needed. Which means a high52

computation time for such an optimization problem [13�15]. In order to overcome this53

issue, Kharmanda et al. [16] proposed a novel RBDO methodology called Hybrid reliability-54

optimization Method (HM) where its e�ciency is presented and discussed. This method55
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e�ciently reduces the computing time comparing with the classical approach. However, the56

optimization problem becomes more complex and then it can lead to an infeasible solution.57

In order to solve the di�culties of the classical one, Yaich et al. [17] proposed a novel58

methodology called Robust Hybrid Method (RHM). The e�ciency of this method has been59

veri�ed only on static and some speci�c nonlinear cases such as fatigue damage [17], coupled60

acoustic-structural system [18, 19] and shape memory alloy micro-pump [20]. In addition,61

in [21, 22], the authors aim to develop a new approach applied to an o�shore wind turbine,62

which it called Modi�ed Hybrid Method (MHM) in order to avoid issues of other RBDO63

methods.64

65

Otherwise, such an RBDO method needs a large number of evaluations. In the case66

of PCM-based heat sink, a non-linear transient 3D model analysis is expensive in term of67

computational time. To this end, surrogate models are then recommended as an alternative68

to de�ne original models' approximations. It consists in constructing mathematical models,69

to determine the link between inputs and outputs of a speci�ed system [23, 24]. Recent70

approaches are developed in the �eld of design optimization [25] and probabilistic analysis71

[26, 27], using surrogate models. Response Surface Methodology (RSM), Arti�cial Neural72

Networks (ANN), Radial Basis Function (RBF) method and Kriging method are the most73

popular surrogate modelling used recently. In [28], metamodels are applied in the �eld of74

mechanical manufacturing for the purpose to enhance the computational e�ciency. Also,75

Fatma et al. [29] studied many metamodel techniques for a NiTi micro actuator. A Monte76

Carlo Simulations (MCS) are then performed in order to prove its e�ciency, using the77

constructed metamodel. These studies demonstrate that kriging method presents more78

e�ciently and gives the best approximation of the original model. Recently, Dammak79

and El Hami [30, 31] studied a numerical application of a cementless hip prosthesis and80

a coupled acoustic-structural system. These studies are based on coupling multi-objective81

optimization problem (MORBDO) with surrogate models. It has been demonstrated that82

the studied problem using Kriging approach has the ability to generate a well-distributed83

reliable Pareto solution.84

85

The aim of this paper is to propose a new methodology that leads to determine an86

optimal design of a PCM-based round pin-�n heat sink with a required reliability level. Both87

deterministic and multi-objective reliability optimization are presented. For this purpose,88

the Constrained Non-dominated Sorting Genetic Algorithm (C-NSGA-II) is coupled with89

HM and RHM approaches respectively. DMOO and MORBDO models are next coupled90

with surrogate models which considerably reduced the computing time. To present the91

advantages of the proposed method, a detailed numerical application of PCM-based round92

pin-�n heat sink is investigated. Results show the improvement of the resulting optimal93

solution using MORBDO-RHM coupled with Kriging surrogate model, and its capability to94

develop a well-distributed reliable Pareto solutions with a required reliability level.95
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2. Heat transfer and PCM behavior: Mathematical model96

The heat generated by the input power is transferred to all surfaces of heat sink by97

conduction. In fact, PCM allows energy to be absorbed by changing from the solid state to98

the liquid state. The dissipated energy by the PCM causes its transformation from liquid to99

solid state. It is supposed that thermo-physical properties of the PCM are independent of100

temperature and only the conduction equation is taken into consideration for the aluminum101

section as presented in equation (1):102

� Energy conservation:103

ρCp(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
) = λ(

∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2
) + Sh (1)

Where, ρ, Cp and λ are respectively the density, speci�c heat of fusion and thermal conductivity104

of aluminum.105

The latent heat storage is presented by the energy source term Sh due to melting and it is106

presented as follow:107

Sh = − ∂

∂t
(ρ∆H) (2)

The total enthalpy of PCM can be calculated as the sum of the latent heat ∆H and the108

speci�c enthalpy hs:109

H = ∆H + hs (3)

As mentioned in equation (3), the speci�c enthalpy hs can be de�ned as follows:110

hs =

∫ T

Tref

Cp dT + hs,ref (4)

Additionaly, the latent heat ∆H is calculated as follows:111

∆H = ξLf (5)

As mentioned in equation (5), Lf and ξ refer to latent heat of fusion and liquid fraction of112

PCM respectively. In fact, the parameter ξ presents the liquid quantity relative to the total113

volume of PCM and can be de�ned as below:114

ξ =


0 if T ≤ Ts
T−Ts
Tl−Ts

if Ts < T < Tl

1 if T ≥ Tl

(6)

According to equations (3) to (5), the total enthalpy of PCM H can be calculated by:115

H =

∫ T

Tref

Cp dT + hs,ref + ξLf (7)

The governing equations of mass and momentum conservation are de�ned as follow:116
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� Mass conservation:117

∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
= 0 (8)

Note that u, v and w present velocity components in x, y and z directions, respectively.118

Furthermore, it is considered that the PCM in the liquid phase is an incompressible Newtonian119

�uid the fact that the density of the PCM is considered unchangeable for any �uid particle120

(∂ρ
∂t

= 0). So, the previous equation is reduced to:121

∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
= 0 (9)

� Momentum conservation:122

ρ(
∂u

∂t
+
∂(u2)

∂x
+
∂(uv)

∂y
+
∂(uw)

∂z
) = −∂P

∂x
+ µ[

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
] + S.u (10)

123

ρ(
∂v

∂t
+
∂(uv)

∂x
+
∂(v2)

∂y
+
∂(vw)

∂z
) = −∂P

∂y
+ µ[

∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2
] + S.v (11)

124

ρ(
∂w

∂t
+
∂(uw)

∂x
+
∂(vw)

∂y
+
∂(w2)

∂z
) = −∂P

∂z
+ µ[

∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2
]− ρgαw(T − Ts) + S.w

(12)

Where, µ presents the dynamic viscosity, αw is the thermal expansion coe�cient, P is125

the pressure and g is the gravitational acceleration. Due to the gravitational acceleration126

direction (negative z-direction), the Boussinesq approximation is determined by adding127

ρgαw(T − Ts) term as presented in equation (12).128

The following equation presents the source term S:129

S =
(1− ξ)2

(ξ3 + ε)
Am (13)

To avoid division by zero in equation (13), a small positive parameter ε is used (ε = 10−10).130

The constant Am presents the consecutive number in the mushy region and it is recommended131

to take Am = 105 in several studies [32�34].132

Mathematical models in this study can be founded in Wang and Yang [32, 33], Shatikian133

et al. [34] and Nayak et al. [35]. They evaluated the performance of thermal management134

based on PCM in internal �ns.135

3. Surrogate models136

3.1. Description of surrogate modeling process137

Recently, metamodels are widely used in current engineering analysis in order to reduce138

the calculation cost. Surrogate models aim to construct the mathematical approximations139
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to estimate system behaviour and to de�ne the relationship between inputs and outputs of140

the system [24]. The most used surrogate modelling methods are Radial Basis Function141

(RBF) method, Response Surface Methodology (RSM), Arti�cial Neural Networks (ANN)142

and Kriging method [23, 24]. Several researches [28�30] demonstrate that the Kriging143

approach leads to a best approximation to a �nite element analysis particularly for non-144

linear problems. In this study, Kriging metamodel method is used to evaluate the outputs145

of PCM-based heat sink in order to improve the computational e�ciency.146

147

In the beginning, let us consider a n-dimensional problem. Table 1 presents the description148

of all parameters used in this problem.149

Table 1: Description of all used parameters

Notation Designation Dimension Vector

x design variable vector 1× n x1, x2, . . . , xn
xs set of samples n× 1 xs = {x(1), x(2), . . . , x(n)}T
ys outputs responses of the samples set n× 1 ys = {y(1), y(2), . . . , y(n)}T={y(x(1)), y(x(2)), . . . , y(x(n))}T

The sampled data set is indicated by the pair (xs, ys) in the vector space. The main aim150

of surrogate modeling is to build a meta-model in order to predict the output for any point151

x, thus, to estimate y(x) based on the pair (xs, ys).152

Figure 1: Surrogate modeling algorithm �owchart

The �owchart of the surrogate model process is presented in �gure 1. Its implementation153

is a multi-step process. Forrester et al. [23] present some used techniques to solve this154

problem. First, Design Of Experiments (DOE) are applied by the surrogate modelling155

approach. Particulary, Latin Hypercube Sampling (LHS) [36] is used in order to repeat156

sampling in the design space. Kriging approach is then applied to represent the sampled157

data. Accordingly, surrogate model can replace the original analysis code during the RBDO158

procedure.159

3.2. Kriging approach160

Nowadays, Kriging method is widely used as surrogate approach. In fact, it is characterized161

by its high quality of approximation with a required robustness, compared to other methods.162

Kriging method, also called Gaussian process modelling [37], consists of two nested functions:163
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a deterministic function K(x) and a Gaussian random function Z(x).164

It can be written as follow:165

y(x) = K(x) + Z(x) (14)

K(x) is usually determined as :166

K(x) =

p−1∑
i=1

βifi(x) (15)

Here, β = [β0, β1, . . . , βp−1]
T and f(x) = [f0(x), f1(x), . . . , fp−1(x)]T present the regression167

coe�cients vector and regression basis function vector respectively.168

Z(x) is a zero-mean stochastic process with a non-zero covariance given by:169

Cov(Z(x)− Z(x′)) = σ2R(x,x′) (16)

We note that σ2 is the variance of Z(x), x and x′ are the estimated sampling points in170

the design space and R(x,x′) is the correlation function. It is an m-dimensional correlation171

functions constructed from one-dimensional correlation ones and obtained using a product172

correlation rule. For m design variables, the correlation function is de�ned by:173

R(x,x′) =
m∏
i=1

R(xi, x
′
i) (17)

As mentioned in [38], exponential functions (equation (18)) and the Gaussian correlation174

functions (equation (19)) are the commonly used functions:175

R(x,x′) = exp

[
−

m∑
i=1

θi|xi − x′i|

]
(18)

176

R(x,x′) = exp

[
−

m∑
i=1

θi|xi − x′i|2
]

(19)

With, θi are them-unknown parameters of R(x,x′). For any untried x, the Kriging estimator177

[39] can be written as:178

ŷ(x) = rT (x)R−1(yS − FTβ) + fT (x)β (20)

ŷ(x) is obtained by adding two functions. The �rst term consists in multiplying the untried179

sites correlation functions vector r(x) = [R(x,x(1)), R(x,x(2)), . . . , R(x,x(n))]T by the inverse180

of the correlation functions for the �tting sample matrix R and the vector of residuals for181

all �tting points (yS−FTβ). Here, yS is the observed responses vector in the �tting sample182

and F is the model matrix of variable parameters. It can be presented by:183

F =


1 x

(1)
1 . . . x

(1)
m x

(1)
1 x

(1)
2 . . . x

(1)
m−1x

(1)
m (x

(1)
1 )2 . . . (x

(1)
m )2

1 x
(2)
1 . . . x

(2)
m x

(2)
1 x

(2)
2 . . . x

(1)
m−1x

(2)
m (x

(2)
1 )2 . . . (x

(2)
m )2

...
...

. . .
...

...
. . .

...
...

. . .
...

1 x
(n)
1 . . . x

(n)
m x

(n)
1 x

(n)
2 . . . x

(1)
m−1x

(n)
m (x

(n)
1 )2 . . . (x

(n)
m )2

 (21)
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The second term of (equation (20)) consists in multiplying the untired site regression basis184

function fT (x) by the estimated regression coe�cients vector β.185

Furthermore, the unknown model parameters β, σ2 and θ presented in equations (15), (16),186

(18) and (19) respectively, needed to be determined to construct the Kriging predictor. To187

this end, a methodology based on the Gaussian process framework of Kriging approach is188

used. It consists in maximizing the likelihood function (equation (22)):189

L(β, σ2,θ) =
1

n
√

2πσ2
√
|R(θ)|

exp

[
−(yS − FTβ)TR−1(θ)(yS − FTβ)

2σ2

]
(22)

To simplify this function, the natural logarithm is then applied to the likelihood expression:190

ln(L) = −n
2

ln(2π)− n

2
ln
(
σ2
)
− 1

2
ln(|R(θ)|)− (yS − FTβ)TR−1(θ)(yS − FTβ)

2σ2
(23)

By canceling the derivative of equation (23) with respect to σ2 and β we obtain the Maximum191

Likelihood Estimates (MLEs) β̂ and σ̂2:192

β̂ =
(
FTR−1F

)−1
FTR−1yS, (24)

and193

σ̂2 =
(yS − FTβ)TR−1(θ)(yS − FTβ)

n
(25)

The estimator θ̂ is obtained by solving the optimization problem of equation (26):194

max
θ

L(θ) = −1

2
[n(ln(2π) + ln(σ̂2)) + ln(|R|)]

s.t. θi > 0, i = 1, ..,m
(26)

After determining the estimator θ̂ by solving equation (26), β̂ and σ̂2 can be de�ned using195

equations (24) and (25). Consequently, the prediction at any given point can be estimated196

by referring to equation (20).197

3.3. Metamodel validation198

Referring to [40], the e�ciency of the constructed surrogate model is in�uenced by the199

quantity and quality of the input dataset.200

3.3.1. Error measures201

To examine the e�ciency of the constructed metamodel, the most simple way is to verify202

its residual errors. It consists in determining the di�erence between predicted response ŷ(i)203

and the original one y(i). Smaller residual error means grater estimator e�ciency.204

The most used error indicators of such a surrogate model are:205

206
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The Maximum Absolute Error (MAE):207

208

MAE = max
∣∣y(i) − ŷ(i)∣∣, i = 1, 2, ..., nt (27)

** The Relative Mean Error (RME):209

210

RME =
1

nt

nt∑
i=1

∣∣∣∣y(i) − ŷ(i)y(i)

∣∣∣∣ (28)

*** The Root Mean Squared Error (RMSE):211

212

RMSE =

√√√√ 1

nt

nt∑
i=1

(y(i) − ŷ(i))2 (29)

where nt is the sampling point number used to evaluate the error measures.213

3.3.2. Cross validation214

The Cross-Validation (CV) is another error indicator which we can verify the accuracy of215

a surrogate model [41]. In CV, we de�ne two type of samples data: training points responses216

y(i) and test points ŷ
(i)
−i used to check its performances. It presents the prediction at x(i)

217

using the surrogate model constructed from all sampling points except (x(i), y(i)) [42]. The218

Mean Squares Error (generalized error) for 'leave-one-out CV' can then be de�ned as:219

MSECV =
1

n

n∑
i=1

(
y(i) − ŷ(i)−i

)2
(30)

4. Multi-objective optimization study220

4.1. Deterministic Multi-Objective Optimization problem (DMOO)221

Let's consider M objective functions fm(x) to minimize. A DMOO approach is then222

required to minimize these functions considering geometrical, physical and functional constraints.223

Equation (31) can be then written as follow:224

min
x

fm(x), m = 1, ..,M

s.t. gk(x) ≤ 0, k = 1, .., K

hj(x) = 0, j = 1, .., J

lb ≤ x ≤ ub

(31)

Di�erent from the mono-objective optimization, objective functions constitute a multi-225

dimensional space in the multi-objective optimization, called the objective function space,226

as well as the variable space used in all optimization problems. Figure 2 illustrates the227

transition from the design variable space to the objective function space. Furthermore, for228

each solution x, there is a point in the objective space, denoted by (f1, f2, ..., fM)T .229
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Figure 2: Transition from physical space (a) to objective space (b)

The DMOO approach aims to determine the optimal solution by choosing between a230

set of obtaining points on the Pareto front, using a higher-level qualitative considerations.231

Since, Evolutionary Multi-objective Optimization (EMO) approaches leads to �nd a set of232

non-dominated solutions by making each population of solutions in each iteration intuitive233

[43]. Figure 3 presents the EMO procedure for multi-objective optimization problems. It is234

based on two steps:235

� Step1: consists in �nding closest multiple non-dominated points to the Pareto-optimal236

front, with a wide trade-o� among the objectives.237

� Step2: consists in choosing the optimal point using higher-level information.238

Figure 3: Flowchart of evolutionary multi-objective optimization procedure
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4.2. Multi-objective reliability based-design optimization (MORBDO)239

Comparing with the DMOO, the MORBDO aims to �nd the best compromise between240

cost and reliability, taking into account design uncertainties. It can be mathematically241

presented by [44, 45]:242

min
x

fm(x), m = 1, ..,M

s.t. Pr[Gk(x, y) ≤ 0] ≤ P T
k , k = 1, .., K

hj(x) ≤ 0, j = 1, .., J

(32)

x and y are deterministic and random variables respectively. Pr[.] presents the probability243

operator and P T
i is the target failure probability. hj(x) and Gi(x, y) are respectively the244

deterministic and the probabilistic constraints.245

246

Dammak and El Hami [30] propose an e�cient multi-objective optimization approach247

called MORBDO-HM. This method is based on the classical hybrid method proposed in248

[16, 17, 19]. The MORBDO-HM problem can be then described by:249

min
x,y

Fm(x, y) = fm(x)× dβ(x, y), m = 1, ..,M

s.t. G(x, y) ≤ 0

gk(x, y) ≤ 0, k = 1, .., K

dβ(x, y) ≥ βt

(33)

It can be noted that dβ is the distance between the most probable failure point and the250

optimal solution. It presents the reliability level and should be higher than the target251

reliability level βt. It has been proved in [30] that, MORBDO-HM has e�ciently provided252

an optimal solution where both physical and reliability constraints are respected. However,253

the optimization problem becomes more complex and it may converge to a non-feasible254

solution. To overcome this issue, an e�cient method called MORBDO-RHM is proposed.255

The basic idea of this method is based on adding a new constraint to the optimization256

algorithm. The aim of this is to force the optimization problem to �nd the optimal point257

where both physical and reliability constraints are respected. Mathematically, it is de�ned258

as:259

min
x,y

F (x, y) = fm(x)× dβ(x, y) m = 1, ..,M

s.t. G(x, y) ≤ 0

gk(x) ≤ 0, k = 1, .., K

β(x, u) ≥ βt

lb ≤ x ≤ ub

fm(x) ≥ fm(y)

(34)
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5. Numerical analysis260

5.1. Description of the numerical model261

Figure 4 presents a three-dimensional model of the studied cooling system. It is composed262

by an aluminum heat sink which contains a 11×12 round pin �n matrix. Note that aluminum263

presents a high thermal conductivity as well as a lower mass (lower density). The dimensional264

details of the heat sink design are shown in �gure 4.265

The choice of this numerical con�guration is based on an experimental study presented266

in [7]. The aim of this study is to propose a new methodology that leads to determine267

numerically an optimal design. To this end, �rstly, this con�guration needs to be validated268

with experimental data. Recently, several studies have been reported using metal-�ns and269

metal-foam [46, 47]. However, the use of these con�gurations is limited to some speci�c270

applications and they are proportionally more expensive than classical ones.271

Figure 4: 3-D assembly of PCM-based heat sink

Experimentally, exterior walls of the heat sink are insulated with a rubber board, except272

the upper surface. The insulator presents a low thermal conductivity in order to minimize273

thermal losses and its properties are mentioned in table 2.274
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Figure 5: 2-D projections of 3mm round pin heat sink.

To control the liquid and solid fractions of PCM, the top surface is covered using silicon275

gasket and Perspex sheet. Note that these parts are not considered in the proposed numerical276

model.277

The 3D numerical model is studied to compare the trends observed in the experimental278

results [7]. A uniform heat �ux is supplied from the heat source to the bottom surface of the279

heat sink. It is transmitted then to the PCM, heat sink �ns and �nally to end walls. It can280

be considered that the model does not take into account marginal e�ects such as natural281

convection within melted PCM, and the volume changes in PCM after phase transition.282

All required material dimensions and thermo-physical properties of the studied system are283

available respectively in table 2 and table 3.284

Table 2: Dimensions of required materials

Material Used materials Dimensions

1 Perspex sheet 115× 115× 5 mm3

2 Silicon rubber gasket 115× 115× 5 mm3

(with a cut out of 114× 114)
3 Rubber pad for heat sink 220× 220× 25 mm3

(with a cut out of 114× 114)
4 Rubber pad for heat sink bottom 220× 220× 65 mm3

5 Plate heater 101.6× 101.6× 2 mm3
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Table 3: Thermo-physical properties of each material

Material Thermal conductivity Speci�c heat Latent heat Solidi�cation point Melting point Density
(W/m.K ) (kJ/kgK ) (kJ/kg) (°C ) (°C ) (kg/m3)

Aluminum 201 0.9 - - 606.4 2700
Para�n Wax 0.212(s) 2.8(s) 173.6 56 58 880(s)

0.167(l) 790(l)
Rubber Pad 0.043 1.23 - - - 2500

5.2. Boundary conditions285

A Finite Element (FE) computing software ANSYSMechanical APDL is used to investigate286

the performance of the round pin �n heat sink �lled with PCM.287

A constant heat �ux (Q=2800W/m2) is applied to mimic the heat source at the HS bottom288

(presented by the red plate in �gure 4). The charging phase is established for 90min and it289

is performed at room temperature of 18°C.290

291

The "enthalpy-porosity" approach is adopted in the PCM-based heat sink to investigate292

the e�ect of the transition phase. In this numerical investigation, several hypotheses are293

considered:294

� The HS material is homogeneous and isotropic .295

� A local thermal equilibrium between �ns and liquid PCM is considered.296

� Whatever the phase and the temperature, the thermo-physical properties of PCM and297

�ns are considered constant .298

� The radiative heat transfer is also neglected.299

Natural convection is applied on exterior areas of the insulator. To deal with governing300

equations, initial conditions as well as applied boundary conditions are:301

� Initial conditions:302

t=0, T=Tamb= 18°C, ξ= 0.303

Otherwise, at t=0, global model is maintained at room conditions and the proposed304

PCM is totally in the solid phase.305

� Heat �ux applied at the HS base:306

−λ ∂T
∂x

∣∣
x = 6.2→ 107.8
y = 6.2→ 107.8

z = 2

= −λ ∂T
∂y

∣∣∣x = 6.2→ 107.8
y = 6.2→ 107.8

z = 2

= Q307

5.3. Preliminary results and discussion308

Figure 6 shows the mesh of the global studied numerical design. It is divided into 39240309

8-Node tetrahedral elements. Each element has eight nodes with a single degree of freedom,310
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temperature, at each node. It can be noted that a mesh re�ning is applied on the contact311

surfaces of HS and PCM to give a better result.312

Figure 6: Mesh of studied model

Five di�erent mesh sizes are investigated. The total computing time and the maximum313

reached temperature Tmax convergency are presented in table 4.314

Table 4: Mesh convergency study

Number of elements 36240 38001 39240 85756 141367
Simulation time (min) 11.55 12.7 12.87 27.5 85.15
Tmax(°C) 75.76 80.34 82.57 82.67 82.68

According to table 3, the mesh con�guration with 39240 elements is chosen to compromise315

between cost and accuracy. In fact, the con�guration with 141367 elements presents almost316

the same maximum reached temperature with a higher computing time comparing with317

39240 elements con�guration. Figure 7 presents the temperature-time pro�le at the HS318

base for 3 mm pin �n heat sink con�guration. Note that blue and red curves correspond319

respectively to experimental and numerical results during the charging phase under Q= 2800320

W/m2.321

322

For the heating phase, the temperature variation pro�le can be discretized into three323

di�erent regions:324

� Solid region:325

Initially, the temperature increases in a linear way from the ambient temperature326

Tamb=18°C to the solidi�cation temperature of PCM Ts=56°C.327
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� Liquid region:328

In this region, all the quantities of PCM inside enclosures will be totally melted. The329

temperature increases, until 90 min.330

� Latent heating region:331

It can be seen that, for both numerical and experimental simulations, the increase332

of the temperature has been signi�cantly delayed due to the use of PCM. In fact,333

bene�ting from PCM thermo-physical properties, the energy generated by the input334

source is stored by the PCM and causes its transition from the solid phase to liquid335

phase.336

Figure 7: Temperature-time pro�le at the HS base under Q= 2800 W/m2.

It can be observed that numerical data compare reasonably well with the experimental337

results found by Arshad et al. [7]. Hence, the coupled RBDO-metamodels problem can be338

then proceeded. The design parameters considered in this study are supposed a random339

probabilistic one which their characteristics are speci�ed in table 5. We note that L and340

H are respectively the length and the height of the HS and φ is the pin-�n diameter (see341

�gure 5).342

343
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In a mono-objective RBDO method, the aim is to minimize one objective function344

subject to physical and reliability constraint. For a PCM-based cooling system problem,345

the objective function is generally chosen as its total volume, considering the maximum346

reached temperature Tmax. However, obtained optimal design may present several issues347

in term of heat dissipation for the discharging phase related to greater designs [11]. To348

overcome this problem, minimizing cooling time must be considered. We note by tf the349

�nal time to reach 25°C for the discharging phase. Furthermore, a 3D PCM-based heat350

sink model is expensive in term of computational time. Hence, the need to propose an351

original methodology of multiobjective RBDO coupled with surrogate model. Therefore,352

surrogate models are used to determine an approximation of Tmax and tf when changing353

design variables.354

Table 5: Random variables properties

Variables Symbol Distribution type Cov Mean value Lower bound Upper bound
(lb) (ub)

Length (mm) L Normal 0.1 114 110 125
Height (mm) H Normal 0.1 25 15 30
Pin �n diameter (mm) φ Normal 0.1 3 2 4

5.4. Surrogate model results: Kriging approach accuracy355

Meta-model approaches are applied to build estimations of the �nite element simulation356

and determine the link between input parameters and their responses. The maximum357

reached temperature at the base of PCM-based round pin-�n heat sink is determined using358

Kriging surrogate models (equation (14)). To develop the Kriging meta-model, the Matlab359

toolbox package Design and Analysis of Computer Experiments (DACE) [48] is used. A360

second order polynomial global trend function and exponential correlation function are361

applied. Training data presented in (table 5) are then considered as the input of the FE362

analysis. The e�ciency of the Kriging surrogate model is validated using error measures363

(equations (27) to (29)) as presented in table 6.364

Table 6: Error measures of Kriging predictor

Error measures
20 LHS points 30 LHS points 50 LHS points
Tmax tf Tmax tf Tmax tf

MAE 1.354 2.054 1.216 2.1587 0.4353 1.3895
RME 1.046e-03 0.0032 8.1313e-04 0.0027 3.5979e-04 0.0017
RMSE 0.377 0.489 0.0905 0.7629 0.2531 0.3181

Training points number with LHS comparison is presented via the CV in �gures 8 to 10365

for 20, 30 and 50 LHS points, respectively.366

It can be concluded that the Kriging model obtained by 50 LHS points gives an estimation367

of the original design with acceptable e�ciency. In other words, the model validation using368
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the Kriging approach with 50 LHS points is more accurate than other con�gurations to369

estimate the link between input variables and their responses.370

Figure 8: Cross-validation using Kriging predictor with 20 LHS points for (a) Tmax and (b) tf

Figure 9: Cross-validation using Kriging predictor with 30 LHS points for (a) Tmax and (b) tf
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Figure 10: Cross-validation using Kriging predictor with 50 LHS points for (a) Tmax and (b) tf

In the next section, Kriging model will be coupled with MORBDO simulation to analyze371

optimization and reliability of the studied system.372

5.5. MORBDO for PCM-based heat sink373

In [49], authors develop the constrained non-dominated sorting genetic algorithm (C-374

NSGA-II) to solve the optimization problem.375

Pareto front using di�erent populations sizes comparison is presented in �gure 11. In376

this paper, a maximum of 500 generations and a population size of 200 are used. This377

con�guration is used in order to determine if the spread in solutions is maintained.378

Figure 11: A comparison between di�erent populations sizes
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The optimization problem is based on minimizing the cooling system volume as well as the379

�nal time (tf ) taken for the discharging phase subject to the maximum reached temperature380

(Tmax). Note that the critical temperature for the charging phase is about Tcrit = 70°C.381

Generally, the target reliability level is supposed equal to: βt=3 which corresponds to a382

failure probability about 10−3.383

5.5.1. Results of DMOO384

For the DMOO approach, the global safety factor Sg is chosen based on engineering385

experience. Consequently, the optimal design temperature should be lower than the critical386

values. Then, the DMOO problem is de�ned as:387

min
x
{f1(x) = V, f2(x) = tf}

s.t. Tmax(x) ≤ Tcrit
Sg

lb ≤ x ≤ ub

(35)

Figure 12 presents the Pareto optimal front of DMOO. It provides, for design selection,388

decision-makers with a set of solutions over the Pareto space. To select the best optimum,389

called knee point [50], the Minimum Distance Selection Method (MDSM) [51] is considered390

here as shown in �gure 12. In a Pareto front, the knee point provides a good trade-o�391

between the objective functions. It presents the minimal distance from the utopia point.392

Figure 12: DMOO Pareto front
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Table 7 presents the deterministic MOO results. Referring to the baseline model, the393

DMOO approach presents an optimal design (the thermal constraint is veri�ed), but its394

reliability level β is missing (β=1.85<3). Therefore, to solve this issue, MORBDO methods395

are extremely recommended.396

Table 7: DMOO results

Description Design point Optimal solution
y∗ x∗

Design variables L (mm) 125 125
H (mm) 23.78 28.64
φ (mm) 4 3.72

Objective function V (mm3) 3.51e+05 4.268e+05
tf (min) 236.47 253.45

Thermal constraint Tmax (°C) 70 63
Reliability value β 1.85

5.5.2. Results of MORBDO397

Equation (36) and equation (37) present respectively the MORBDO-HM and MORBDO-398

RHM optimization problem:399

min
x,y

F (x, y) = [V (x), tf (x)]× dβ(x, y)

s.t. Tmax(y) ≤ 70°C

lb ≤ x, y ≤ ub

dβ(x, y) ≥ βt

(36)

400

min
x,y

F (x, y) = [V (x), tf (x)]× dβ(x, y)

s.t. Tmax(y) ≤ 70°C

lb ≤ x, y ≤ ub

dβ(x, y) ≥ βt

V (x) ≥ V (y)

tf (x) ≥ tf (y)

(37)

The corresponding Pareto front is illustrated in �gure 13 for both MORBDO-HM and401

MORBDO-RHM. MORBDO results are presented in table 8. As well as DMOO, MORBDO402

results provide a set of optimal points over the Pareto space. Against DMOO, the reliability403

level with MORBDO is respected.404
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Figure 13: Pareto optimal front: (a) MORBDO-HM and (b) MORBDO-RHM

Table 8 illustrated that MORBDO-HM gives an optimal resulted point within the failure405

zone (Tmax = 90.98°C >70°C). However, the MORBDO-RHM leads to obtain an optimal406

con�guration with respect of reliability constraint as well as thermal constraint, comparing407

with DMOO and MORBDO-HM approaches.408

Table 8: MORBDO results

Descrption MORBDO-HM MORBDO-RHM
Design point Optimal solution Design point Optimal solution

y∗ x∗ y∗ x∗

Design variables L(mm) 124.67 110.81 122.62 121.96
H(mm) 24.04 18.89 26.82 30
φ(mm) 4 4 2.82 3.92

Objective functions V (mm3) 3.53e+05 2.11e+05 3.8279e+05 4.2558e+05
tf (min)) 237.43 216.56 254.8 257.42

Thermal constraint Tmax°C) 70 90.98 69.86 64.61
Reliability value β 3 3

The temperature-time pro�le, measured at the HS base, is presented in �gure 14, for409

baseline design (red curve) and MORBDO-RHM design (blue curve). In this �gure, charging410

and discharging phases of cooling electronic devices are investigated.411

412

As presented in �gure 14 and table 8, the optimal design obtained by the MORBDO-413

RHM approach veri�es both thermal and reliability constraints. In fact, at t = 120min, the414

maximum reached temperature Tmax is lower than the critical temperature, which guarantees415

a better performance of the electronic component. Moreover, reliability condition is veri�ed416

with this model. In fact, the reliability level of the optimal design is equal to the target417

reliability level (βMORBDO−RHM ≥ βt). However, the baseline model does not respect this418

condition and it may lead to an immediate failure of the electronic component. Furthermore,419

for the optimal con�guration, the latent heating phase period is more important than its420

for baseline design throughout the charging phase. This can be explained by the fact that421
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the optimal con�guration has the ability to store a large amount of thermal energy against422

the baseline design. On the other hand, for the discharging phase, optimal design has the423

ability to release the stored thermal energy in a minimal time compared with initial model.424

In fact, PCM takes about 40min to reach its solid states against over than 55min for the425

initial model.426

Figure 14: Temperature pro�le for baseline design and optimal design: charging and discharging phases.

6. Conclusion427

This paper aims to propose an e�cient method that leads to obtain an optimal con�guration428

of thermal management systems based on PCM technology which ensure a recommended429

reliability level. In this work, a 3D transient numerical simulation of round pin-�n heat430

sink fully �lled with PCM is studied to investigate the thermal management behaviours for431

passive cooling of electronic equipments.432

Experimental results founded by Arshad et al. [7] are numerically validated for PCM433

embedded in 3mm round pin �n heat sink con�guration subject to constant heat load434

(about 2800 W/m2).435

To determine the relationship between the input and output variables, Kriging approach is436

used in the construction of the surrogate model. The results of cross-validation and error437

measures show that Kriging estimator with 50 LHS points gives an approximation of the438

original design with great accuracy.439

Although the DMOO approach is easy to apply and can ensure an optimum design, a440

reliability level of thermal constraint is missed. Therefore, and in order to overcome this441
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issue, MORBDOmethods are investigated for thermal management applications. MORBDO-442

RHM and MORBDO-HM approaches based on surrogate models are coupled with PCM-443

based heat sink design.444

445

The numerical study proves that the proposed MORBDO-RHM approach is more e�cient446

and reliable comparing with MORBDO-HM approach. We conclude that, for thermal447

enhancer application using PCM-based HS, MORBDO-RHM approach leads to obtain an448

optimal design, where both thermal and reliability constraints are veri�ed. The proposed449

methodology can be then applied to determine an optimal design of cooling systems that450

guarantees a higher performance of electronic components. Furthermore, it gives a better451

compromise between safety and cost, for both charging and discharging phases. An extension452

to other heat sink con�gurations such as square and triangular pin-�n heat sink needs to be453

studied and validated with experimental investigation.454
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