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Lower Bounds for Non-Elitist Evolutionary
Algorithms via Negative Multiplicative Drift*

Benjamin Doerr**

Abstract

A decent number of lower bounds for non-elitist population-based
evolutionary algorithms has been shown by now. Most of them are
technically demanding due to the (hard to avoid) use of negative drift
theorems – general results which translate an expected movement
away from the target into a high hitting time.

We propose a simple negative drift theorem for multiplicative drift
scenarios and show that it can simplify existing analyses. We dis-
cuss in more detail Lehre’s (PPSN 2010) negative drift in populations
method, one of the most general tools to prove lower bounds on the
runtime of non-elitist mutation-based evolutionary algorithms for dis-
crete search spaces. Together with other arguments, we obtain an
alternative and simpler proof of this result, which also strengthens
and simplifies this method. In particular, now only three of the five
technical conditions of the previous result have to be verified. The
lower bounds we obtain are explicit instead of only asymptotic. This
allows to compute concrete lower bounds for concrete algorithms, but
also enables us to show that super-polynomial runtimes appear al-
ready when the reproduction rate is only a (1 − ω(n−1/2)) factor be-
low the threshold. For the special case of algorithms using standard
bit mutation with a random mutation rate (called uniform mixing in
the language of hyper-heuristics), we prove the result stated by Dang
and Lehre (PPSN 2016) and extend it to mutation rates other than
Θ(1/n), which includes the heavy-tailed mutation operator proposed
by Doerr, Le, Makhmara, and Nguyen (GECCO 2017). We finally use
our method and a novel domination argument to show an exponen-
tial lower bound for the runtime of the mutation-only simple genetic
algorithm on OneMax for arbitrary population size.

*Extended version of a paper that appeared in the proceedings of PPSN 2020 [Doe20c].
This version contains all proofs (for reasons of space, in [Doe20c] only Lemma 1 and
Theorem 2 were proven), a new section on standard bit mutation with random mutation
rates, and several additional details.

**Laboratoire d’Informatique (LIX), CNRS, École Polytechnique, Institut Polytechnique
de Paris, Palaiseau, France
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1 Introduction

Lower bounds for the runtimes of evolutionary algorithms are important as
they can warn the algorithm user that certain algorithms or certain parameter
settings will not lead to good solutions in acceptable time. Unfortunately,
the existing methods to obtain such results, for non-elitist algorithms in
particular, are very technical and thus difficult to use.

One reason for this high complexity is the use of drift analysis, which
seems hard to circumvent. Drift analysis [Len20] is a set of tools that all try
to derive useful information on a hitting time (e.g., the first time a solution
of a certain quality is found) from information on the expected progress in
one iteration. The hope is that the progress in a single iteration can be
analyzed with only moderate difficulty and then the drift theorem does the
remaining work. While more direct analysis methods exist and have been
successfully used for simple algorithms, for population-based algorithms and
in particular non-elitist ones, it is hard to imagine that the complicated
population dynamics can be captured in proofs not using more advanced
tools such as drift analysis.

Drift analysis has been used with great success to prove upper bounds
on runtimes of evolutionary algorithms. Tools such as the additive [HY01],
multiplicative [DJW12], and variable drift theorem [MRC09, Joh10] all allow
to easily obtain an upper bound on a hitting time solely from the expected
progress in one iteration. Unfortunately, proving matching lower bounds
is much harder since here the drift theorems require additional technical
assumptions on the distribution of the progress in one iteration. This is even
more true in the case of so-called negative drift, where the drift is away from
the target and we aim at proving a high lower bound on the hitting time.

In this work, we propose a very simple negative drift theorem for the case
of multiplicative drift (Lemma 3). We briefly show that this result can ease
two classic lower bound analyses (also in Section 3).

In more detail, we use the new drift theorem (and some more arguments)
to rework Lehre’s negative drift in populations method [Leh10]. This highly
general analysis method allows to show exponential lower bounds on the
runtime of a large class of evolutionary algorithms solely by comparing the
so-called reproduction rate of individuals in the population with a threshold
that depends only on the mutation rate.

The downside of Lehre’s method is that both the result and its proof are
very technical. To apply the general result (and not the specialization to
algorithms using standard bit mutation), five technical conditions need to be
verified, which requires the user to choose suitable values for six different con-
stants; these have an influence on the lower bound one obtains. This renders
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the method of Lehre hard to use. Among the 54 citations to [Leh10] (accord-
ing to Google scholar on June 9, 2020), only the two works [Leh11, DL16b]
apply this method. To hopefully ease future analyses of negative drift in
populations, we revisit this method and obtain the following improvements.

A simpler result: We manage to show essentially the same lower bound
by only verifying three of the five conditions of Lehre’s result (Theorems 4
and 5). This also reduces the number of constants one needs to choose from
six to four.

A non-asymptotic result: Our result gives explicit lower bounds, that is,
free from asymptotic notation or unspecified constants. Consequently, our
specialization to algorithms using standard bit mutation (Theorem 6) also
gives explicit bounds. This allows one to prove concrete bounds for specific
situations (e.g., that the (µ, λ) EA with λ = 2µ needs more than 13 million
fitness evaluations to find the optimum of the OneMax problem defined
over bit strings of length n = 500, see the example following Theorem 6) and
gives more fine-grained theoretical results (by choosing Lehre’s constant δ as
a suitable function of the problems size, we show that a super-polynomial
runtime behavior is observed already when the reproduction rate is only a
(1− ω(n1/2)) factor below the threshold, see Corollary 7). With the absence
of asymptotic notation, we can also analyze algorithms using standard bit
mutation with a mutation rate chosen randomly from a discrete set of alter-
natives (Section 6). Such a result was stated by Dang and Lehre [DL16b],
however only for mutation rates that are Θ(1/n). Our result does not need
this restriction and thus, for example, applies also to the heavy-tailed muta-
tion operator proposed in [DLMN17].

A simple proof: Besides the important aspect that a proof guarantees the
result to be mathematically correct, an understandable proof can also tell us
why a result is correct and give further insights into working principles of al-
gorithms. While every reader will have a different view on how the ideal proof
looks like, we felt that Lehre’s proof, combining several deep and abstract
tools such as multi-type branching processes, eigenvalue arguments, and Ha-
jek’s drift theorem [Haj82], does not easily give a broader understanding of
the proof mechanics and the working principles of the algorithms analyzed.
Our proof, based on a simple potential function argument together with our
negative drift theorem, hopefully is more accessible.

Finally, we analyze an algorithm using fitness proportionate selection.
The negative drift in populations method is not immediately applicable to
such algorithms since it is hard to provide a general unconditional upper
bound on the reproduction rate: If all but one individual have a very low
fitness, then this best individual has a high reproduction rate. We therefore
show that at all times all search points are at least as good (in a stochastic
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domination sense) as random search points. This allows to argue that the
reproduction rates are low and then gives a simple proof of an exponential
lower bound for the mutation-only simple genetic algorithm (simple GA)
with arbitrary population size optimizing the simple OneMax benchmark,
improving over the mildly sub-exponential lower bound in [NOW09] and the
exponential lower bound for large population sizes only in [Leh11].

Related Works

A number of different drift theorems dealing with negative drift have been
proven so far, among others, in [HJKN08, OW11, OW12a, RS14, OW15,
Köt16, LS18, Wit19] (note that in early works, the name “simplified drift the-
orem” was used for such results). They all require some additional assump-
tions on the distribution of the one-step progress, which makes them non-
trivial to use. We refer to [Len20, Section 2.4.3] for more details. Another
approach to negative drift was used in [ADY19, Doe19b, Doe20a]. There the
original process was transformed suitably (via an exponential function), but
in a way that the drift of the new process still is negative or at most a small
constant. To this transformed process the lower bound version of the addi-
tive drift theorem [HY01] was applied, which gave large lower bounds since
the target, due to the exponential rescaling, now was far from the starting
point of the process.

In terms of lower bounds for non-elitist algorithms, besides Lehre’s general
result [Leh10], the following results for particular algorithms exist (always,
n is the problem size, ε can be any positive constant, and e ≈ 2.718 is the
base of the natural logarithm). Jägersküpper and Storch [JS07, Theorem 1]
showed that the (1, λ) EA with λ ≤ 1

14
ln(n) is inefficient on any pseudo-

Boolean function with a unique optimum. The asymptotically tight condi-
tion λ ≤ (1 − ε) log e

e−1
n to yield a super-polynomial runtime was given by

Rowe and Sudholt [RS14]. Happ, Johannsen, Klein, and Neumann [HJKN08]
showed that two simple (1+1)-type hillclimbers with fitness proportionate se-
lection cannot optimize efficiently any linear function with positive weights.
Neumann, Oliveto, and Witt [NOW09] showed that a mutation-only variant
of the simple GA with fitness proportionate selection is inefficient on the
OneMax function when the population size µ is at most polynomial, and
it is inefficient on any pseudo-Boolean function with unique global optimum
when µ ≤ 1

4
ln(n). The mildly subexponential lower bound for OneMax

was improved to an exponential lower bound by Lehre [Leh11], but only for
µ ≥ n3. In a series of remarkable works up to [OW15], Oliveto and Witt
showed that the true simple GA using crossover cannot optimize OneMax
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efficiently when µ ≤ n
1
4
−ε. None of these results gives an explicit lower

bound or specifies the base of the exponential function. In [ADY19], an ex-
plicit lower bound for the runtime of the (µ, λ) EA is proven (but stated only
in the proof of Theorem 3.1 in [ADY19]). Section 3 of [ADY19] bears some
similarity with ours, in fact, one can argue that our work extends [ADY19,
Section 3] from a particular algorithm to the general class of population-
based processes regarded by Lehre [Leh10] (where, naturally, [ADY19] did
not have the negative multiplicative drift result and therefore did not obtain
bounds that hold with high probability).

2 Notation and Preliminaries

In terms of basic notation, we write [a..b] := {z ∈ Z | a ≤ z ≤ b}. We recall
the definition of the OneMax benchmark function

OneMax : {0, 1}n → R;x = (x1, . . . , xn) 7→
n∑
i=1

xi,

which counts the number of ones in the argument. We denote the Hamming
distance of two bit strings x, y ∈ {0, 1}n by

H(x, y) = |{i ∈ [1..n] | xi 6= yi}|.

The classic mutation operator standard bit mutation creates an offspring
by flipping each bit of the parent independently with some probability p,
which is called mutation rate.

We shall twice need the notion of stochastic domination and its relation to
standard bit mutation, so we quickly collect these ingredients of our proofs.
We refer to [Doe19a] for more details on stochastic domination and its use
in runtime analysis.

For two real-valued random variables X and Y , we say that Y stochasti-
cally dominates X, written as X � Y , if for all λ ∈ R we have Pr[Y ≤ λ] ≤
Pr[X ≤ λ]. Stochastic domination is a very flexible way of saying that Y
is larger than X. It implies E[X] ≤ E[Y ], but not only this, we also have
E[f(X)] ≤ E[f(Y )] for any monotonically increasing function f .

Lemma 1. Let X, Y be two random variables taking values in some set Ω ⊆
R. Let f : Ω→ R be monotonically increasing, that is, we have f(x) ≤ f(y)
for all x, y ∈ Ω with x ≤ y. Then E[f(X)] ≤ E[f(Y )].

Significantly improving over previous related arguments in [DJW00, Sec-
tion 5] and [DJW12, Lemma 13], Witt showed the following natural domina-
tion argument [Wit13, Lemma 6.1] for offspring generated via standard bit
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mutation with mutation rate at most 1
2
. We note that the result is formulated

in [Wit13] only for x∗ = (1, . . . , 1), but the proof in [Wit13] or a symmetry
argument immediately shows the following general version.

Lemma 2. Let x∗, x, y ∈ {0, 1}n with H(x, x∗) ≥ H(y, x∗). Let x′ and y′ be
random search points obtained from x and y via standard bit mutation with
mutation rate p ≤ 1

2
. Then

H(x′x∗) � H(y′, x∗).

3 Negative Multiplicative Drift

The following elementary result allows to prove lower bounds on the time to
reach a target in the presence of multiplicative drift away from the target.
While looking innocent, it has the potential to replace the more complicated
lower bound arguments previously used in analyses of non-elitist algorithms.
We discuss this briefly at the end of this section.

Lemma 3 (Negative multiplicative drift theorem). Let X0, X1, . . . be a ran-
dom process in a finite subset of R≥0. Assume that there are ∆, δ > 0 such
that for each t ≥ 0, the following multiplicative drift condition with additive
disturbance holds:

E[Xt+1] ≤ (1− δ)E[Xt] + ∆. (1)

Assume further that E[X0] ≤ ∆
δ

. Then the following two assertions hold.

� For all t ≥ 0, E[Xt] ≤ ∆
δ

.

� Let M > ∆
δ

and T = min{t ≥ 0 | Xt ≥ M}. Then for all integers
L ≥ 0,

Pr[T ≥ L] ≥ 1− L ∆

δM
,

and E[T ] ≥ δM
2∆
− 1

2
.

The proof is an easy computation of expectations and an application of
Markov’s inequality similar to the direct proof of the multiplicative drift
theorem in [DG13]. We do not see a reason why the result should not also
hold for processes taking more than a finite number of values, but since we
are only interested in the finite setting, we spare us the more complicated
world of continuous probability spaces.
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Proof of Lemma 3. If E[Xt] ≤ ∆
δ

, then E[Xt+1] ≤ (1 − δ)E[Xt] + ∆ ≤
(1− δ)∆

δ
+ ∆ = ∆

δ
by (1). Hence the first claim follows by induction. To

prove the second claim, we compute

Pr[T < L] ≤ Pr[X0 + · · ·+XL−1 ≥M ] ≤ E[X0 + · · ·+XL−1]

M
≤ L∆

δM
,

where the middle inequality follows from Markov’s inequality and the fact
that the Xt by assumption are all non-negative. From this estimate, using the
shorthand s = b δM

∆
c, we compute E[T ] =

∑∞
t=1 Pr[T ≥ t] ≥

∑s
t=1(1− t∆

δM
) =

s − 1
2
s(s + 1) ∆

δM
≥ δM

2∆
− 1

2
, where the first equality is a standard way to

express the expectation of a random variable taking non-negative integral
values and the last inequality is an elementary estimate that can be verified
as follows. Let ε = δM

∆
− s. Then s− 1

2
s(s + 1) ∆

δM
≥ δM

2∆
− 1

2
is the same as

s− s(s+1)
2(s+ε)

≥ 1
2
(s+ ε)− 1

2
, which is equivalent to

2s(s+ ε)− s(s+ 1) + (s+ ε) ≥ (s+ ε)2

since s+ ε ≥ 0. Now the left-hand side is equal to s2 + 2sε+ ε, which is not
smaller than s2 + 2sε + ε2, since ε ∈ [0, 1), and this is just the right-hand
side.

We note that in the typical application of this result (as in the proof of
Theorem 4 below), we expect to see the condition that for all t ≥ 0,

E[Xt+1 | Xt] ≤ (1− δ)Xt + ∆. (2)

Clearly, this condition implies (1) by the law of total expectation.
We now argue that our negative multiplicative drift theorem is likely to

find applications beyond ours to the negative drift in populations method in
the following section. To this aim, we regard two classic lower bound analyses
of non-elitist algorithms and point out where our drift theorem would have
eased the analysis.

In [NOW09], Neumann, Oliveto, and Witt show that the variant of
the simple genetic algorithm (simple GA) not using crossover needs time

2n
1−O(1/ log logn)

to optimize the simple OneMax benchmark. The key argu-
ment in [NOW09] is as follows. The potential Xt of the population P (t) in
iteration t is defined as Xt =

∑
x∈P (t) 8OneMax(x). For this potential, it is

shown [NOW09, Lemma 7] that if Xt ≥ 80.996n, then E[Xt+1] ≤ (1− δ)Xt for
some constant δ > 0. By bluntly estimating E[Xt+1] in the case that Xt <
80.996n, this bound could easily be extended to E[Xt+1|Xt] ≤ (1 − δ)Xt + ∆
for some number ∆. This suffices to employ our negative drift theorem
and obtain the desired lower bound. Without our drift theorem at hand,
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in [NOW09] the potential Yt = log8(Xt) was considered, it was argued that
it displays an additive drift away from the target and that Yt satisfies certain
concentration statements necessary for the subsequent use of a negative drift
theorem for additive drift.

A second example where we feel that our drift theorem can ease the
analysis is the work of Oliveto and Witt [OW14, OW15] on the simple GA
with crossover optimizing OneMax. Due to the use of crossover, this work is
much more involved, so shall not go into detail and simply point the reader
to the location where negative drift occurs. In Lemma 19 of [OW15], a
multiplicative drift statement (away from the target) is proven. To use a
negative drift theorem for additive drift (Theorem 2 in [OW15]), in the proof
of Lemma 20 the logarithm of the original process is regarded. So here again,
we think that a direct application of our drift theorem would have eased the
analysis.

4 Negative Drift in Populations Revisited

In this section, we use our negative multiplicative drift result and some more
arguments to rework Lehre’s negative drift in populations method [Leh10]
and obtain Theorem 4 further below. This method allows to analyze a broad
class of evolutionary algorithms, namely all that can be described via the
following type of population process.

4.1 Population Selection-Mutation Processes

A population selection-mutation (PSM) process (called population selection-
variation algorithm in [Leh10]) is the following type of random process. Let Ω
be a finite set. We call Ω the search space and its elements solution candidates
or individuals. Let λ ∈ N be called the population size of the process. An
ordered multi-set of cardinality λ, in other words, a λ-tuple, over the search
space Ω is called a population. Let P = Ωλ be the set of all populations.
For P ∈ P , we write P1, . . . , Pλ to denote the elements of P . We also write
x ∈ P to denote that there is an i ∈ [1..λ] such that x = Pi.

A PSM process starts with some, possibly random, population P (0). In
each iteration t = 1, 2, . . . , a new population P (t) is generated from the
previous one P (t−1) as follows. Via a (possibly) randomized selection operator
sel(·), a λ-tuple of individuals is selected and then each of them creates an
offspring through the application of a randomized mutation operator mut(·).

The selection operator can be arbitrary except that it only selects individ-
uals from P (t−1). In particular, we do not assume that the selected individuals
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are independent. Formally speaking, the outcome of the selection process is
a random λ-tuple Q = sel(P (t−1)) ∈ [1..λ]λ such that P

(t−1)
Q1

, . . . , P
(t−1)
Qλ

are
the selected parents.

From each selected parent P
(t−1)
Qi

, a single offspring P
(t)
i is generated via

a randomized mutation operator P
(t)
i = mut(P

(t−1)
Qi

). Formally speaking,
for each x ∈ Ω, mut(x) is a probability distribution on Ω and we write
y = mut(x) to indicate that y is sampled from this distribution. We assume
that each sample, that is, each call of a mutation operator, uses independent
randomness. With this notation, we can write the new population as P (t) =(
mut(P

(t−1)
Q1

), . . . ,mut(P
(t−1)
Qλ

)
)

with Q = sel(P (t−1)). From the definition
it is clear that a PSM process is a Markov process with state space P . A
pseudocode description of PSM processes is given in Algorithm 1.

Algorithm 1: A PSM process with search space Ω, population size
λ, selection operator sel(·) and mutation operator mut(·), initialized
with P (0) ∈ Ωλ.

1 for t = 1, 2, . . . do
2 (Q1, . . . , Qλ)← sel(P (t−1));

3 P (t) ←
(
mut(P

(t−1)
Q1

), . . . ,mut(P
(t−1)
Qλ

)
)
;

The following characteristic of the selection operator was found to be
crucial for the analysis of PSM processes in [Leh10]. Let P ∈ P and i ∈
[1..λ]. Then the random variable R(i, P ) = |{j ∈ [1..λ] | sel(P )j = Pi}|,
called reproduction number of the i-th individual in P , denotes the number
of times Pi was selected from P as parent. Its expectation E[R(i, P )] is called
reproduction rate.

Example: We now describe how the (µ, λ) EA fits into this framework.
That it fits into this framework and that the reproduction number is λ

µ
was

already stated in [Leh10], but how exactly this works out, to the best of our
knowledge, was never made precise so far, and is also not totally trivial.

We specify that when talking about the (µ, λ) EA, given in pseudocode in
Algorithm 2, we mean the basic EA which starts with a parent population of
µ search points chosen independently and uniformly at random from {0, 1}n.
In each iteration, λ offspring are generated, each by selecting a parent indi-
vidual uniformly at random (with repetition) and mutating it via standard
bit mutation with mutation rate p. The next parent population is selected
from these λ offspring by taking µ best individuals, breaking ties randomly.

This algorithm can be modeled as a PSM process with population size
λ (not µ). To do so, we need a slightly non-standard initialization of the
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Algorithm 2: The (µ, λ) EA to maximize a function
f : {0, 1}n → R.

1 Initialize P (0) with µ individuals chosen independently and
uniformly at random from {0, 1}n;

2 for t = 1, 2, . . . do
3 for i ∈ [1..λ] do
4 Select x ∈ P (t−1) uniformly at random;

5 Generate y(i) from x via standard bit mutation;

6 Select P (t) as sub-multiset of {y(1), . . . , y(λ)} with maximal
fitness, breaking ties randomly;

population. We generate P (0) by first taking µ random search points and then
generating each P

(0)
i , i ∈ [1..λ], by choosing (with replacement) a random

one of the µ base individuals and mutating it. With this definition, each
individual in P (0) is uniformly distributed in {0, 1}n, but these individuals
are not independent.

Given a population P consisting of λ individuals, the selection operator
first selects a set P0 of µ best individuals from P , breaking ties randomly.
Formally speaking, this is a tuple (i1, . . . , iµ) of indices in [1..λ]. Then a ran-
dom vector (j1, . . . , jλ) ∈ [1..µ]λ is chosen and the selected parents are taken
as Q = (Pij1 , . . . , Pijλ ). The next population P ′ is obtained by applying the
mutation operator to each of these, that is, P ′ = (mut(Pij1 ), . . . ,mut(Pijλ )),
where mut(·) denotes standard bit mutation with mutation rate p.

From this description, it is clear that each individual of each population
of the (µ, λ) EA has a reproduction rate of λ

µ
.

4.2 Our “Negative Drift in Populations” Result

We prove the following version of the negative drift in populations method.

Theorem 4. Consider a PSM process (P (t))t≥0 with associated reproduction
numbers R(·, ·) as defined in Section 4.1. Let g : Ω → Z≥0, called potential
function, and a, b ∈ Z≥0 with a ≤ b. Assume that for all x ∈ P (0) we have

g(x) ≥ b. Let T = min{t ≥ 0 | ∃i ∈ [1..λ] : g(P
(t)
i ) ≤ a} the first time we

have a search point with potential a or less in the population. Assume that
the following three conditions are satisfied.

(i) There is an α ≥ 1 such that for all populations P ∈ P with min{g(Pi) |
i ∈ [1..λ]} > a and all i ∈ [1..λ] with g(Pi) < b, we have E[R(i, P )] ≤ α.

10



(ii) There is a κ > 0 and a 0 < δ < 1 such that for all x ∈ Ω with
a < g(x) < b we have

E[exp(−κg(mut(x)))] ≤ 1

α
(1− δ) exp(−κg(x)).

(iii) There is a D ≥ δ such for all x ∈ Ω with g(x) ≥ b, we have

E[exp(−κg(mut(x)))] ≤ D exp(−κb).

Then

� E[T ] ≥ δ
2Dλ

exp(κ(b− a))− 1
2
, and

� for all L ≥ 1, we have Pr[T < L] ≤ LλD
δ

exp(−κ(b− a)).

Before proceeding with the proof, we compare our result with Theorem 1
of [Leh10]. We first note that, apart from a technicality which we discuss
toward the end of this comparison, the assumptions of our result are weaker
than the ones in [Leh10] since we do not need the technical fourth and fifth
assumption of [Leh10], which in our notation would read as follows.

� There is a δ2 > 0 such that for all i ∈ [a..b] and all k, ` ∈ Z with
1 ≤ k + ` and all x, y ∈ Ω with g(x) = i and g(y) = i− ` we have

Pr[g(mut(x)) = i− ` ∧ g(mut(y)) = i− `− k]

≤ exp(κ(1− δ2)(b− a)) Pr[g(mut(x)) = i− k − `].

� There is a δ3 > 0 such that for all i, j, k, ` ∈ Z with a ≤ i ≤ b and
1 ≤ k + ` ≤ j and all x, y ∈ Ω with g(x) = i and g(y) = i− k we have

Pr[g(mut(x)) = i− j] ≤ δ3 Pr[g(mut(y)) = i− k − `].

The assertion of our result is of the same type as in [Leh10], but stronger in
terms of numbers. For the probability Pr[T < L] to find a potential of at
most a in time less than L, a bound of

O(λL2D (b− a) exp(−κδ2(b− a)))

is shown in [Leh10]. Hence our result is smaller by a factor of
Ω(L(b− a) exp(−κ(1− δ2)(b− a)). In addition, our result is non-asymptotic,
that is, the lower bound contains no asymptotic notation or unspecified con-
stants.
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The one point where Lehre’s [Leh10] result potentially is stronger is that
it needs assumptions only on the “average drift” from the random search
point at time t conditional on having a fixed potential, whereas we require
the same bound on the “point-wise drift”, that is, conditional on the current
search point being equal to a particular search point of this potential. Let
us make this more precise. Lehre uses the notation (Xt)t≥0 to denote the
Markov process on Ω associated with the mutation operator (unfortunately,
it is not said in [Leh10] what is X0, that is, how this process is started). Then
∆t(i) = (g(Xt+1−g(Xt) | g(Xt) = i) defines the potential gain in step t when
the current state has potential i. With this notation, instead of our second
and third condition, Lehre [Leh10] requires only the weaker conditions (here
again translated into our notation).

(ii’) For all t ≥ 0 and all a < i < b, E[exp(−κ∆t(i))] <
1
α

(1− δ).

(iii’) For all t ≥ 0, E[exp(−κ(g(Xt+1)− b)) | g(Xt) ≥ b] < D.

So Lehre only requires that the random individual at time t, conditional
on having a certain potential, gives rise to a certain drift, whereas we require
that each particular individual with this potential gives rise to this drift.
On the formal level, Lehre’s condition is much weaker than ours (assuming
that the unclear point of what is X0 can be fixed). That said, to exploit
such weaker conditions, one would need to be able to compute such average
drifts and they would need to be smaller than the worst-case point-wise drift.
We are not aware of many examples where average drift was successfully
used in drift analysis (one is Jägersküpper’s remarkable analysis of the linear
functions problem [Jäg08]) despite the fact that many classic drift theorems
only require conditions on the average drift to hold.

We now prove Theorem 4. Before stating the formal proof, we describe
on a high level its main ingredients and how it differs from Lehre’s proof.

The main challenge when using drift analysis is designing a potential
function that suitably measures the progress. For simple hillclimbers and
optimization problems, the fitness of the current solution may suffice, but al-
ready the analysis of the (1 + 1) EA on linear functions resisted such easy ap-
proaches [HY01, DJW02, DJW12, Wit13]. For population-based algorithms,
the additional challenge is to capture the quality of the whole population in
a single number. We note at this point that the notion of “negative drift
in populations” was used in Lehre to informally describe the characteristic
of the population processes regarded, but drift analysis as a mathematical
tool was employed only on the level of single individuals and the resulting
findings were lifted to the whole population via advanced tools like branching
processes and eigenvalue arguments.
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To prove upper bounds, in [Wit06, CHS+09, Leh11, DL16a, CDEL18,
ADFH18, DK19], implicitly or explicitly potential functions were used that
build on the fitness of the best individual in the population and the number of
individuals having this fitness. Regarding only the current-best individuals,
these potential functions might not be suitable for lower bound proofs.

The lower bound proofs in [NOW09, OW14, OW15, ADY19] all define
a natural potential for single individuals, namely the Hamming distance to
the optimum, and then lift this potential to populations by summing over
all individuals an exponential transformation of their base potential (this
ingenious definition was, to the best of our knowledge, not known in the
theory of evolutionary algorithms before the work of Neumann, Oliveto, and
Witt [NOW09]). This is the type of potential we shall use as well, and given
the assumptions of Theorem 4, it is not surprising that

∑
x∈P exp(−κg(x))

is a good choice. For this potential, we shall then show with only mild
effort that it satisfies the assumptions of our drift theorem, which yields the
desired lower bounds on the runtime (using that a single good solution in
the population already requires a very high potential due to the exponential
scaling). We now give the details of this proof idea.

Proof of Theorem 4. We consider the process (Xt)t≥0 defined by Xt =∑λ
i=1 exp(−κg(P

(t)
i )). To apply drift arguments, we first analyze the ex-

pected state after one iteration, that is, E[Xt | Xt−1]. To this end, let us
consider a fixed parent population P = P (t−1) in iteration t. Let Q = sel(P )
be the indices of the individuals selected for generating offspring.

We first condition on Q (and as always on P ), that is, we regard only the
probability space defined via the mutation operator, and compute

E[Xt | Q] = E

[
λ∑
j=1

exp(−κg(mut(PQj)))

]

=
λ∑
i=1

(R(i, P ) | Q)E[exp(−κg(mut(Pi)))].

Not anymore conditioning on Q, using the law of total expectation, using
the assumptions (ii) and (iii) on the drift from mutation, and finally us-
ing assumption (i) on the reproduction number and the trivial fact that

13



∑λ
i=1R(i, P ) = λ, we have

E[Xt] = EQ[E[Xt | Q]]

=
λ∑
i=1

E[R(i, P )]E[exp(−κg(mut(Pi)))]

≤
∑

i:g(Pi)<b

E[R(i, P )] 1
α

(1− δ) exp(−κg(Pi))

+
∑

i:g(Pi)≥b

E[R(i, P )]D exp(−κb)

≤
∑

Pi:g(Pi)<b

α · 1
α

(1− δ) exp(−κg(Pi)) + λ ·D exp(−κb)

≤ (1− δ)Xt−1 + λD exp(−κb)

and recall that this is conditional on P (t−1), hence also on Xt−1.
Let ∆ = λD exp(−κb). Since P (0) contains no individual with potential

below b, we have X0 ≤ λ exp(−κb) = ∆
D
≤ ∆

δ
. Hence also the assumption

E[X0] ≤ ∆
δ

of Lemma 3 is fulfilled.
Let M = exp(−κa) and T ′ := min{t ≥ 0 | Xt ≥ M}. Note that T , the

first time to have an individual with potential at most a in the population, is
at least T ′. Now the negative multiplicative drift theorem (Lemma 3) gives

Pr[T < L] ≤ Pr[T ′ < L] ≤ L∆

Mδ
= LλD

exp(−κ(b− a))

δ
,

E[T ] ≥ E[T ′] ≥ δM

2∆
− 1

2
=

δ

2Dλ
exp(κ(b− a))− 1

2
.

We note that the proof above actually shows the following slightly
stronger statement, which can be useful when working with random initial
populations (as, e.g., in the following section).

Theorem 5. Theorem 4 remains valid when the assumption that all ini-
tial individuals have potential at least b is replaced by the assumption∑λ

i=1E[exp(−κg(P
(0)
i ))] ≤ λD exp(−κb)

δ
.

5 Processes Using Standard Bit Mutation

Since many EAs use standard bit mutation, as in [Leh10] we now simplify
our main result for processes using standard bit mutation and for g being
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the Hamming distance to a target solution. Hence in this section, we have
Ω = {0, 1}n and y = mut(x) is obtained from x by flipping each bit of x
independently with probability p. Since our results are non-asymptotic, we
can work with any p ≤ 1

2
.

Theorem 6. Consider a PSM process (see Section 4.1) with search space
Ω = {0, 1}n, using standard bit mutation with mutation rate p ∈ [0, 1

2
] as

mutation operator, and such that P
(0)
i is uniformly distributed in Ω for each

i ∈ [1..λ] (possibly with dependencies among the individuals). Let x∗ ∈ Ω
be the target of the process. For all x ∈ Ω, let g(x) := H(x, x∗) denote the
Hamming distance from the target.

Let α ≥ 1 and 0 < δ < 1 such that ln( α
1−δ ) < pn, that is, such that

1− 1
pn

ln( α
1−δ ) =: ε > 0. Let B = 2

ε
. Let a, b be integers such that 0 ≤ a < b

and b ≤ b̃ := n 1
B2−1

.
Selection condition: Assume that for all populations P ∈ P with

min{g(Pi) | i ∈ [1..λ]} > a and all i ∈ [1..λ] with g(Pi) < b, we have
E[R(i, P )] ≤ α.

Then the first time T := min{t ≥ 0 | ∃i ∈ [1..λ] : g(P
(t)
i ) ≤ a} that the

population contains an individual in distance a or less from x∗ satisfies

E[T ] ≥ 1

2λ
min

{
δα

1− δ
, 1

}
exp

(
ln

(
2

1− 1
pn

ln( α
1−δ )

)
(b− a)

)
− 1

2
,

Pr[T < L] ≤ Lλmax

{
1− δ
δα

, 1

}
exp

(
− ln

(
2

1− 1
pn

ln( α
1−δ )

)
(b− a)

)
.

The proof of this result is a reduction to Theorem 4. To show that the
second and third condition of Theorem 4 are satisfied, one has to estimate
E[exp(−κ(g(mut(x))− g(x)))], which is not difficult since g(mut(x))− g(x)
can be written as sum of independent random variables. With a similar
computation and some elementary calculus, we show that the weaker starting
condition of Theorem 5 is satisfied.

Proof of Theorem 6. We apply Theorem 4. To show the second and third
condition of the theorem, let x ∈ Ω and let y = mut(x) be the random
offspring generated from x. We use the shorthand d = g(x). We note that
g(y)− g(x) = g(y)− d can be expressed as a sum of n independent random
variables Z1, . . . , Zn such that for i ∈ [1..d], we have Pr[Zi = −1] = p and
Pr[Zi = 0] = 1 − p, and for i = [d + 1..n], we have Pr[Zi = +1] = p and
Pr[Zi = 0] = 1− p.

Let κ ≥ 0 be arbitrary for the moment. We note that for i ∈ [1..d],
we have E[exp(−κZi)] = (1 − p) · 1 + peκ = 1 + p(eκ − 1) and for i =
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[d + 1..n], analogously, E[exp(−κZi)] = (1 − p) · 1 + pe−κ = 1 − p(1 −
e−κ) (formally speaking, we compute here the moment-generating function
of a Bernoulli random variable). Using the independence of the Zi, these
elementary arguments, and the standard estimate 1+r ≤ exp(r), we compute

E[exp(−κ(g(y)− g(x))] = E

[
n∏
i=1

exp(−κZi)

]
=

n∏
i=1

E[exp(−κZi)] (3)

= (1 + p(eκ − 1))d(1− p(1− e−κ))n−d

≤ exp(dp(eκ − 1)) · exp(−(n− d)p(1− e−κ))
= exp(dpeκ + (n− d)pe−κ − pn).

Let now κ = ln(B). We consider first the case that d ≤ b, which implies
d ≤ b̃. We continue the above computation via

E[exp(−κ(g(y)− g(x))] ≤ exp(b̃pB + (n− b̃)p 1
B
− pn)

= exp

(
pn

(
B

B2 − 1
+

(
1− 1

B2 − 1

)
1

B
− 1

))
= exp

(
pn(−1 + 2

B
)
)
(4)

= exp

(
pn

(
− 1

pn
ln

(
α

1− δ

)))
= (1− δ) 1

α
.

This shows the second condition of Theorem 4 for κ = ln(B).
To show that the third condition of Theorem 4 is satisfied, assume that

g(x) ≥ b. We first note the following. Let x′ ∈ Ω with g(x′) = b and let y′ =
mut(x′). By Lemma 2, g(y) stochastically dominates g(y′). Consequently,
by Lemma 1,

E[exp(−κ(g(y)− b))] ≤ E[exp(−κ(g(y′)− b))]

= E[exp(−κ(g(y′)− g(x′))] ≤ (1− δ) 1

α
,

where the last estimate exploits that we have shown the second condition
also for g(x) = b. Hence with D = max{(1− δ) 1

α
, δ} we have also shown the

third condition of Theorem 4 (including the requirement D ≥ δ).
We finally show that the starting condition in Theorem 5 is satisfied.

Using the moment-generating function of a binomially distributed random
variable (which is nothing more than the arguments used in (3)), this follows
immediately from the following estimate, valid for a random search point x:

E[exp(−κg(x))] = (1
2

+ 1
2

exp(−κ))n ≤ exp(−κn/(B2 − 1))

≤ exp(−κb) ≤ D
δ

exp(−κb).
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The estimate above is easy to see apart from the first inequality, which re-
quires some elementary calculus. Recalling κ = ln(B), this inequality is
equivalent to 1

2
+ 1

2B
≤ B−1/(B2−1). The latter is satisfied for B = 2. Since

its left-hand side is decreasing in B, we now show that the right-hand side
is increasing in B and obtain that the inequality is satisfied for all B ≥ 2
(and we note that always B ≥ 2 since ε ≤ 1). By the monotonicity of the
logarithm, the function B 7→ B−1/(B2−1) is increasing (in R>0) if and only if
B 7→ ln(B−1/(B2−1)) = − lnB

B2−1
is increasing, which is easily seen to be true

by noting that its derivative B 7→ B2(2 ln(B)−1)+1
B(B2−1)2

is positive for B ≥ 2.

Consequently, the random initial population P (0) satisfies

λ∑
i=1

E[exp(−κg(P
(0)
i ))] ≤ λD exp(−κb)

δ

as required in Theorem 5. From the conclusion of Theorem 4, we obtain

E[T ] ≥ δ

2Dλ
exp(κ(b− a))− 1

2

=
1

2λ
min

{
δα

1− δ
, 1

}
exp

(
ln

(
2

1− 1
pn

ln( α
1−δ )

)
(b− a)

)
− 1

2
,

Pr[T < L] ≤ LλD
δ

exp(−κ(b− a))

= Lλmax

{
1− δ
δα

, 1

}
exp

(
− ln

(
2

1− 1
pn

ln( α
1−δ )

)
(b− a)

)
.

As a simple example for an application of this result, let us consider the
classic (µ, λ) EA (with uniform selection for variation, truncation selection
for inclusion into the next generation, and mutation rate p = 1

n
) with λ = 2µ

optimizing some function f : {0, 1}n → R, n = 500, with unique global
optimum. For simplicity, let us take as performance measure λT , that is,
the number of fitness evaluations in all iterations up to the one in which the
optimum was found. Since λ = 2µ, we have α = 2. By taking δ = 0.01, we
obtain a concrete lower bound of an expected number of more than 13 million
fitness evaluations until the optimum is found (regardless of µ and f).

Since Theorem 6 is slightly technical, we now formulate the following
corollary, which removes the variable δ without significantly weakening the
result. We note that the proof of this result applies Theorem 6 with a non-
constant δ, so we do not see how such a result could have been proven from
Lehre’s result [Leh10].

17



Corollary 7. Consider a PSM process as in Theorem 6. Let x∗ ∈ Ω be the
target of the process. For all x ∈ Ω, let g(x) := H(x, x∗) denote the Hamming
distance from the target. Assume that there is an α ≥ 1 such that

� ln(α) ≤ p(n− 1), which is equivalent to γ := 1− lnα
pn
≥ 1

n
;

� there is an a ≤ b := b(1 − 4
n
)n 1

4
γ2
−1
c such that for all populations

P ∈ P with min{g(Pi) | i ∈ [1..λ]} > a and for all i ∈ [1..λ], we have
E[R(i, P )] ≤ α.

Then the first time T := min{t ≥ 0 | ∃i ∈ [1..λ] : g(P
(t)
i ) ≤ a} that the

population contains an individual in distance a or less from x∗ satisfies

E[T ] ≥ pα

4λn
min

{
1,

2n

pα

}
exp

(
ln

(
2

γ

)
(b− a)

)
− 1

2
,

Pr[T < L] ≤ 2Lλn

pα
max

{
1,
pα

2n

}
exp

(
− ln

(
2

γ

)
(b− a)

)
.

In particular, if a ≤ (1 − ε)b for some constant ε > 0, then Tλ is super-
polynomial in n (in expectation and with high probability) when γ = ω(n−1/2)
and at least exponential when γ = Ω(1).

The main argument is employing Theorem 6 with the δ = p
2n

and com-
puting that this small δ has no significant influence on the exponential term
of the bounds.

Proof of Corollary 7. We apply Theorem 6 with δ = p
2n

. Since δ ≤ 1
2
, we

have 1 − δ ≥ exp(−2δ) and thus ln( α
1−δ ) = ln(α) − ln(1 − δ) ≤ ln(α) + 2δ.

Consequently, ε := 1− 1
pn

ln( α
1−δ ) defined as in Theorem 6 satisfies

ε ≥ 1− 1
pn

(ln(α) + 2δ) = 1− lnα
pn
− 1

n2 ≥ (1− lnα
pn

)(1− 1
n
) = γ(1− 1

n
),

where the second inequality uses our assumption lnα ≤ p(n− 1). Now

b̃ := n
1

4
ε2
− 1
≥ n

1
4

γ2(1− 1
n

)2
− 1
≥ n

1
4−γ2(1− 2

n
)

γ2(1− 2
n

)

= n
γ2(1− 2

n
)

4− γ2 + γ2 2
n

≥ n
γ2(1− 2

n
)

4− γ2 + (4− γ2) 2
n

= n
γ2(1− 2

n
)

(4− γ2)(1 + 2
n
)
≥ n

γ2(1− 2
n
)2

4− γ2

≥ (1− 4
n
)n

1
4
γ2
− 1

.
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With these estimates, b ≤ bb̃c, and the definition of δ, the bounds of
Theorem 6 become

E[T ] ≥ 1

2λ
min

{
δα

(1− δ)
, 1

}
exp

(
ln

(
2

1− 1
pn

ln( α
1−δ )

)
(b− a)

)
− 1

2

≥ pα

4λn
min

{
1,

2n

pα

}
exp

(
ln

(
2

γ

)
(b− a)

)
− 1

2
,

Pr[T < L] ≤ Lλmax

{
(1− δ)
δα

, 1

}
exp

(
− ln

(
2

1− 1
pn

ln( α
1−δ )

)
(b− a)

)

≤ 2Lλn

pα
max

{
1,
pα

2n

}
exp

(
− ln

(
2

γ

)
(b− a)

)
.

For the asymptotic statements, we observe first that pα
4n

min{1, 2n
pα
} =

min{pα
4n
, 1

2
} ≥ min{ α ln(α)

4n(n−1)
, 1

2
} since p ≥ ln(α)/(n− 1) due to our assumption

that ln(a) ≤ p(n− 1). Hence E[T ]λ is super-polynomial or at least exponen-
tial if and only if the term exp(ln(2/γ)(b− a)) is. So it suffices to regard the
latter term.

We note that b = Θ(nγ2) since γ is always at most one. By assump-
tion, (b − a) = Θ(b). Assume first that γ = ω(n−1/2). If γ ≤ n−1/4, then
exp(ln(2/γ)(b − a)) = (2/γ)b−a ≥ (2n1/4)ω(1), which is super-polynomial. If
γ ≥ n−1/4, then b−a = Ω(n1/2) and exp(ln(2/γ)(b−a)) ≥ 2b−a is again super-
polynomial. This shows the claimed super-polynomiality for γ = ω(n−1/2).

For γ = Ω(1), we have b−a = Θ(b) = Θ(n) and thus exp(ln(2/γ)(b−a)) ≥
exp(ln(2)(b− a)) = exp(Θ(n)) is exponential in n.

The asymptotic statements of the with-high-probability claims follow
analogously.

6 Standard Bit Mutation with Random Mu-

tation Rate

To analyze a uniform mixing hyper-heuristic which uses standard-bit muta-
tion with a mutation rate randomly chosen from a finite set of alternatives,
Dang and Lehre [DL16b, Theorem 2] extend Theorem 6 to such mutation
operators. They do not give a proof of their result, stating that it would be
similar to the proof of the result for classic standard bit mutation [Leh10,
Theorem 4]. Since we did not find this so obvious, we reprove this result now
with our methods. The non-asymptoticity of our result allows to extend it to
super-constant numbers of mutation rates and to mutation rates other than
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Θ(1/n). We note that such situations appear naturally with the heavy-tailed
mutation operator proposed in [DLMN17].

We show the following result, which extends Theorem 6.

Theorem 8. Let n ∈ N. Let m ∈ N, p1, . . . , pm ∈ [0, 1
2
], and q1, . . . , qm ∈

[0, 1] such that
∑m

i=1 qi = 1. Let mut be the mutation operator which, in each
application independently, chooses an I ∈ [1..m] with probability Pr[I = i] =
qi for all i ∈ [1..m] and then applies standard bit mutation with mutation
rate pI .

Consider a PSM process (see Section 4.1) with search space Ω = {0, 1}n,
using this mutation operator mut(·), and such that each initial individual is
uniformly distributed in Ω (not necessarily independently). Let x∗ ∈ Ω be the
target of the process. For all x ∈ Ω, let g(x) := H(x, x∗) denote the Hamming
distance from the target.

Let α ≥ 1, 0 < δ < 1, and B > 2 such that

m∑
i=1

qi exp(−pin(1− 2
B

)) ≤ (1− δ) 1

α
. (5)

Let a, b be integers such that 0 ≤ a < b ≤ b̃ := n 1
B2−1

.
Selection condition: Assume that for all populations P ∈ P with

min{g(Pi) | i ∈ [1..λ]} > a and all i ∈ [1..λ] with g(Pi) < b, we have
E[R(i, P )] ≤ α.

Then the first time T := min{t ≥ 0 | ∃i ∈ [1..λ] : g(P
(t)
i ) ≤ a} that the

population contains an individual in distance a or less from x∗ satisfies

E[T ] ≥ 1

2λ
min

{
δα

(1− δ)
, 1

}
exp (ln(B)(b− a))− 1

2
,

Pr[T < L] ≤ Lλmax

{
(1− δ)
δα

, 1

}
exp (− ln(B))(b− a)) .

It is clear that when using standard bit mutation with a random mutation
rate, then the drift – regardless of whether we just regard the fitness or an
exponential transformation of it – is a convex combination of the drift values
of each of the individual mutation operators. The reason why this argument
does not immediately extend Theorem 6 to random mutation rates is that
the mutation rate also occurs in the exponential term exp(pn(−1 + 2

B
)) in

equation (4). Apart from this difficulty, however, we can reuse large parts of
the proof of Theorem 6.

20



Proof of Theorem 8. Let κ := ln(B). Let x ∈ Ω, d := g(x), and y = mut(x).
Assuming d ≤ b, analogous to the proof of Theorem 6, we have

E[exp(−κ(g(y)− g(x))]

=
m∑
i=1

qi(1 + pi(e
κ − 1))d(1− pi(1− e−κ))n−d

≤
m∑
i=1

qi exp(pin(−1 + 2
B

)) ≤ (1− δ) 1

α
.

This shows the second condition of Theorem 4 and, with the same domination
argument as in the proof of Theorem 6 and D = max{(1− δ) 1

α
, δ}, also the

third condition of Theorem 4. The starting condition of Theorem 5 follows
as in the proof of Theorem 6 by noting that again B ≥ 2. Now Theorem 4
is applicable and as in the last few lines of the proof of Theorem 6 we show
our claim (note that now it suffices to simply replace κ by lnB and not by
the more complicated logarithmic term there).

Equation (5) defining the admissible values for B and thus for the starting
point b of the negative drift regime is not very convenient to work with in
general. We stated it nevertheless because in particular situations it might
be useful, e.g., to show an inapproximability result, that is, that a certain
algorithm cannot come closer to the optimum than by a certain margin in
subexponential time. The following weaker assumption is easier to work with
and should, in most cases, give satisfactory results as well.

Lemma 9. Assume that in the notation of Theorem 8, we have

m∑
i=1

qi exp(−pin) ≤ (1− γ)
1

α

for some 0 < γ < 1. Then (5) and B > 2 are satisfied for δ = 1
2
γ and

B = 2

(
1−

ln 1−γ/2
α

ln 1−γ
α

)−1

.

Proof. Let ε = 1− ln
1−γ/2
α

ln 1−γ
α

so that 2
B

= ε. We note that 0 < ε < 1 and thus

B > 2. By the concavity of the exponentiation with numbers smaller than
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one, we have

m∑
i=1

qi exp(−pin(1− 2
B

)) ≤

(
m∑
i=1

qi exp(−pin)

)1−ε

≤
(

1− γ
α

)1−ε

=

(
1− γ

2

)
1

α
.

If in an asymptotic setting γ and α can be taken as constants, then this
lemma and Theorem 8 show an exponential lower bound on the runtime.
This proves [DL16b, Theorem 2] and extends it to mutation rates that are
not necessarily Θ(1/n).

As an example where mutation rates other than Θ(1/n) occur, we now
regard the heavy-tailed mutation operator proposed in [DLMN17]. This op-
erator was shown to give a uniformly good performance of the (1 + 1) EA on
all jump functions, whereas each fixed mutation rate was seen to be good only
for a small range of jump sizes. The heavy-tailed operator and variations of
it have shown a good performance also in other works, e.g., [MB17, FQW18,
FGQW18b, FGQW18a, WQT18, ABD20a, ABD20b, AD20, YWDB20]. The
heavy-tailed mutation operator is nothing else than standard bit muta-
tion with a random mutation rate, chosen from a heavy-tailed distribution.
In [DLMN17], it was defined as follows. Let β > 1 be a constant. This will be
the only parameter of the mutation operator, however, one with not too much
importance, so [DLMN17] simply propose to take β = 1.5. In each invocation
of the mutation operator, a number α ∈ [1..N ], N := b1

2
nc, is chosen from

the power-law distribution with exponent β. Hence Pr[α = i] = (Cβ
N)−1i−β,

where Cβ
N is the normalizing constant Cβ

N :=
∑N

i=1 i
−β. Once α is determined,

standard bit mutation with mutation rate p = α
n

is employed.
For fixed N , the expression on the left-hand side in Lemma 9 is AN =∑N
i=1(Cβ

N)−1i−βe−i. This is a convex combination of e−i terms and by com-
paring the coefficients, we easily see that this expression is decreasing in N .
Computing A100 < 0.178, we see that for all n ≥ 200, a reproduction num-
ber of at most α ≤ 1

0.178
≈ 5.618 is small enough to lead to exponential

runtimes. This is higher than for standard bit mutation with mutation rate
p = 1

n
, where only α ≤ e ≈ 2.718 suffices to show exponential runtimes.

This observation fits to our general feeling that larger mutation rates can be
destructive, from which in particular non-elitist algorithms suffer.

For the limiting value A = limN→∞AN we note that A ≥
A− :=

∑100
i=1(Cβ

∞)−1i−β exp(−i) ≈ 0.164004 and A ≤ A+ :=∑100
i=1(Cβ

∞)−1i−β exp(−i) + exp(−101) ≈ 0.164004. Hence for n sufficiently
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large, even a value of α ≈ 1
0.164004

= 6.0974 admits exponential lower bounds
for runtimes.

Without going into details, and in particular without full proofs, we
note that these estimates are tight, and this for all mutation operators
of the type discussed in this section. Consider such a mutation operator
such that

∑m
i=1 qi exp(−pin) ≥ (1 + δ) 1

α
for some δ > 0. We take the

(µ, λ) EA optimizing OneMax as example. Assume that at some time we
have in our parent population k individuals on the highest non-empty fit-
ness level L. In expectation, each of them generates α = λ/µ offspring.
Each of these offspring is an exact copy of the parent with probability∑m

i=1 qi exp(−pin) ≥ (1 + δ) 1
α

. Consequently, in the next generation the
expected number of individuals on level L or higher (as long as level L is not
full) is (1 + δ)k. This is enough to show polynomial runtimes via the level-
based method [Leh11, DL16a, CDEL18, DK19] when λ is large enough. For
example, the computation just made shows that condition (G2) in [DK19,
Theorem 3.2] is satisfied.

We note that this tightness stems from the fact that the term∑m
i=1 qi exp(−pin) appears both in the drift computation here and, via the

probability to generate a copy of a parent, in the fitness level method for
populations. We do not think that this is a coincidence, but leave working
out the details to a future work.

7 Fitness Proportionate Selection

In this section, we apply our method to a mutation-only version of the sim-
ple genetic algorithm (simple GA). We note that this algorithm tradition-
ally is used with crossover [Gol89]. The mutation-only version has been
regarded in the runtime analysis community mostly because runtime anal-
yses for crossover-based algorithms are extremely difficult. While the first
runtime analysis for the mutation-only version [NOW09] appeared in 2009
and showed a near-exponential lower bound on OneMax for arbitrary poly-
nomially bounded population sizes, the first analysis of the crossover-based
version from 2012 [OW12b] could only show a significantly sub-exponential
lower bound (2n

c
for a constant c which is at most 1

80
) and this for population

sizes below n1/8. We note that the current best result [OW15] gives a similar
lower bound for population sizes below n1/4. Both works call these runtimes
exponential, and we acknowledge that this definition for exponential run-
times exists, but given the substantial difference between 2n

1/80
(which is less

than 3.5 for all n ≤ 1020) and exp(Θ(n)) we prefer to reserve the notion
“exponential” for the latter.
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The mutation-only version of the simple GA with population size µ ∈ N
is described in Algorithm 3. This algorithm starts with a population P (0)

of µ random individuals from {0, 1}n. In each iteration t = 1, 2, 3, . . . , it
computes from the previous population P (t−1) a new population P (t) by µ
times independently selecting an individual from P (t−1) via fitness propor-
tionate selection and mutating it via standard bit mutation with mutation
rate p = 1

n
.

Algorithm 3: The simple genetic algorithm (simple GA) with pop-
ulation size µ to maximize a function f : {0, 1}n → R≥0.

1 Initialize P (0) with µ individuals chosen independently and
uniformly at random from {0, 1}n;

2 for t = 1, 2, . . . do
3 for i ∈ [1..µ] do
4 Select x ∈ P (t−1) via fitness proportionate selection;

5 Generate P
(t)
i from x via standard bit mutation;

The precise known results for the performance of Algorithm 3 on the
OneMax benchmark are the following. [NOW09, Theorem 8] showed that

with µ ≤ poly(n) it needs with high probability more than 2n
1−O(1/ log logn)

iterations to find the optimum of the OneMax function or any search point
in Hamming distance at most 0.003n from it. This is only a subexponential
lower bound. In [Leh11, Corollary 13], building on the lower bound method
from [Leh10], a truly exponential lower bound is shown for the weaker task
of finding a search point in Hamming distance at most 0.029n from the
optimum, but only for a relatively large population size of µ ≥ n3 (and again
µ ≤ poly(n)).

We now extend this result to arbitrary µ, that is, we remove the conditions
µ ≥ n3 and µ ≤ poly(n). To obtain the best known constant 0.029 for how
close to the optimum the algorithm cannot go in subexponential time, we
have to compromise with the constants in the runtime, which consequently
are only of a theoretical interest. We therefore do not specify the base of the
exponential function or the leading constant. We note that this would have
been easily possible since we only use a simple additive Chernoff bound and
Corollary 7. We further note that Lehre [Leh11] also shows lower bounds
for a scaled version of fitness proportionate selection and a general Θ(1/n)
mutation rate. This would also be possible with our approach and would
again remove the conditions on λ, but we do not see that the additional
effort is justified here.
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Theorem 10. There is a T = exp(Ω(n)) such that the mutation-only simple
GA optimizing OneMax with any population size µ with probability 1 −
exp(−Ω(n)) does not find any solution x with OneMax(x) ≥ 0.971n within
T fitness evaluations.

The main difficulty in proving lower bounds for algorithms using fitness
proportionate selection is that the reproduction number is non-trivial to es-
timate. If all but one individual have a fitness of zero, then this individual
is selected µ times. Hence µ is the only general upper bound for the repro-
duction number. The previous works and ours overcome this difficulty by
arguing that the average fitness in the population cannot significantly drop
below the initial value of n/2, which immediately yields that an individual
with fitness k has a reproduction number of roughly at most k

n/2
.

While it is natural that the typical fitness of an individual should not
drop far below n/2, making this argument precise is not completely trivial.
In [NOW09, Lemma 6], it was informally argued that the situation with
fitness proportionate selection cannot be worse than with uniform selection.
For the latter situation a union bound over all lineages of individuals is
employed and a negative-drift analysis from [OW08, Section 3] is used for
a single lineage. The analysis in [Leh11, Lemma 9] builds on the (positive)
drift stemming from standard bit mutation when the fitness is below n/2 (this
argument needs a mutation rate of at least Ω(1/n)) and the independence of
the offspring (here the lower bound λ ≥ n3 is needed to admit the desired
Chernoff bound estimates).

Our proof relies on a natural domination argument which shows that at all
times all individuals are at least as good as random individuals in the sense
of stochastic domination in fitness. This allows to use a simple Chernoff
and union bound to argue that with high probability, for a long time all
individuals have a fitness of at least (1

2
− ε)n. The remainder of the proof is

an application of Corollary 7. Here Lehre’s lower bound [Leh10, Theorem 4]
would have been applicable as well with the main difference that there one
has to deal with the constant δ, which does not exist in Corollary 7.

We start by proving the key argument used in the proof of Theorem 10,
namely that at each time t for each individual i ∈ [1..µ] the fitness stochasti-
cally dominates (see Section 2) the one of a random individual. We denote by
Bin(n, p) the binomial distribution with parameters n and p. With a slight
abuse of notation, we write Bin(n, p) � Y to denote that Y stochastically
dominates X when X is binomially distributed with parameters n and p.

In this notation, our goal is to show that for all times t and all i ∈
[1..µ], we have Bin(n, 1

2
) � OneMax(P

(t)
i ). This statement appears easy

to believe since fitness proportionate selection, favoring better individuals at
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least slightly, should not be able to make the population worse. To be on the
safe side, we nevertheless prove this statement formally (after the following
remark).

We note that another statement that might be easy to believe is not
true, namely that the sum of the fitness values of a population at all times
t ≥ 1 dominates the sum of the fitness values of a random population (such

as the initial population), that is, that Bin(µn, 1
2
) �

∑µ
i=1 OneMax(P

(t)
i ).

As counter-example, let n be a multiple of 10 and let us consider the sim-
ple GA with µ = n after one iteration. Let Y =

∑µ
i=1 OneMax(P

(1)
i ).

We estimate the probability of the event Y ≤ 0.4nµ. With probability
at least 2−n we have OneMax(P

(0)
1 ) = 0.4n. For each i = 2, . . . , µ, we

have OneMax(P
(0)
i ) ≤ 0.5n with probability 0.5 by the symmetry of the

binomial distribution with parameter p = 0.5. These events are all in-
dependent, so with probability at least 2−n−µ+1, we have all of them. In
this case, for each i = 1, . . . , µ independently, with probability at least
0.4n/(0.4n+0.5n(µ−1)) ≥ 0.8/µ the i-th parent chosen in iteration 1 is P

(0)
1

and with probability at least (1− 1/n)n ≥ 1/4 the offspring generated from
it equals the parent. All these events together occur with probability at least
2−n−µ+1(0.8/µ)µ(1/4)µ ≥ (20n)−n, recall that µ = n, which shows Pr[Y ≤
0.04n2] ≥ (20n)−n. Now for X ∼ Bin(nµ, 1

2
), a simple Chernoff bound argu-

ment, e.g., via the additive Chernoff bound [Doe20d, Theorem 1.10.7], shows
that Pr[X ≤ 0.4nµ] ≤ exp(2(0.1nµ)2/nµ) = exp(−0.02nµ) = exp(−0.02n2).
Since this is (much) smaller than (20n)−n for n sufficiently large (n ≥ 180
suffices), we do not have X � Y .

Lemma 11. Consider a run of the simple GA (Algorithm 3) on the
OneMax benchmark. Then for each t ≥ 0 and each i ∈ [1..µ], we have

Bin(n, 1
2
) � OneMax(P

(t)
i ).

To prove this result, we use the following auxiliary result, which states
a number uniformly chosen from a collection of non-negative numbers is
stochastically dominated by a number chosen from the same collection via
an analogue of fitness proportionate selection. To define the latter formally,
let n1, . . . , nµ ∈ R≥0. For a random variable v we write v ∼ fp(n1, . . . , nµ) if

� in the case that ui > 0 for at least one i ∈ [1..µ], we have Pr[v = i] =
ni∑µ
j=1 nj

for all i ∈ [1..µ], and

� in the case that ui = 0 for all i ∈ [1..µ], we have Pr[v = i] = 1
µ

for all

i ∈ [1..µ].

Lemma 12. Let n1, . . . , nµ ∈ R≥0. Let u ∈ [1..µ] be uniformly chosen and
U = nu. Let v ∼ fp(n1, . . . , nµ) and V = nv. Then U � V .
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Proof. The claim follows immediately from the definition of fp(·) when ni = 0
for all i ∈ [1..µ]. Hence let us assume that there is at least one i ∈ [1..µ] such
that ni > 0. Let us for convenience assume that n1 ≤ n2 ≤ · · · ≤ nµ. Then
apparently

1

i

i∑
j=1

nj ≤
1

µ

µ∑
j=1

nj

and hence

Pr[V ≤ ni] =

∑i
j=1 nj∑µ
j=1 nj

≤ i

µ
= Pr[U ≤ ni]

for all i ∈ [1..µ]. This suffices to show stochastic domination since both U
and V only take the values n1, . . . , nµ.

We now show Lemma 11.

Proof of Lemma 11. We show the claim via induction over time. For the
random initial population P (0), the claim is obviously true. Assume that
in some iteration t + 1, the parent population P (t) satisfies that for all
i ∈ [1..µ], we have Bin(n, 1

2
) � OneMax(P

(t)
i ). We show that the same

is true for P (t+1). Since all individuals of P (t+1) are identically distributed,
we consider how one of them is generated. Let u ∈ [1..µ] be random and

let v ∼ fp(OneMax(P
(t)
1 ), . . . ,OneMax(P

(t)
µ )) be the parent individual

selected for the generation of the offspring. By our inductive assumption
and Lemma 12, we have Bin(n, 1

2
) � OneMax(P

(t)
u ) � OneMax(P

(t)
v ).

Let x be a uniformly random individual and y = P
(t)
v be the parent just

selected. Let x′ and y′ be the results of applying standard bit muta-
tion to x and y. Since OneMax(x) � OneMax(y), by Lemma 2 we
have OneMax(x′) � OneMax(y′). Now y′ is equal (in distribution) to
the offspring we just regard and x′ is (still) a random bit string. Hence
Bin(n, 1

2
) ∼ OneMax(x′) � OneMax(y′) as desired.

We are now ready to give the formal proof of Theorem 10.

Proof of Theorem 10. Consider a run of the simple GA with population
size µ. With the domination argument of Lemma 11, the fitness of a particu-
lar solution P

(t)
i dominates a sum of n independent uniform {0, 1}-valued ran-

dom variables. Hence using the additive Chernoff bound (see, e.g., [Doe20d,

Theorem 1.10.7]), we see that OneMax(P
(t)
i ) ≤ (1

2
− ε)n =: s with proba-

bility at most exp(−2ε2n) for all ε > 0.
To avoid working in conditional probability spaces, let us consider a mod-

ification of the simple GA. It is identical with the original algorithm up to
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the point when the fitness of an individual P
(t)
i for the first time goes below s.

From that time on, the algorithm selects the parents uniformly. Such an arti-
ficial continuation of a process from a time beyond the horizon of interest on
was, to the best of our knowledge, in the theory of evolutionary algorithms
first used in [DHK11]. For our modified simple GA, the reproduction rate
of any individual in a population with all elements having fitness less than
n− a, a ≤ n− s, is at most n−a

s
=: α. Hence we can apply Corollary 7 with

this α. Taking, similar as in [Leh11], ε = 0.0001 and a = 0.029, we can work
with α = 1−a

0.5−ε ≈ 1.942388 and thus γ ≈ 0.336082. For n sufficiently large,
this allows to use b = d0.02905ne.

For the first time T ′ that the modified algorithm finds a solution with
fitness at least n− a we thus obtain

Pr[T ′ < L] =
2Lµn

pα
max

{
1,
pα

2n

}
exp

(
− ln

(
2

γ

)
(b− a)

)
= Lµ exp(−Ω(n))

for all L. Since with probability at least 1 − Lµ exp(−2ε2n) the modified
and the true algorithm do not differ in the first L iterations (union bound
over all individuals generated in this time interval), we have Pr[T < L] ≤
Lµ exp(−Ω(n)) +Lµ exp(−Ω(n)) = Lµ exp(−Ω(n)). With L = exp(Θ(n))/µ
suitably chosen, we have shown the claim (note that each iteration takes µ
fitness evaluations and note further that we can assume µ = exp(O(n)) suf-
ficiently small as otherwise the evaluation of the initial search points already
proves the claim).

While an exponential runtime on OneMax is not an exciting perfor-
mance, for the sake of completeness we note that the runtime of the simple
GA on OneMax is not worse than exponential. A runtime of exp(O(n))
can be shown with the methods of [Doe20b] (with some adaptations). The
key observation is that, similar to property (A) in [Doe20b, Theorem 3], if
at some time t the population contains an individual x with some fitness at
least n/3, then in the next iteration this individual is chosen as parent at
least once with at least constant probability and, conditional on this, with
probability Ω( 1

n
) a particular better Hamming neighbor of x is generated

from x.

8 Conclusion and Outlook

In this work, we have proven two technical tools which might ease future
lower bound proofs in discrete evolutionary optimization. The negative mul-
tiplicative drift theorem has the potential to replace the more technical neg-
ative drift theorems used so far in different contexts. Our strengthening
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and simplification of the negative drift in populations method should help
increasing our not very well developed understanding of population-based
algorithms in the future. Clearly, it is restricted to mutation-based algo-
rithms – providing such a tool for crossover-based algorithms and extending
our understanding how to prove lower bounds for these beyond the few re-
sults [DT09, OW15, SW19, Doe20e] would be a great progress.
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