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Variance of the stochastic model ε Normal random error ξ Liquid fraction of PCM d β (x, y) Distance between the optimal and design points L(β, σ 2 , θ) Likelihood function In recent years, thermal management in the eld of mechatronics has become an important factor for researchers in electronic packages design. In this context, electronic components are getting ever-smaller with more design features in size due to the development of modern technologies of electronic equipment. In fact, a high power and performance dissipated by the electronic component can lead, not only to reduce their lifetime, but also to its immediate failure. To this end, an ecient and novel cooling technology is needed to overcome the overheating phenomenon and to avoid the deterioration of the device. Furthermore, the choice of such a cooling system is based on many factors such as material cost, heat dissipation rate, maintenance and space [START_REF] Kandasamy | Transient cooling of electronics using phase change material (pcm)-based heat sinks[END_REF].

In the literature, several technics of passive cooling are developed to ensure the smooth operation of electronic devices using PCM-based heat sinks [START_REF] Messac | Optimization in practice with MATLAB®: for engineering students and professionals[END_REF]. However, standard cooling methods would not be sucient. Therefore, to improve the performance of passive cooling electronic device technologies, many studies are developed and some of them are based on Phase Change Materials (PCM) [START_REF] Baby | Thermal performance of a pcm heat sink under dierent heat loads: an experimental study[END_REF][START_REF] Mjallal | Improving the cooling eciency of heat sinks through the use of dierent types of phase change materials[END_REF]. An experimental study is investigated in [START_REF] Arshad | Experimental investigation of pcm based round pin-n heat sinks for thermal management of electronics: eect of pin-n diameter[END_REF], to improve and ensure the reliability and functionality of the installed features. A parametric study leads to improve the thermal performance of PCM-based heat sinks by changing the PCM volume fraction and pin thickness at various heat uxes. A numerical and experimental studies are presented by Thomas et al. [START_REF] Thomas | Thermal performance evaluation of a phase change material based heat sink: A numerical study[END_REF] in order to evaluate the thermal performance of a PCM-based heat sink using n-Eicosane at many constant input power levels. In this study, the eect of natural convection has been discussed. Nowadays, PCM-based heat sink optimization presents a huge challenge for developers. A numerical study is presented in [START_REF] Debich | Design optimization of pcm-based nned heat sinks for mechatronic components: A numerical investigation and parametric study[END_REF] which an optimal model is proposed in a passive cooling application using PCM-based plate n matrix for charging and discharging phases. The main purpose of this study is to improve the thermal performance of the heat storage unit (HSU) by changing the input power level, PCM material, PCM volume fraction and heat sink geometry.

Integration of reliability methods in the optimization algorithm presents a new challenge in mechatronics problem. The Reliability-Based Design Optimization (RBDO) aims then to nd the best compromise between cost and safety [START_REF] El | Uncertainty and optimization in structural mechanics[END_REF]. In this context, an ecient RBDO study for PCM-based heat-sink is presented in [START_REF] Debich | An ecient reliability-based design optimization study for pcm-based heat-sink used for cooling electronic devices[END_REF][START_REF] Debich | Coupling pcm-based heat sinks nite elements model for mechatronic devices with design optimization procedure[END_REF]. These studies lead to determine an optimal and reliable design of a cooling system where two-dimensional Finite Element Simulations (FES) are performed. These studies prove that, Deterministic Design Optimization (DDO) approach leads to determine an optimal solution, but it represents a missing level of condence and a signicant risk of failure, due to non-considering uncertainties.

Hence, to overcome this issue, it is recommended to integrate, during the optimization process, the reliability analysis. Using the classical RBDO approach and, to obtain optimal results, coupling of physical space and normalized space is needed. Which means a high computation time for such an optimization problem [1315]. In order to overcome this issue, Kharmanda et al. [START_REF] Kharmanda | Ecient reliability-based design optimization using a hybrid space with application to nite element analysis[END_REF] proposed a novel RBDO methodology called Hybrid reliabilityoptimization Method (HM) where its eciency is presented and discussed. This method eciently reduces the computing time comparing with the classical approach. However, the optimization problem becomes more complex and then it can lead to an infeasible solution.

In order to solve the diculties of the classical one, Yaich et al. [START_REF] Yaich | Reliability based design optimization for multiaxial fatigue damage analysis using robust hybrid method[END_REF] proposed a novel methodology called Robust Hybrid Method (RHM). The eciency of this method has been veried only on static and some specic nonlinear cases such as fatigue damage [START_REF] Yaich | Reliability based design optimization for multiaxial fatigue damage analysis using robust hybrid method[END_REF], coupled acoustic-structural system [START_REF] Dammak | Reliability based design optimization of coupled acoustic-structure system using generalized polynomial chaos[END_REF][START_REF] Dammak | An ecient optimization based on the robust hybrid method for the coupled acousticstructural system[END_REF] and shape memory alloy micro-pump [START_REF] Abid | An approach for the reliability-based design optimization of shape memory alloy structure[END_REF]. In addition, in [START_REF] Kamel | A modied hybrid method for a reliability-based design optimization applied to an oshore wind turbine[END_REF][START_REF] Yaich | A robust method for the reliability-based design optimization of shape memory alloy actuator[END_REF], the authors aim to develop a new approach applied to an oshore wind turbine, which it called Modied Hybrid Method (MHM) in order to avoid issues of other RBDO methods.

Otherwise, such an RBDO method needs a large number of evaluations. In the case of PCM-based heat sink, a non-linear transient 3D model analysis is expensive in term of computational time. To this end, surrogate models are then recommended as an alternative to dene original models' approximations. It consists in constructing mathematical models, to determine the link between inputs and outputs of a specied system [START_REF] Forrester | Engineering design via surrogate modelling: a practical guide[END_REF][START_REF] Messac | Optimization in practice with MATLAB®: for engineering students and professionals[END_REF]. Recent approaches are developed in the eld of design optimization [START_REF] Ben | A probabilistic approach for optimising hydroformed structures using local surrogate models to control failures[END_REF] and probabilistic analysis [START_REF] Dammak | Numerical modelling of vibro-acoustic problem in presence of uncertainty: Application to a vehicle cabin[END_REF][START_REF] Guerine | A polynomial chaos method for the analysis of the dynamic behavior of uncertain gear friction system[END_REF], using surrogate models. Response Surface Methodology (RSM), Articial Neural Networks (ANN), Radial Basis Function (RBF) method and Kriging method are the most popular surrogate modelling used recently. In [START_REF] Huang | Uncertainty analysis of deep drawing using surrogate model based probabilistic method[END_REF], metamodels are applied in the eld of mechanical manufacturing for the purpose to enhance the computational eciency. Also, Fatma et al. [START_REF] Abid | Surrogate models for uncertainty analysis of micro-actuator[END_REF] studied many metamodel techniques for a NiTi micro actuator. A Monte Carlo Simulations (MCS) are then performed in order to prove its eciency, using the constructed metamodel. These studies demonstrate that kriging method presents more eciently and gives the best approximation of the original model. Recently, Dammak and El Hami [START_REF] Dammak | Multi-objective reliability based design optimization using kriging surrogate model for cementless hip prosthesis[END_REF][START_REF] Dammak | Multi-objective reliability based design optimization of coupled acoustic-structural system[END_REF] studied a numerical application of a cementless hip prosthesis and a coupled acoustic-structural system. These studies are based on coupling multi-objective optimization problem (MORBDO) with surrogate models. It has been demonstrated that the studied problem using Kriging approach has the ability to generate a well-distributed reliable Pareto solution.

The aim of this paper is to propose a new methodology that leads to determine an optimal design of a PCM-based round pin-n heat sink with a required reliability level. Both deterministic and multi-objective reliability optimization are presented. For this purpose, the Constrained Non-dominated Sorting Genetic Algorithm (C-NSGA-II) is coupled with HM and RHM approaches respectively. DMOO and MORBDO models are next coupled with surrogate models which considerably reduced the computing time. To present the advantages of the proposed method, a detailed numerical application of PCM-based round pin-n heat sink is investigated. Results show the improvement of the resulting optimal solution using MORBDO-RHM coupled with Kriging surrogate model, and its capability to develop a well-distributed reliable Pareto solutions with a required reliability level.

Heat transfer and PCM behavior: Mathematical model

The heat generated by the input power is transferred to all surfaces of heat sink by conduction. In fact, PCM allows energy to be absorbed by changing from the solid state to the liquid state. The dissipated energy by the PCM causes its transformation from liquid to solid state. It is supposed that thermo-physical properties of the PCM are independent of temperature and only the conduction equation is taken into consideration for the aluminum section as presented in equation (1):

Energy conservation:

ρC p ( ∂T ∂t + u ∂T ∂x + v ∂T ∂y + w ∂T ∂z ) = λ( ∂ 2 T ∂x 2 + ∂ 2 T ∂y 2 + ∂ 2 T ∂z 2 ) + S h (1) 
Where, ρ, C p and λ are respectively the density, specic heat of fusion and thermal conductivity of aluminum.

The latent heat storage is presented by the energy source term S h due to melting and it is presented as follow:

S h = - ∂ ∂t (ρ∆H) (2) 
The total enthalpy of PCM can be calculated as the sum of the latent heat ∆H and the specic enthalpy h s :

H = ∆H + h s (3) 
As mentioned in equation (3), the specic enthalpy h s can be dened as follows:

h s = T T ref C p dT + h s,ref (4) 
Additionaly, the latent heat ∆H is calculated as follows:

∆H = ξL f (5) 
As mentioned in equation ( 5), L f and ξ refer to latent heat of fusion and liquid fraction of PCM respectively. In fact, the parameter ξ presents the liquid quantity relative to the total volume of PCM and can be dened as below:

ξ =      0 if T ≤ T s T -Ts T l -Ts if T s < T < T l 1 if T ≥ T l (6) 
According to equations (3) to (5), the total enthalpy of PCM H can be calculated by:

H = T T ref C p dT + h s,ref + ξL f (7) 
The governing equations of mass and momentum conservation are dened as follow:

∂ρ ∂t + ∂(ρu) ∂x + ∂(ρv) ∂y + ∂(ρw) ∂z = 0 (8) 
Note that u, v and w present velocity components in x, y and z directions, respectively.

Furthermore, it is considered that the PCM in the liquid phase is an incompressible Newtonian uid the fact that the density of the PCM is considered unchangeable for any uid particle ( ∂ρ ∂t = 0). So, the previous equation is reduced to:

∂(ρu) ∂x + ∂(ρv) ∂y + ∂(ρw) ∂z = 0 (9) 
Momentum conservation:

ρ( ∂u ∂t + ∂(u 2 ) ∂x + ∂(uv) ∂y + ∂(uw) ∂z ) = - ∂P ∂x + µ[ ∂ 2 u ∂x 2 + ∂ 2 u ∂y 2 + ∂ 2 u ∂z 2 ] + S.u (10) 
ρ( ∂v ∂t + ∂(uv) ∂x + ∂(v 2 ) ∂y + ∂(vw) ∂z ) = - ∂P ∂y + µ[ ∂ 2 v ∂x 2 + ∂ 2 v ∂y 2 + ∂ 2 v ∂z 2 ] + S.v (11) 
ρ( ∂w ∂t + ∂(uw) ∂x + ∂(vw) ∂y + ∂(w 2 ) ∂z ) = - ∂P ∂z + µ[ ∂ 2 w ∂x 2 + ∂ 2 w ∂y 2 + ∂ 2 w ∂z 2 ] -ρgα w (T -T s ) + S.w (12) 
Where, µ presents the dynamic viscosity, α w is the thermal expansion coecient, P is the pressure and g is the gravitational acceleration. Due to the gravitational acceleration direction (negative z-direction), the Boussinesq approximation is determined by adding ρgα w (T -T s ) term as presented in equation [START_REF] Debich | Coupling pcm-based heat sinks nite elements model for mechatronic devices with design optimization procedure[END_REF].

The following equation presents the source term S:

S = (1 -ξ) 2 (ξ 3 + ε) A m (13) 
To avoid division by zero in equation ( 13), a small positive parameter ε is used (ε = 10 -10 ).

The constant A m presents the consecutive number in the mushy region and it is recommended to take A m = 10 5 in several studies [3234].

Mathematical models in this study can be founded in Wang and Yang [START_REF] Yang | Numerical simulation of three-dimensional transient cooling application on a portable electronic device using phase change material[END_REF][START_REF] Wang | Three-dimensional transient cooling simulations of a portable electronic device using pcm (phase change materials) in multi-n heat sink[END_REF], Shatikian et al. [START_REF] Shatikian | Numerical investigation of a pcm-based heat sink with internal ns: Constant heat ux[END_REF] and Nayak et al. [START_REF] Nayak | A numerical model for heat sinks with phase change materials and thermal conductivity enhancers[END_REF]. They evaluated the performance of thermal management based on PCM in internal ns.

to estimate system behaviour and to dene the relationship between inputs and outputs of the system [START_REF] Messac | Optimization in practice with MATLAB®: for engineering students and professionals[END_REF]. The most used surrogate modelling methods are Radial Basis Function (RBF) method, Response Surface Methodology (RSM), Articial Neural Networks (ANN)

and Kriging method [START_REF] Forrester | Engineering design via surrogate modelling: a practical guide[END_REF][START_REF] Messac | Optimization in practice with MATLAB®: for engineering students and professionals[END_REF]. Several researches [2830] demonstrate that the Kriging approach leads to a best approximation to a nite element analysis particularly for nonlinear problems. In this study, Kriging metamodel method is used to evaluate the outputs of PCM-based heat sink in order to improve the computational eciency.

In the beginning, let us consider a n-dimensional problem. Table 1 presents the description of all parameters used in this problem. x s = {x (1) , x (2) , . . . , x (n) } T y s outputs responses of the samples set n× 1 y s = {y (1) , y (2) , . . . , y (n) } T ={y(x (1) ), y(x (2) ), . . . , y(x

(n) )} T
The sampled data set is indicated by the pair (x s , y s ) in the vector space. The main aim of surrogate modeling is to build a meta-model in order to predict the output for any point

x, thus, to estimate y(x) based on the pair (x s , y s ). The owchart of the surrogate model process is presented in gure 1. Its implementation is a multi-step process. Forrester et al. [START_REF] Forrester | Engineering design via surrogate modelling: a practical guide[END_REF] present some used techniques to solve this problem. First, Design Of Experiments (DOE) are applied by the surrogate modelling approach. Particulary, Latin Hypercube Sampling (LHS) [START_REF] Michael D Mckay | A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[END_REF] is used in order to repeat sampling in the design space. Kriging approach is then applied to represent the sampled data. Accordingly, surrogate model can replace the original analysis code during the RBDO procedure.

Kriging approach

Nowadays, Kriging method is widely used as surrogate approach. In fact, it is characterized by its high quality of approximation with a required robustness, compared to other methods.

Kriging method, also called Gaussian process modelling [START_REF] Christopher | Gaussian processes for machine learning[END_REF], consists of two nested functions: a deterministic function K(x) and a Gaussian random function Z(x).

It can be written as follow:

y(x) = K(x) + Z(x) (14) 
K(x) is usually determined as :

K(x) = p-1 i=1 β i f i (x) (15) 
Here,

β = [β 0 , β 1 , . . . , β p-1 ] T and f (x) = [f 0 (x), f 1 (x), . . . , f p-1 (x)]
T present the regression coecients vector and regression basis function vector respectively.

Z(x) is a zero-mean stochastic process with a non-zero covariance given by:

Cov(Z(x) -Z(x )) = σ 2 R(x, x ) (16) 
We note that σ 2 is the variance of Z(x), x and x are the estimated sampling points in the design space and R(x, x ) is the correlation function. It is an m-dimensional correlation functions constructed from one-dimensional correlation ones and obtained using a product correlation rule. For m design variables, the correlation function is dened by:

R(x, x ) = m i=1 R(x i , x i ) (17) 
As mentioned in [START_REF] Goel | A topology optimization tool for ls-dyna users: Lsopt/topology[END_REF], exponential functions (equation ( 18)) and the Gaussian correlation functions (equation ( 19)) are the commonly used functions:

R(x, x ) = exp - m i=1 θ i |x i -x i | (18) R(x, x ) = exp - m i=1 θ i |x i -x i | 2 (19) 
With, θ i are the m-unknown parameters of R(x, x ). For any untried x, the Kriging estimator [START_REF] Bilal | Uncertainty modeling and analysis in engineering and the sciences[END_REF] can be written as:

ŷ(x) = r T (x)R -1 (y S -F T β) + f T (x)β (20) 
ŷ(x) is obtained by adding two functions. The rst term consists in multiplying the untried

sites correlation functions vector r(x) = [R(x, x (1) ), R(x, x (2) ), . . . , R(x, x (n) )]
T by the inverse of the correlation functions for the tting sample matrix R and the vector of residuals for all tting points (y S -F T β). Here, y S is the observed responses vector in the tting sample and F is the model matrix of variable parameters. It can be presented by:

F =      1 x (1) 1 . . . x (1) m x (1) 1 x (1) 2 . . . x (1) m-1 x (1) m (x (1) 1 ) 2 . . . (x (1) m ) 2 1 x (2) 1 . . . x (2) m x (2) 1 x (2) 2 . . . x (1) m-1 x (2) m (x (2) 1 ) 2 . . . (x (2) m ) 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 x (n) 1 . . . x (n) m x (n) 1 x (n) 2 . . . x (1) 
m-1 x (n) m (x (n) 1 ) 2 . . . (x (n) m ) 2      (21) 
The second term of (equation ( 20)) consists in multiplying the untired site regression basis function f T (x) by the estimated regression coecients vector β.

Furthermore, the unknown model parameters β, σ 2 and θ presented in equations ( 15), ( 16), ( 18) and ( 19) respectively, needed to be determined to construct the Kriging predictor. To this end, a methodology based on the Gaussian process framework of Kriging approach is used. It consists in maximizing the likelihood function (equation ( 22)):

L(β, σ 2 , θ) = 1 n √ 2πσ 2 |R(θ)| exp - (y S -F T β) T R -1 (θ)(y S -F T β) 2σ 2 (22) 
To simplify this function, the natural logarithm is then applied to the likelihood expression:

ln(L) = - n 2 ln(2π) - n 2 ln σ 2 - 1 2 ln(|R(θ)|) - (y S -F T β) T R -1 (θ)(y S -F T β) 2σ 2 (23) 
By canceling the derivative of equation ( 23) with respect to σ 2 and β we obtain the Maximum Likelihood Estimates (MLEs) β and σ2 :

β = F T R -1 F -1 F T R -1 y S , (24) and σ2 
= (y S -F T β) T R -1 (θ)(y S -F T β) n (25) 
The estimator θ is obtained by solving the optimization problem of equation ( 26):

max θ L(θ) = - 1 2 [n(ln(2π) + ln(σ 2 )) + ln(|R|)] s.t. θ i > 0, i = 1, .., m (26) 
After determining the estimator θ by solving equation ( 26), β and σ2 can be dened using equations [START_REF] Messac | Optimization in practice with MATLAB®: for engineering students and professionals[END_REF] and [START_REF] Ben | A probabilistic approach for optimising hydroformed structures using local surrogate models to control failures[END_REF]. Consequently, the prediction at any given point can be estimated by referring to equation (20).

Metamodel validation

Referring to [START_REF] Ryberg | Metamodel-based multidisciplinary design optimization for automotive applications[END_REF], the eciency of the constructed surrogate model is inuenced by the quantity and quality of the input dataset.

Error measures

To examine the eciency of the constructed metamodel, the most simple way is to verify its residual errors. It consists in determining the dierence between predicted response ŷ(i)

and the original one y (i) . Smaller residual error means grater estimator eciency.

The most used error indicators of such a surrogate model are:

The Maximum Absolute Error (MAE):

M AE = max y (i) -ŷ(i) , i = 1, 2, ..., n t (27) 
** The Relative Mean Error (RME):

RM E = 1 n t nt i=1 y (i) -ŷ(i) y (i) (28) 
*** The Root Mean Squared Error (RMSE):

RM SE = 1 n t nt i=1 (y (i) -ŷ(i) ) 2 ( 29 
)
where n t is the sampling point number used to evaluate the error measures.

Cross validation

The Cross-Validation (CV) is another error indicator which we can verify the accuracy of a surrogate model [START_REF] Meckesheimer | Computationally inexpensive metamodel assessment strategies[END_REF]. In CV, we dene two type of samples data: training points responses y (i) and test points ŷ(i) -i used to check its performances. It presents the prediction at x (i) using the surrogate model constructed from all sampling points except (x (i) , y (i) ) [START_REF] Alexander | Recent advances in surrogate-based optimization[END_REF]. The Mean Squares Error (generalized error) for 'leave-one-out CV' can then be dened as: Let's consider M objective functions f m (x) to minimize. A DMOO approach is then required to minimize these functions considering geometrical, physical and functional constraints.

M SE CV = 1 n n i=1 y (i) - ŷ(i) -i 2 (30) 
Equation ( 31) can be then written as follow:

min x f m (x), m = 1, .., M s.t. g k (x) ≤ 0, k = 1, .., K h j (x) = 0, j = 1, .., J lb ≤ x ≤ ub (31) 
Dierent from the mono-objective optimization, objective functions constitute a multidimensional space in the multi-objective optimization, called the objective function space, as well as the variable space used in all optimization problems. Figure 2 illustrates the transition from the design variable space to the objective function space. Furthermore, for each solution x, there is a point in the objective space, denoted by (f 1 , f 2 , ..., f M ) T . The DMOO approach aims to determine the optimal solution by choosing between a set of obtaining points on the Pareto front, using a higher-level qualitative considerations.

Since, Evolutionary Multi-objective Optimization (EMO) approaches leads to nd a set of non-dominated solutions by making each population of solutions in each iteration intuitive [START_REF] Kalyanmoy | Multi-objective optimisation using evolutionary algorithms: an introduction[END_REF]. Figure 3 presents the EMO procedure for multi-objective optimization problems. It is based on two steps:

Step1: consists in nding closest multiple non-dominated points to the Pareto-optimal front, with a wide trade-o among the objectives.

Step2: consists in choosing the optimal point using higher-level information. Comparing with the DMOO, the MORBDO aims to nd the best compromise between cost and reliability, taking into account design uncertainties. It can be mathematically presented by [START_REF] Elhami | Methods that combine nite group theory with component mode synthesis in the analysis of repetitive structures[END_REF][START_REF] Fang | Multiobjective reliability-based optimization for design of a vehicledoor[END_REF]:

min x f m (x), m = 1, .., M s.t. P r [G k (x, y) ≤ 0] ≤ P T k , k = 1, .., K h j (x) ≤ 0, j = 1, .., J (32) 
x and y are deterministic and random variables respectively. P r [.] presents the probability operator and P T i is the target failure probability. h j (x) and G i (x, y) are respectively the deterministic and the probabilistic constraints.

Dammak and El Hami [START_REF] Dammak | Multi-objective reliability based design optimization using kriging surrogate model for cementless hip prosthesis[END_REF] propose an ecient multi-objective optimization approach called MORBDO-HM. This method is based on the classical hybrid method proposed in [START_REF] Kharmanda | Ecient reliability-based design optimization using a hybrid space with application to nite element analysis[END_REF][START_REF] Yaich | Reliability based design optimization for multiaxial fatigue damage analysis using robust hybrid method[END_REF][START_REF] Dammak | An ecient optimization based on the robust hybrid method for the coupled acousticstructural system[END_REF]. The MORBDO-HM problem can be then described by: min

x,y

F m (x, y) = f m (x) × d β (x, y), m = 1, .., M s.t. G(x, y) ≤ 0 g k (x, y) ≤ 0, k = 1, .., K d β (x, y) ≥ β t (33) 
It can be noted that d β is the distance between the most probable failure point and the optimal solution. It presents the reliability level and should be higher than the target reliability level β t . It has been proved in [START_REF] Dammak | Multi-objective reliability based design optimization using kriging surrogate model for cementless hip prosthesis[END_REF] that, MORBDO-HM has eciently provided an optimal solution where both physical and reliability constraints are respected. However, the optimization problem becomes more complex and it may converge to a non-feasible solution. To overcome this issue, an ecient method called MORBDO-RHM is proposed.

The basic idea of this method is based on adding a new constraint to the optimization algorithm. The aim of this is to force the optimization problem to nd the optimal point where both physical and reliability constraints are respected. Mathematically, it is dened as: The choice of this numerical conguration is based on an experimental study presented in [START_REF] Arshad | Experimental investigation of pcm based round pin-n heat sinks for thermal management of electronics: eect of pin-n diameter[END_REF]. The aim of this study is to propose a new methodology that leads to determine numerically an optimal design. To this end, rstly, this conguration needs to be validated with experimental data. Recently, several studies have been reported using metal-ns and metal-foam [START_REF] Moussa | Heating and cooling conditions eects on the kinetic of phase change of pcm embedded in metal foam[END_REF][START_REF] Moussa | Melting and solidication behavior of pcm embedded in metal foam[END_REF]. However, the use of these congurations is limited to some specic applications and they are proportionally more expensive than classical ones. Experimentally, exterior walls of the heat sink are insulated with a rubber board, except the upper surface. The insulator presents a low thermal conductivity in order to minimize thermal losses and its properties are mentioned in table 2. To control the liquid and solid fractions of PCM, the top surface is covered using silicon gasket and Perspex sheet. Note that these parts are not considered in the proposed numerical model.

min x,y F (x, y) = f m (x) × d β (x, y) m = 1, .., M s.t. G(x, y) ≤ 0 g k (x) ≤ 0, k = 1, .., K β(x, u) ≥ β t lb ≤ x ≤ ub f m (x) ≥ f m (y) (34) 
The 3D numerical model is studied to compare the trends observed in the experimental results [START_REF] Arshad | Experimental investigation of pcm based round pin-n heat sinks for thermal management of electronics: eect of pin-n diameter[END_REF]. A uniform heat ux is supplied from the heat source to the bottom surface of the heat sink. It is transmitted then to the PCM, heat sink ns and nally to end walls. It can be considered that the model does not take into account marginal eects such as natural convection within melted PCM, and the volume changes in PCM after phase transition.

All required material dimensions and thermo-physical properties of the studied system are available respectively in table 2 and table 3. A constant heat ux (Q=2800 W/m 2 ) is applied to mimic the heat source at the HS bottom (presented by the red plate in gure 4). The charging phase is established for 90min and it is performed at room temperature of 18°C.

The "enthalpy-porosity" approach is adopted in the PCM-based heat sink to investigate the eect of the transition phase. In this numerical investigation, several hypotheses are considered:

The HS material is homogeneous and isotropic .

A local thermal equilibrium between ns and liquid PCM is considered.

Whatever the phase and the temperature, the thermo-physical properties of PCM and ns are considered constant .

The radiative heat transfer is also neglected.

Natural convection is applied on exterior areas of the insulator. To deal with governing equations, initial conditions as well as applied boundary conditions are:

Initial conditions: t=0, T =T amb = 18°C, ξ= 0.

Otherwise, at t=0, global model is maintained at room conditions and the proposed PCM is totally in the solid phase.

Heat ux applied at the HS base:

-λ ∂T ∂x x = 6.2 → 107.8 y = 6.2 → 107.8 z = 2 = -λ ∂T ∂y x = 6.2 → 107.8 y = 6.2 → 107.8 z = 2 = Q 5.3

. Preliminary results and discussion

Figure 6 shows the mesh of the global studied numerical design. It is divided into 39240 8-Node tetrahedral elements. Each element has eight nodes with a single degree of freedom, temperature, at each node. It can be noted that a mesh rening is applied on the contact surfaces of HS and PCM to give a better result. According to table 3, the mesh conguration with 39240 elements is chosen to compromise between cost and accuracy. In fact, the conguration with 141367 elements presents almost the same maximum reached temperature with a higher computing time comparing with 39240 elements conguration. Figure 7 presents the temperature-time prole at the HS base for 3 mm pin n heat sink conguration. Note that blue and red curves correspond respectively to experimental and numerical results during the charging phase under Q= 2800

W/m 2 .
For the heating phase, the temperature variation prole can be discretized into three dierent regions:

Solid region:

Initially, the temperature increases in a linear way from the ambient temperature T amb =18°C to the solidication temperature of PCM T s =56°C.

Liquid region:

In this region, all the quantities of PCM inside enclosures will be totally melted. The temperature increases, until 90 min.

Latent heating region:

It can be seen that, for both numerical and experimental simulations, the increase of the temperature has been signicantly delayed due to the use of PCM. In fact, beneting from PCM thermo-physical properties, the energy generated by the input source is stored by the PCM and causes its transition from the solid phase to liquid phase. It can be observed that numerical data compare reasonably well with the experimental results found by Arshad et al. [START_REF] Arshad | Experimental investigation of pcm based round pin-n heat sinks for thermal management of electronics: eect of pin-n diameter[END_REF]. Hence, the coupled RBDO-metamodels problem can be then proceeded. The design parameters considered in this study are supposed a random probabilistic one which their characteristics are specied in table 5. We note that L and H are respectively the length and the height of the HS and φ is the pin-n diameter (see gure 5).

In a mono-objective RBDO method, the aim is to minimize one objective function subject to physical and reliability constraint. For a PCM-based cooling system problem, the objective function is generally chosen as its total volume, considering the maximum reached temperature T max . However, obtained optimal design may present several issues in term of heat dissipation for the discharging phase related to greater designs [START_REF] Debich | An ecient reliability-based design optimization study for pcm-based heat-sink used for cooling electronic devices[END_REF]. To overcome this problem, minimizing cooling time must be considered. We note by t f the nal time to reach 25°C for the discharging phase. Furthermore, a 3D PCM-based heat sink model is expensive in term of computational time. Hence, the need to propose an original methodology of multiobjective RBDO coupled with surrogate model. Therefore, surrogate models are used to determine an approximation of T max and t f when changing design variables. It can be concluded that the Kriging model obtained by 50 LHS points gives an estimation of the original design with acceptable eciency. In other words, the model validation using The optimization problem is based on minimizing the cooling system volume as well as the nal time (t f ) taken for the discharging phase subject to the maximum reached temperature (T max ). Note that the critical temperature for the charging phase is about T crit = 70°C.

Generally, the target reliability level is supposed equal to: β t =3 which corresponds to a failure probability about 10 -3 .

Results of DMOO

For the DMOO approach, the global safety factor S g is chosen based on engineering experience. Consequently, the optimal design temperature should be lower than the critical values. Then, the DMOO problem is dened as: 7 presents the deterministic MOO results. Referring to the baseline model, the DMOO approach presents an optimal design (the thermal constraint is veried), but its reliability level β is missing (β=1.85<3). Therefore, to solve this issue, MORBDO methods are extremely recommended. 

min x {f 1 (x) = V, f 2 (x) = t f } s.t. T max (x) ≤ T crit S g lb ≤ x ≤ ub (35)
F (x, y) = [V (x), t f (x)] × d β (x, y) s.t. T max (y) ≤ 70°C lb ≤ x, y ≤ ub d β (x, y) ≥ β t (36) min x,y F (x, y) = [V (x), t f (x)] × d β (x, y) s.t. T max (y) ≤ 70°C lb ≤ x, y ≤ ub d β (x, y) ≥ β t V (x) ≥ V (y) t f (x) ≥ t f (y) (37) 
The corresponding Pareto front is illustrated in gure 13 for both MORBDO-HM and MORBDO-RHM. MORBDO results are presented in table 8. As well as DMOO, MORBDO results provide a set of optimal points over the Pareto space. Against DMOO, the reliability level with MORBDO is respected. Table 8 illustrated that MORBDO-HM gives an optimal resulted point within the failure zone (T max = 90.98°C >70°C). However, the MORBDO-RHM leads to obtain an optimal conguration with respect of reliability constraint as well as thermal constraint, comparing with DMOO and MORBDO-HM approaches. The temperature-time prole, measured at the HS base, is presented in gure 14, for baseline design (red curve) and MORBDO-RHM design (blue curve). In this gure, charging and discharging phases of cooling electronic devices are investigated.

As presented in gure 14 and table 8, the optimal design obtained by the MORBDO-RHM approach veries both thermal and reliability constraints. In fact, at t = 120min, the maximum reached temperature T max is lower than the critical temperature, which guarantees a better performance of the electronic component. Moreover, reliability condition is veried with this model. In fact, the reliability level of the optimal design is equal to the target reliability level (β M ORBDO-RHM ≥ β t ). However, the baseline model does not respect this condition and it may lead to an immediate failure of the electronic component. Furthermore, for the optimal conguration, the latent heating phase period is more important than its for baseline design throughout the charging phase. This can be explained by the fact that the optimal conguration has the ability to store a large amount of thermal energy against the baseline design. On the other hand, for the discharging phase, optimal design has the ability to release the stored thermal energy in a minimal time compared with initial model.

In fact, PCM takes about 40min to reach its solid states against over than 55min for the initial model. Experimental results founded by Arshad et al. [START_REF] Arshad | Experimental investigation of pcm based round pin-n heat sinks for thermal management of electronics: eect of pin-n diameter[END_REF] are numerically validated for PCM embedded in 3mm round pin n heat sink conguration subject to constant heat load (about 2800 W/m 2 ).

To determine the relationship between the input and output variables, Kriging approach is used in the construction of the surrogate model. The results of cross-validation and error measures show that Kriging estimator with 50 LHS points gives an approximation of the original design with great accuracy.

Although the DMOO approach is easy to apply and can ensure an optimum design, a reliability level of thermal constraint is missed. Therefore, and in order to overcome this issue, MORBDO methods are investigated for thermal management applications. MORBDO-RHM and MORBDO-HM approaches based on surrogate models are coupled with PCMbased heat sink design.

The numerical study proves that the proposed MORBDO-RHM approach is more ecient and reliable comparing with MORBDO-HM approach. We conclude that, for thermal enhancer application using PCM-based HS, MORBDO-RHM approach leads to obtain an optimal design, where both thermal and reliability constraints are veried. The proposed methodology can be then applied to determine an optimal design of cooling systems that guarantees a higher performance of electronic components. Furthermore, it gives a better compromise between safety and cost, for both charging and discharging phases. An extension to other heat sink congurations such as square and triangular pin-n heat sink needs to be studied and validated with experimental investigation.
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 14 Figure 4 presents a three-dimensional model of the studied cooling system. It is composed by an aluminum heat sink which contains a 11×12 round pin n matrix. Note that aluminum presents a high thermal conductivity as well as a lower mass (lower density). The dimensional details of the heat sink design are shown in gure 4.
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 12 Figure 12 presents the Pareto optimal front of DMOO. It provides, for design selection, decision-makers with a set of solutions over the Pareto space. To select the best optimum, called knee point [50], the Minimum Distance Selection Method (MDSM) [51] is considered here as shown in gure 12. In a Pareto front, the knee point provides a good trade-o between the objective functions. It presents the minimal distance from the utopia point.
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 13 Figure 13: Pareto optimal front: (a) MORBDO-HM and (b) MORBDO-RHM
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 14 Figure 14: Temperature prole for baseline design and optimal design: charging and discharging phases.

  paper aims to propose an ecient method that leads to obtain an optimal conguration of thermal management systems based on PCM technology which ensure a recommended reliability level. In this work, a 3D transient numerical simulation of round pin-n heat sink fully lled with PCM is studied to investigate the thermal management behaviours for passive cooling of electronic equipments.

  

  

Table 1 :

 1 Description of all used parameters

	Notation Designation	Dimension Vector
	x	design variable vector	1× n	x

1 , x 2 , . . . , x n x s set of samples n× 1

Table 2 :

 2 Dimensions of required materials

	Material	Used materials	Dimensions
	1	Perspex sheet	115 × 115 × 5 mm 3
	2	Silicon rubber gasket	115 × 115 × 5 mm 3
			(with a cut out of 114 × 114)
	3	Rubber pad for heat sink	220 × 220 × 25 mm 3
			(with a cut out of 114 × 114)
	4	Rubber pad for heat sink bottom	220 × 220 × 65 mm 3
	5	Plate heater	101.6 × 101.6 × 2 mm 3
		14	

Table 3 :

 3 Thermo-physical properties of each material

	Material	Thermal conductivity Specic heat Latent heat Solidication point Melting point Density
		(W/m.K )	(kJ/kgK )	(kJ/kg)	(°C )	(°C )	(kg/m 3 )
	Aluminum	201	0.9	-	-	606.4	2700
	Paran Wax	0.212(s)	2.8(s)	173.6	56	58	880(s)
		0.167(l)					790(l)
	Rubber Pad	0.043	1.23	-	-	-	2500
	5.2. Boundary conditions					
	A Finite Element (FE) computing software ANSYS Mechanical APDL is used to investigate
	the performance of the round pin n heat sink lled with PCM.		

Table 4 :

 4 Mesh convergency study

	Number of elements	36240 38001 39240 85756 141367
	Simulation time (min) 11.55 12.7 12.87 27.5	85.15
	T	

max (°C) 75.76 80.34 82.57 82.67 82.68

Table 5 :

 5 Random variables properties

	Variables	Symbol Distribution type Cov Mean value Lower bound Upper bound
						(lb)	(ub)
	Length (mm)	L	Normal	0.1	114	110	125
	Height (mm)	H	Normal	0.1	25	15	30
	Pin n diameter (mm)	φ	Normal	0.1	3	2	4
	5.4. Surrogate model results: Kriging approach accuracy			
	Meta-model approaches are applied to build estimations of the nite element simulation
	and determine the link between input parameters and their responses. The maximum
	reached temperature at the base of PCM-based round pin-n heat sink is determined using
	Kriging surrogate models (equation (14)). To develop the Kriging meta-model, the Matlab
	toolbox package Design and Analysis of Computer Experiments (DACE) [48] is used. A
	second order polynomial global trend function and exponential correlation function are
	applied. Training data presented in (table 5) are then considered as the input of the FE
	analysis. The eciency of the Kriging surrogate model is validated using error measures
	(equations (27) to (29)) as presented in table 6.				

Table 6 :

 6 Error measures of Kriging predictor

	Error measures	20 LHS points T max t f	30 LHS points T max t f	50 LHS points T max t f
	MAE	1.354	2.054	1.216	2.1587	0.4353	1.3895
	RME	1.046e-03 0.0032	8.1313e-04 0.0027	3.5979e-04 0.0017
	RMSE	0.377	0.489	0.0905	0.7629	0.2531	0.3181
	Training points number with LHS comparison is presented via the CV in gures 8 to 10
	for 20, 30 and 50 LHS points, respectively.				

Table 7 :

 7 DMOO results 

	Description		Design point Optimal solution
			y *	x *
	Design variables	L (mm)	125	125
		H (mm)	23.78	28.64
		φ (mm)	4	3.72
	Objective function V (mm 3 )	3.51e+05	4.268e+05
		t f (min)	236.47	253.45
	Thermal constraint T max (°C)	70	63
	Reliability value	β		1.85
	5.5.2. Results of MORBDO			
	Equation (36) and equation (37) present respectively the MORBDO-HM and MORBDO-
	RHM optimization problem:			
	min x,y			

Table 8 :

 8 MORBDO results 

	Descrption		MORBDO-HM	MORBDO-RHM
			Design point Optimal solution	Design point Optimal solution
			y *	x *	y *	x *
	Design variables	L(mm)	124.67	110.81	122.62	121.96
		H(mm)	24.04	18.89	26.82	30
		φ(mm)	4	4	2.82	3.92
	Objective functions V (mm 3 )	3.53e+05	2.11e+05	3.8279e+05	4.2558e+05
		t f (min))	237.43	216.56	254.8	257.42
	Thermal constraint T max °C)	70	90.98	69.86	64.61
	Reliability value	β		3		3

Surrogate models 3.1. Description of surrogate modeling processRecently, metamodels are widely used in current engineering analysis in order to reduce the calculation cost. Surrogate models aim to construct the mathematical approximations

estimate the link between input variables and their responses.