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Abstract  The scheduling problem in manufacturing companies with high rework rates 

remains a complex research area to date. This paper presents a new approach for 

manufacturing scheduling that combines a predictive schedule with a proactive 

multicriteria decision-making method based on smart batches and their quality prediction 

capability. Each batch embeds an algorithm that allows it to predict its quality out of the 

next workstation. As soon as a batch determines that its process is too hazardous, a 

collaborative rescheduling decision, using the analytic hierarchy process (AHP), is 

initiated with its peer. This article details the proposed approach along with the AHP 

structure and presents the considered decision problem. A simulation model inspired by 

a lacquering-robot case study is described to validate this proposition. Then, the results 

of different scenarios are presented and discussed, highlighting the impact of social 

myopia on smart batches. 

Keywords Proactive decision-making, Analytic hierarchy process (AHP), Multicriteria 

decision method, Quality prediction, Smart products, Rework. 

1. Introduction 

Scheduling problems have been addressed by some of the most important studies in 

manufacturing control management. Since 1960, many exact and heuristic approaches have 

been proposed in the literature to achieve the best outcomes, such as maximum profit or lowest 

cost (Hanssmann and Hess, 1960; Held and Karp, 1962). Classical techniques that determine 

globally optimized schedules are not very useful when facing disturbances, which is notably 

the case for companies suffering from high rework1 rates. This can be explained by the fact 

that as soon as a need for rework appears, the global schedule becomes obsolete because of the 

lack of agility of centralized/predictive solutions. To address this issue, two main paths could 

be explored: 1) robust scheduling methods and 2) distributed production scheduling methods. 

Motivated by the framework of Industry 4.0, the current focus is mainly on the second path. In 

the existing requirement for dynamic decision, the distribution of decisional ability to enable 

the system’s self-adaptation to changing situations is seen as a great improvement vector for 

real-time problem-solving and adaptability enhancement (Mezgebe et al., 2019). However, 

such systems suffer from the phenomenon of social myopia, where decisional entities in 

distributed reactive decision-making cannot balance their local objectives with the system’s 

 
1See the works of Jamal et al. (2004) and Wee and Widyadana (2013) to define and clarify the meaning of rework.  



 

2 

 

global objective (Rey et al., 2014). Based on the need for distributed decision processes and 

their inherent risk of social myopia, we identified a holonic architecture-based elaboration of 

the hybrid control system as the most promising approach owing to its ability to couple 

predictive and reactive approaches to achieve global optimization while limiting myopia 

(Cardin et al., 2017; Zimmermann et al., 2017). 

In this paper, the scheduling problem of a lacquering-robot-based work center in a wood 

processing company, Acta Mobilier2, is considered. To be profitable in terms of both material 

consumption and the use of available time, the production consists of large batches. On the 

shop floor level, after lacquering, batches are directed to an oven for 7 h of drying. However, 

any non-quality work done during lacquering is only visible after the product is dried. Hence, 

if a poor-quality batch appears, it is only detected when leaving the oven 7 h after completion 

of the lacquering. Consequently, because it is very likely that the entire batch must be reworked, 

its process time is doubled and lengthened by another lacquering and drying process. Therefore, 

in previous studies, a prediction model of non-quality production risk was developed based on 

the use of a neural network (NN) (Noyel et al., 2016). Starting from this NN and its subsequent 

improvements (Thomas et al., 2018), we propose to use it as a means of triggering and 

reordering as well as for criterion selection involved in the analytic hierarchy process (AHP) 

decision-making process. 

Further, a hybrid control system is proposed in this paper, coupling predictive scheduling and 

a proactive multicriteria decision method focused, in particular, on non-quality production risk. 

This is an extension of the work of Zimmermann et al. (2018) with significant improvements 

in problem modeling and including the presentation of a statistical study evaluating social 

myopia (number of active/smart batches in the decision-making process). This evaluation 

approach can be used to identify the optimal number of smart batches that provides a good 

trade-off between algorithm performance and results quality. 

The rest of the paper is organized as follows: Section 2 presents research related to the 

contribution of hybrid manufacturing control systems to industrial real-time scheduling issues. 

Section 3 explains the proposed hybrid manufacturing control system coupling a predictive 

schedule with a proactive decisional process-based smart batch using the AHP method. Section 

4 presents an industrial application by considering the proposed approach for the case study of 

a lacquering robot in the Acta Mobilier company. A simulation model is presented to validate 

the possible advantages of the proposed method. Experiments comparing the AHP-based 

decision-making process with actual decisional rule practices in the company are described. 

Finally, the impact of myopia on smart batch analysis is evaluated. The last section presents 

the conclusions and future prospects. 

 
2Acta Mobilier is a French company in the wood industry. 



 

2. Related work 

Today’s globally volatile market is compelling manufacturing industries to adapt and react to 

different factors, such as requirements for highly flexible and value-added activities, high-

quality products, or shorter product life cycles. These new stakes have made centralized 

predictive schedulers obsolete, aggravating the flow disturbances due to non-quality in 

production processes. To meet these new requirements of high quality and flexibility, 

companies can either invest in state-of-the-art technologies and production tools or adapt their 

control architectures. Concerning the first option, we can consider the NN-based setup to limit 

non-quality as proposed by Noyel et al. (2016). The model depends on a multitude of both 

internal and external factors, such as actual workstation setups, production range of the next 

product to be processed, and environmental factors such as air humidity or temperature. 

However, the model proved to be insufficient because the considered system was working at 

technological limits. The second option, which could be combined with the first one, would be 

to try to predict the impact of non-quality products on production processes. For example, 

considering the same case study, Noyel et al. (2016) proposed a model based on a NN with the 

capability to predict the risk of non-quality for a particular product at a particular time. Using 

this capability, dynamical rescheduling can be performed to prevent non-quality, independently 

of technological limits. 

This second option is supported by recent developments concerning hybrid control 

architectures. Most recent studies (such as Pach et al., 2014; Barbosa et al., 2015; Indriago et 

al., 2016; Quintanilla et al., 2016; Jimenez J. F. et al., 2017; Zimmermann et al., 2017; 

Valckenaers P., 2018; Mezgebe et al, 2019) have already proven the adequacy of such 

architectures to address resilience and adaptability issues for production flows. In their work, 

Zimmermann et al. (2017) proposed a hybrid architecture based on the product driven system 

concept, where an instance of the quality prediction NN model would be embedded on each 

product or batch, assuming that an optimized schedule was provided to workstations. This 

approach combines both global and local scheduling, the global one being established with no 

consideration for any rework problem and local scheduling being established for every work 

center, which follows its own optimization and is able to recalculate itself depending on the 

situation. Notably, as variant external factors such as atmospheric pressure or air humidity had 

an important impact on production in the studied case, products were able to decide to alter 

their schedule. Another characteristic of the architecture proposed by Zimmermann et al. 

(2017) is that products in the workstation queue must normally be processed following the 

optimal global schedule. Still, to prevent non-quality, local rescheduling might be performed 

under peculiar conditions by the products, and thanks to the risk prediction process. 

To model and implement this hybrid architecture, many collective decision-making approaches 

executed in multi-agent systems have been introduced. Some of them are inspired by social 

attitudes such as consensus (Mezgebe et al., 2019) and majority voting (Pitt et al., 2006), or 

from the domain of game theory (Parsons and Wooldridge, 2002). Others seek to imitate 

biological behaviors such as swarm robotics (Schmickl et al., 2009), bee swarms (Teodorovic, 

2003), and ant colonies (Xiang and Lee, 2008). In addition, the use of the AHP offers 

advantages to decision-makers for prioritization. The AHP relies on the establishment of a 

hierarchical structure to deal with complex decision-making and is able to consider all the 

criteria appearing in the decision-making process. The method is typically structured with 
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several levels; some are mandatory: the global objective (level 0) and alternatives (last level). 

Between these two ends, there is a variable number of potential levels (named sub-criteria). 

The AHP method uses pairwise comparisons of same-level elements whose relative importance 

is evaluated at a higher level; a value scale is used to express the degree of importance of one 

element compared to another. 

The adequacy of the AHP method for solving complex business decisions has already been 

well established in previous studies (Cheng et al., 2002; Vaidya and Kumar, 2006; Saaty, 2008; 

Liu and Hai, 2005; Bian et al., 2017; Moslem et al., 2019). Büyüközkan et al. (2021) stated that 

the AHP (Saaty, 1980) is the most utilized multicriteria decision-making method. Likewise, 

the AHP has been used for scheduling problems in the last two decades. Notably, Momoh and 

Zhu (2003) proposed an application of the AHP and analytic network process to prioritize, 

schedule, and optimize power unit price allocations. Later, Chan et al. (2005) coupled an AHP 

to a genetic algorithm to solve the production–distribution problem, while Azadeh et al. (2008) 

combined the AHP to data envelopment analysis in computer simulations to find optimum 

alternatives with multiple quantitative and qualitative variants. Moreover, the works of Louati 

et al. (2012) on people flow control based on isoarchic architecture with decision-making using 

multicriteria analysis and Kubler et al. (2016) regarding applications of fuzzy AHP can also be 

considered. From these works, it can be concluded that the AHP is one of the most used 

methodologies for complex decision-making considering both qualitative and quantitative 

variables. Nonetheless, designing control systems using the AHP to avoid and/or minimize the 

impact of reworks in real manufacturing processes remains an underexplored research area to 

date. 

3. Proposition 

The proposed hybrid control system was designed with the aim of reducing the non-quality 

while limiting the consumption of raw materials. To ensure this objective, Zimmermann et al. 

(2018) proposed a hybrid manufacturing system that combines a smart batches-based 

distributed control system and centralized schedule optimization. Consequently, the proposal 

here is to embed the batches (minimal product agent entities) with their own instance of the 

NN quality prediction model, to trigger it before setting up a batch on the workstation. If the 

risk of poor quality “” is weak (under a certain threshold), then the batches are processed 

following the forecasted global schedule (Fig. 1). Otherwise, if the NN determines that the risk 

exceeds the accepted threshold for the next batch to be produced, then the system enters a 

collective decision with the other batches queued at the workstation (Fig. 2). The purpose of 

this negotiation is to determine the most suitable batch to be produced by considering the 

different criteria of the workstation. 
 



 

 
Fig. 1. Flow chart for poor-quality risk evaluation, inspired from Zimmermann et al. (2018) 

 
(a)                                                                          and (b) 

Fig. 2. The rescheduling process: (a) set of batches, (b) flow chart for the decision-making, inspired from 

Zimmermann et al. (2018) 

 

Accordingly, five criteria were selected in this proposition: 1) risk of non-quality, determined 

by the developed NN, 2) critical ratio (depending on customer due date), 3) balance between 

different product family flows, 4) adjustment times induced by the batch change, and 4) 

nervousness of a system (which is represented by the number of modifications made compared 

to original planning). The last criterion aims to limit logistical disruptions at the workstation. 

(i.e., the supply of lacquer, panels, or any other components necessary for machine operations). 
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In the proposed AHP-based collaborative decision-making process, batches can negotiate to 

decide which one is going to be processed next. During the implementation of the AHP (Saaty, 

1987; Shameen et al. 2020), each batch is compared with others in the queue, criterion by 

criterion, to build comparison matrices. Fig. 3 presents the 3-layer structure of the AHP used 

in this study. Level 0 represents the objective of the problem, consisting of the selection of the 

best batch (present in the queue) to be produced. Level 1 includes the five criteria previously 

described, which influence the selection in Level 0. Level 2 compares the different alternatives 

(five batches) of the problem, as it occurs: the batches present in the queue. However, the 

number of alternatives/batches to be tested can have an impact on the overall performance of 

the process. This problem will be studied in Section 4 (myopia). Four steps in the process must 

be followed. First, the criteria and alternatives matrices must be created. Then, the criteria 

weight vector should be computed, followed by the calculation of the alternatives weight 

vector. Finally, an inconsistency problem must be considered. These steps are described in the 

following sections. 

 
Fig. 3. The AHP model structure of the studied case  

Step 1:  Relative importance of the criteria and their indicators 

Table 1 lists the comparison scales used in the AHP process. This comparison between two 

batches i and j is done level by level, starting with the criteria level, then with the alternatives 

level. We describe the transposition of this comparison scale to the five criteria mentioned 

below. 

 

Table 1. Values of the decision criteria 

Numerical value Interpretation 



 

1 𝑖 and 𝑗 have equal importance 

3 𝑖 has a moderate importance compared to that of 𝑗 

5 𝑖 has a strong importance compared to that of 𝑗 

7 𝑖 has a very strong importance compared to that of 𝑗 

9 𝑖 has an extreme importance compared to that of 𝑗 

Due-date criterion: 

In the case of companies delivering weekly customers, switching two batches with the same 

due date has no significant impact on production schedule and performance. Considering that, 

let α be the threshold set here to 4 h (for a semi-8-h work shift). Let 𝐷𝐷(𝑘) and 𝐷𝐷(𝑙) be the 

due dates of batches 𝑘 and 𝑙. 
 

Table 2. Values of the alternatives regarding criterion Due date 

Value of 𝑏𝑘𝑙
(𝑖)

 Interpretation 

1 𝐷𝐷(𝑘) ∈ ]𝐷𝐷(𝑙) − 𝛼; 𝐷𝐷(𝑙) + 𝛼[ 
3 𝐷𝐷(𝑘) ∈ ]𝐷𝐷(𝑙) − 2𝛼; 𝐷𝐷(𝑙) − 𝛼] 
5 𝐷𝐷(𝑘) ∈ ]𝐷𝐷(𝑙) − 3𝛼; 𝐷𝐷(𝑙) − 2𝛼] 
7 𝐷𝐷(𝑘) ∈ ]𝐷𝐷(𝑙) − 4𝛼; 𝐷𝐷(𝑙) − 3𝛼] 
9 𝐷𝐷(𝑘) ∈ ]−∞; 0, 𝐷𝐷(𝑙) − 4𝛼] 

Balance of product flows: 

For companies with several product flows, furnisher-workstations must provide work 

alternatively to different customer workstations. As avoiding starvation is one of the schedule 

objectives, any schedule change might have an important impact on production flows, if done 

carelessly. In the studied case, only two production flows were considered: shiny and matt. 

Hence, the following formula was established: 

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑘) =
𝑙𝑜𝑎𝑑_𝑠ℎ𝑖𝑛𝑦±𝑙𝑜𝑎𝑑_𝑘

𝑙𝑜𝑎𝑑_𝑠ℎ𝑖𝑛𝑦+𝑙𝑜𝑎𝑑_𝑚𝑎𝑡𝑡+|𝑙𝑜𝑎𝑑_𝑘|
 (3) 

where 𝑙𝑜𝑎𝑑_𝑠ℎ𝑖𝑛𝑦 and 𝑙𝑜𝑎𝑑_𝑚𝑎𝑡𝑡 represent the shiny and matt workloads at the computation 

time. Then, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑘) is the ratio of the shiny workload plus or minus (plus if batch 𝑘 is 

shiny, minus if matt) the impact of batch 𝑘 on the total load, and β is an objective value set at 

50% (0.5). We then express the deviation from the target as follows: 

 𝑔𝑎𝑝(𝑘) = |𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑘) − 𝛽| (4) 

Then, we can estimate which batch, k or l, generates the most important impact on the global 

workload by calculating 

 𝐷𝑅 =
𝑔𝑎𝑝(𝑘)+𝜀

𝑔𝑎𝑝(𝑙)+𝜀
 (5) 

with ε being a small value. Let also 𝜇 be the threshold set to 10%. 

 

Table 3. Values of the alternatives regarding criterion Balance of product flows 

Value of 𝑏𝑘𝑙
(𝑖)

 Interpretation 

1 𝐷𝑅 ∈ ]1 − 𝜇; 1 + 𝜇[ 
3 𝐷𝑅 ∈ ]1 − 2𝜇; 1 − 𝜇] 
5 𝐷𝑅 ∈ ]1 − 3𝜇; 1 − 2𝜇] 
7 𝐷𝑅 ∈ ]1 − 4𝜇; 1 − 3𝜇] 
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9 𝐷𝑅 ∈ ]0; 1 − 4𝜇] 

Nervousness: 

Let 𝑆𝑤𝑖𝑡𝑐ℎ(𝑘) be the number of position switching made with respect to the original schedule. 

Each time two batches are swapped, a switching counter is incremented by 1: 𝑆𝑤𝑖𝑡𝑐ℎ(𝑘)+=
1, with 𝑆𝑤𝑖𝑡𝑐ℎ(𝑘) ∈ [0; 𝑛] and 𝑛 equal to the number of batches (5). Let δ be a threshold value 

set to 1. 

 

Table 4. Values of the alternatives regarding criterion Nervousness 

Value of 𝑏𝑘𝑙
(𝑖)

 Interpretation 

1 𝑆𝑤𝑖𝑡𝑐ℎ(𝑘) = 𝑆𝑤𝑖𝑡𝑐ℎ(𝑙) 

3 𝑆𝑤𝑖𝑡𝑐ℎ(𝑘) ∈ ]𝑆𝑤𝑖𝑡𝑐ℎ(𝑙) − 𝛿; 𝑆𝑤𝑖𝑡𝑐ℎ(𝑙)] 
5 𝑆𝑤𝑖𝑡𝑐ℎ(𝑘) ∈ ]𝑆𝑤𝑖𝑡𝑐ℎ(𝑙) − 2𝛿; 𝑆𝑤𝑖𝑡𝑐ℎ(𝑙) − 𝛿] 
7 𝑆𝑤𝑖𝑡𝑐ℎ(𝑘) ∈ ]𝑆𝑤𝑖𝑡𝑐ℎ(𝑙) − 3𝛿; 𝑆𝑤𝑖𝑡𝑐ℎ(𝑙) − 2𝛿] 
9 𝑆𝑤𝑖𝑡𝑐ℎ(𝑘) ∈ ]0; 𝑆𝑤𝑖𝑡𝑐ℎ(𝑙) − 3𝛿] 

Non-quality risk: 

Let 𝑅𝑖𝑠𝑘(𝑘) be the value computed by the NN, and φ be a threshold set up to 10%. 𝑅𝑖𝑠𝑘 

represents a computation made with an NN using external parameters (such as atmospheric 

pressure and humidity) and internal parameters (such as color or thickness of the batch) to 

determine the probability of a batch having a quality defect during processing (Noyel et al., 

2016). 

 

Table 5. Values of the alternatives with respect to criterion Non-quality risk 

Value of 𝑏𝑘𝑙
(𝑖)

 Interpretation 

1 𝑅𝑖𝑠𝑘(𝑘) = 𝑅𝑖𝑠𝑘(𝑙) 

3 𝑅𝑖𝑠𝑘(𝑘) ∈ ]𝑅𝑖𝑠𝑘(𝑙) − 𝜑; 𝑅𝑖𝑠𝑘(𝑙)] 
5 𝑅𝑖𝑠𝑘(𝑘) ∈ ]𝑅𝑖𝑠𝑘(𝑙) − 2𝜑; 𝑅𝑖𝑠𝑘(𝑙) − 𝜑] 
7 𝑅𝑖𝑠𝑘(𝑘) ∈ ]𝑅𝑖𝑠𝑘(𝑙) − 3𝜑; 𝑅𝑖𝑠𝑘(𝑙) − 2𝜑] 
9 𝑅𝑖𝑠𝑘(𝑘) ∈ ]0; 𝑅𝑖𝑠𝑘(𝑙) − 3𝜑] 

Setup time: 

In this study, the workstation was considered as disposing of two types of setups: one for shiny 

products and one for matt ones. Any batch change entails a setup time. However, we must 

differentiate same-type batch changes (𝑏𝑘𝑙
(𝑖) = 1) and different-type batch changes (𝑏𝑘𝑙

(𝑖) =
 5). In the first case, we can consider the setup time to be very low compared to the setup time 

in the second case. In this way, 𝑝𝑟𝑜𝑔(𝑘) is the setup of batch 𝑘 and 𝑙𝑎𝑠𝑡_𝑝𝑟𝑜𝑔 is the setup of 

the last batch that has been processed on the workstation. 

 



 

Table 6. Values of the alternatives regarding criterion Setup time 

Value of 𝑏𝑘𝑙
(𝑖)

 Interpretation 

1 𝑝𝑟𝑜𝑔(𝑘) = 𝑝𝑟𝑜𝑔(𝑙) 

5 𝑝𝑟𝑜𝑔(𝑘) ≠ 𝑝𝑟𝑜𝑔(𝑙) and 𝑝𝑟𝑜𝑔(𝑘) = 𝑙𝑎𝑠𝑡_𝑝𝑟𝑜𝑔 

 

Step 2: Computing the vector of weights of criteria: 

Let A be the pairwise comparison matrix of criteria. A satisfies the following constraint: 

 𝑎𝑖𝑗 . 𝑎𝑗𝑖 = 1  𝑎𝑛𝑑 𝑎𝑖𝑖 = 1 (6) 

The values of 𝑎𝑖𝑗 are chosen among the possibilities given in Table 1, according to the 

interpretation of experts in the work. In this study, all the criteria were considered equivalent 

to each other, and therefore all 𝑎𝑖𝑗 values were set to 1. The study led in the company so far 

did not allow sufficient work expertise to determine which criterion should be prioritized. 

However, the model could easily be improved as soon as a work expert gives his or her 

interpretation. 

Once the matrix is built, it is possible to derive from A the normalized pairwise comparison 

matrix Anorm by making equal to 1 the sum of the entries on each column. Finally, the criteria 

weight vector w (that is an m-dimensional column vector) is built by averaging the entries in 

each row of Anorm. 

Step 3: Computing the vector of weights of alternatives: 

The same work must now be done to model the links between the different alternatives and 

each of the criteria. In addition, for each criterion, an 𝑛 × 𝑛 pairwise comparison matrix 𝐵(𝑖) 

should be established and must have the same properties as A: 

 𝑏(𝑖)
𝑘𝑙 . 𝑏(𝑖)

𝑙𝑘 = 1   and   𝑏(𝑖)
𝑘𝑘 = 1 (7) 

The AHP applies to each matrix 𝐵(𝑖) the same procedure as for the pairwise comparison matrix 

A, that is, it divides each entry by the sum of the entries in the same column and then averages 

the entries in each row, thus obtaining the score vectors 𝑠(𝑗), j=1,..., m. The vector contains the 

scores of the evaluated options with respect to the jth criterion. Once the weight vector w and 

score matrix S are computed, the AHP obtains a vector v of global scores by multiplying S and 

w. 

Step 4: Inconsistency problem: 

As explained previously, the 𝑎𝑖𝑗 values of matrix A were set to 1. In this special case, the 

consistency problem of matrix A is irrelevant. However, the matrices 𝐵(𝑖) comparing the 

alternatives/batches will be different depending on the characteristics of the evaluated batches. 

Therefore, consistency must be evaluated on the score matrix 𝑆 for each run of the process. To 

do so, the CI is calculated as follows: 

 𝐶𝐼 =
𝑥−𝑛

𝑛−1
 (8) 

where n is the number of comparisons and 𝑥 is the average of the values of the vector whose 

𝑖th element is the ratio of the 𝑖th value of 𝐵(𝑖) ∙ 𝑆 to the corresponding value of 𝑆 is necessary. 

Thus, the consistency ratio is 

 𝐶𝑅 =
𝐶𝐼

𝑅𝐼
 (9) 
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where RI is a random evaluation value (Saaty, 1987). If the CR is below 0.1, the inconsistency 

is acceptable, and the best pretender is evaluated and selected. Otherwise, the original batch 

will be kept according to the optimization made by the global schedule. In fact, if the CR is 

above 0.1, the risk of inconsistency is beyond the acceptable threshold, generating small 

confidence in the choice of the new batch to process. In this case, it is preferred to keep 

confidence in the original schedule rather than risk a hazardous choice. Normally, if the CR is 

above 0.1, an interaction with the decision maker is required to revise the judgment. Until now, 

this assumption remains a proof of concept, as the method is not very elaborated. However, the 

objective is to have a fully automated process without the need for human contribution during 

execution. However, it seems possible to automatize the process of matrix correction as soon 

as CR > 0.1. 

The pseudocode of the AHP process is derived from that proposed by Saaty (1987). The main 

difference with the standard AHP lies in the determination of the matrices 𝐵(𝑖) to compare the 

alternatives; each run of the process requires the elaboration of new pairwise comparison 
matrices, as each batch has its own surface, color, due date, and setup. In addition, for each 

computation, the environment is different: workflows and non-quality risks are continuously 

evolving, depending on external or internal parameters. 

 

Algorithm of the AHP: 

 
Inputs: 

n: number of criteria and number of alternatives 

A: 𝑛 × 𝑛 criteria matrix 

Outputs: 

Return a number between 1 and n corresponding to the selected batch 

 

𝑆 = 𝑛 × 𝑛 //score matrix 

𝐵(𝑖) = 𝑛 × 𝑛 //pairwise comparison matrix for criterion i. 

𝑤 = 1 × 𝑛 //weight vector 

 

�̅� = (
𝑎11̅̅ ̅̅ … 𝑎𝑛𝑛̅̅ ̅̅ ̅

⋮ ⋱ ⋮
𝑎𝑛1̅̅ ̅̅̅ ⋯ 𝑎𝑛𝑛̅̅ ̅̅ ̅

)  𝑤𝑖𝑡ℎ 𝑎𝑖𝑗 =
𝑎𝑖𝑗

∑ 𝑎𝑙𝑗
𝑛
𝑙=1

 

 

𝑤𝑗 =
∑ 𝑎𝑗𝑙

𝑛
𝑙=1

𝑛
 

 

For 𝑖: = 1 to 𝑛  

𝐵(𝑖) = (
1 … 1
⋮ ⋱ ⋮
1 ⋯ 1

)            

For 𝑗: = 1 to 𝑛 

For 𝑘: = 1 to 𝑛 



 

𝑏(𝑖)
𝑗𝑘 = 𝑐𝑜𝑚𝑝𝑎𝑟𝑒_𝐴𝐻𝑃( 𝑖, 𝑗, 𝑘)   // is elaborated dynamically. 

𝑏(𝑖)
𝑘𝑗 =

1

𝑏(𝑖)
𝑗𝑘

 

End for 

End for 

𝑏(𝑖)
𝑗𝑘 =

𝑏(𝑖)
𝑗𝑘

∑ 𝑏(𝑖)
𝑙𝑘

𝑛
𝑙=1

 

𝑠𝑗𝑘 =
∑ 𝑏𝑘𝑙

𝑛
𝑙=1

𝑛
 

 

End for 

If  
𝐶𝐼

𝑅𝐼
< 0.1 then // (with 𝐼𝑅 =1.12 for n=5) 

𝑣 = 𝑆𝑤 

Return 𝑚𝑎𝑥( 𝑣𝑖) 

Else 

Return 1 // the schedule is not altered and the first batch is chosen 

End if 

End 

4. Case study: Industrial applicability 

4.1 Description of the industrial context 

As highlighted in Section 3, the proposition deals with the specific case of a lacquering robot 

in the Acta Mobilier company. This company suffers from a high rework rate, above 30%, 

owing to technological limitations and the high degree of product quality expectations from 

customers. The lacquering robot feeds two separate product flows: 

• “Matt” products, directly delivered to the shipment station. 

• “Shiny” (or “high gloss” in Fig. 4) products, which are processed by the polishing 

machine before joining the other product type in the shipping station (Fig. 4). 

 

Fig. 4.: Flow chart of different product flows for the lacquering robot in Acta Mobilier (Zimmermann et al., 

2018) 

4.2 Validation approach 

The Intelligent Manufacturing Systems–Network of Excellence (IMS-NoE) has shown the 

relevance of simulation-based benchmarking in estimating the efficiency of plant-wide control 

and organizational issues before their practical deployment into complex manufacturing 

systems (Cavalieri et al., 2003; Valckenaers et al., 2006). For this reason, a Python-based 

simulation model was developed to represent the lacquering workshop and its queue. In the 

simulation, the queue was set to five batches. These batches participate in the decision-making 
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process for the best pretender. This has been modeled by five entering queues, numbered from 

q1 to q5, with the capacity to process one single batch. These five queues can collaborate in the 

case of non-quality risk detection, as presented in Section 3. Every time a batch is completed 

on the workstation, a quality check is performed. If the predicted quality satisfies the 

acceptability range, it leaves the queue, and a new product enters. If not, it puts itself back into 

the queue. 

The sequence for product entry in the queue is determined by the optimal predictive schedule. 

In the normal state, queue q5 is supposed to be processed next. Fig. 5 illustrates this scenario: 

batches B1 to B5 are sorted according to the predictive global schedule and without poor-quality 

detection. B1 is the first batch to be processed if no poor-quality risk is detected. Each time a 

batch enters a machine, the others move to the next queue. Then, according to the product 

information, the robot realizes the corresponding program, and the batch leaves the machine 

with the remaining time reduced by drying time (7 h). Note that the processing time is 

proportional to the global panel surface in the batch. When the batch exits the system, a random 

number is generated to determine whether it is defective. If defective, it returns to the input 

queue to be reworked. Otherwise, it exits the machine and goes to one of the two possible 

downstream queues: high gloss or matt (Fig. 4). 

 

Fig. 5. Flow in a stable environment (Zimmermann et al., 2018) 

Before entering the lacquering robot, batch B1 in q5 launches the computation of its embedded 

NN to determine its non-quality risk. If the risk is higher than the threshold of 25%, as 

established in Section 3, the AHP-based application is recalled, addressing the procedure for 

selecting the best replacement. The algorithm presented in Section 3 is then launched to 

determine which batch best corresponds to the five optimization criteria. Accordingly, Fig. 6 

shows a scenario where the NN of B1 has evaluated a very heavy risk of potential non-quality 

 



 

for the initial batch entry order in the decisional-based AHP process and, as a result, 

rescheduling puts B3 in the first position to achieve better overall quality. 

 

Fig. 6. Flow in case of non-quality risk detection (Zimmermann et al., 2018) 

The variables of this new model are listed below, and Table 7 presents a summary of their 

numerical values. 

o Variables related to production range: 

• “Area” is the total surface of the products composing the batch, expressed in m². 

• “Program” is the number of the program the machine should use to realize its 

operation on a batch (for example: 2:2 means that program number 2 will lead to 

process the two wood panel sides with shiny paint). 

• “Due date” is the batch due date, expressed in hours. 

• “Number of pass” expresses the number the batch processing loops on the robot. 

o Variables related to the workstation: 

• The four programs (P1, P2, P3, and P4) with their own duration times are 

expressed in h/m². 

• The two possible setup times, expressed in hours: 

• S0 if the last batch and next batch program are in the subset {P1, P2} or 

in the subset {P3, P4}. 

• S1 elsewhere (corresponding to a finishing change). 

o “Defect happening” counts the number of defectives batches produced. 

Table 7. Summary of variables of the new model 

Products  

Area  Float  [2.5:40] 

Program  Integer  

1:1high-gloss side  

2:2high-gloss sides 
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3:1matt side 

4:2matt sides 

Robot 

Program P1 

h/m2 

0.28 

Program P2 0.04 

Program P3 0.03 

Program P4 0.02 

Setup without 

finishing changes 

S0 

h 0.03 

Setup with 

finishing changes 

S1  

h 0.05 

Model  

Defect rate  Float  [0:100] 

4.3 Experimental protocol and discussions  

To validate the proposed method, simulation experiments were conducted under several 

distinct conditions, with and without the use of the proposed AHP-based approach and 

considering a constant number of decision participants. For each case, a set of one thousand 

simulations were performed. The means and standard deviations (std) for the FIFO and AHP 

cases are presented in Table 8. Hence, to draw the benefits of the AHP method over the others, 

a global cost function (expressed in euros) described as the weighted sum of the following three 

KPIs (also expressed in euros) is compared: 

o Lateness represents the number of overdue hours multiplied by the penalty cost. It is an 

approximate way to express the cost of the lateness, which is complex to represent, 

because a product in overdue implies a heavy impact on the company brand-building, a 

loss of customer confidence and, in some cases, a complementary truck departure. 

o The rework cost, which is the cost implied by the fact of a re-working batch on the robot 

and is taken directly from the Acta Mobilier company actual data. 



 

o The workforce cost is calculated by multiplying the cost in man-days of two operators 

(the minimal number of human operators needed to pilot the robot) by a makespan. 

Hence, Table 8 highlights that the AHP algorithm provides a better solution for a non-

optimized dataset. For example, the rework cost in the AHP is 25% lower than that in the FIFO 

scheduling approach, for a global reduction of 26%. 

Table 8. Comparing FIFO and AHP in an actual case 

 

The first case studied is an actual example of the production of a lacquering robot without any 

optimization approach. The production of a team (eight working hours per day) was used in 

this study. Then, a simulation test with an optimal schedule having an equal balance of the 

gloss and matt flows is used to determine the benefit of the proposal placed in the optimal 

possible case. Hence, from Table 9, it can be concluded that when a data set is already 

scheduled to create a good balance between the two product flows to be supplied, the AHP 

method still offers a rework improvement of 21% for a global enhancement of 20%. 

Table 9. Equal distribution condition 

 

Then, the following two tests were conducted to determine if the solution remained effective 

when one of the decision criteria was defective. 

a) Under an extreme load distribution (only high-gloss products or only matt products), 

which also impacts the minimization of the setup time (see Table 10). Although the 

system faces this situation, the result obtained using the AHP is still improved by 18% 

compared to that of the FIFO method for only high gloss and 25% for only matt. 

b) As soon as all products set the same due date with an optimized schedule, the benefits 

brought by the AHP are almost exclusively on the rework cost and to some extent on 

the lateness, as indicated in Table 11. At this time, the improvement is recorded as 

23%. 

Table 10. Extreme load distribution condition 

mean std mean std mean std mean std

FIFO 389.8 549.0 5346.5 4175.0 161.5 25.4 5897.8 4449.2

AHP 175.8 350.5 4025.1 3472.7 149.7 20.5 4350.6 3619.4

Real case
Lateness Rework Operating cost global cost

mean std mean std mean std mean std

FIFO 0.0 0.0 1791.5 1036.5 89.8 13.9 1881.3 1048.5

AHP 0.0 0.0 1417.1 876.1 82.4 10.0 1499.5 884.4

Equal 

distribution

Lateness Rework Operating cost global cost
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Table 11. Same due-date condition 

 

4.4 Social myopia of smart batches analysis 

In Subsection 4.3, the performance of the proposed method should be closely linked to its 

settings (e.g., weights of the criteria and number of actors in the entire decision-making 

process). However, validation was performed considering a constant number of batches as 

decisional participants (one product representing one batch). Now, the focus will be on 

estimating the impact of the number of decision process participating entities on overall quality. 

Therefore, to measure the impact of social myopia, the number of decisional products (i.e., 

batches in the queue) is set as a variable. To do so, the simulation was re-launched, running on 

the data set corresponding to a real production week for the lacquering robot. The weights of 

all the criteria were set to 1, and only the number of products involved in the decision-making 

process varied. 

Accordingly, simulation tests were performed considering 1, 3, 5, 7, 10, and 20 batches. The 

two extreme values (i.e., 1 batch and 20 batches) were used to obtain extreme values, even if 

they were irrelevant. Indeed, one single batch can only communicate with itself, implying that 

no real decision-making process can be performed. If the lacquering robot does not operate in 

pull flow with its upstream station, this situation rarely occurs. Likewise, it is highly unlikely 

for this workstation to have a queue with more than 10 products, except in the case of extreme 

congestion caused by machine failure. Figures 7 and 8 summarize the results obtained for the 

above-mentioned situations (where m is the number of batches in the queue). As expected, the 

results are the poorest when a single batch is involved in the decision process. 

mean std mean std mean std mean std

FIFO 10.6 61.8 3312.5 2083.5 117.9 17.8 3441.0 2124.9

AHP 1.4 19.6 2694.4 1748.4 109.5 13.3 2805.3 1761.7

Only mat

mean std mean std mean std mean std

FIFO 0.0 0.4 3350.5 2015.4 101.6 14.5 3452.0 2027.0

AHP 0.0 0.0 2747.6 1894.1 94.6 12.2 2842.2 1903.5

Lateness Rework Operating cost global cost

Only high 

gloss

Lateness Rework Operating cost global cost

mean std mean std mean std mean std

FIFO 0.4 7.8 5054.0 4015.8 161.1 26.1 5215.4 4037.5

AHP 2.3 37.4 3855.5 3556.4 149.5 21.0 4007.2 3587.6

Same due 

date

Lateness Rework Operating cost global cost



 

 

Fig. 7. Impact of social myopia on delay (tardiness) (in hours) 

 

Fig. 8. Impact of social myopia on number of reworks  

From Figure 9, it can be noted that for more than five batches in the queue, the average results 

stagnate as the computing time increases. Hence, in view of the results and having knowledge 

of the evolution of the usual flow at the entrance of the lacquering robot, the choice of five 
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communicating batches for decision-making under standard operating conditions seems to be 

the most relevant. 

 

Fig. 9. Impact of social myopia on computing time (in seconds) 

To better analyze the results, a one-dimensional variance analysis (ANOVA) was used to 

measure the effect of the change in modality of ‘myopia’ on the number of reworks, cumulative 

delay, and time calculation. To apply ANOVA, some recommendations must be verified. 

− A single variability factor (myopia) with six modalities (m = 1, m = 3, m = 5, m = 7, m 

= 10, and m = 20) 

− Random and independent draws 

− Observations supposed without errors. 

The ANOVA test involved comparing two different modalities of the factor. It generates a 

p-value that must be compared to the value of the risk  that we have to choose (here taken at 

5%). The two hypotheses are as follows: 

− H0: The two considered modalities of the factor studied have the same impact on the 

variable. 

− H1: The two considered modalities of the factor studied have different impact. 



 

Accordingly, the result of the test is obtained by comparing the p-value with the value of the 

chosen risk . That is, if the p-value is greater than risk  (p > 0.05), then H0 is accepted with 

a risk, if the p-value is less than risk  (p < 0.05), then H0 is rejected. 

From Table 11, we can observe that H0 is systematically rejected when modalities 1 and 3 are 

at stake. Consequently, choosing one of these two modalities has a significant impact on the 

result. When comparing modalities 5, 7, 10, and 20, H0 is systematically accepted (except for 

case 5-10, which still gives a value close to the threshold). Therefore, choosing between 

modalities 5, 7, 10, and 20 does not have any impact on the number of reworks. Thus, setting 

modality at 5 seems to be the best compromise regarding the number of reworks.  

In addition, relative to the impact of myopia on delay in Table 12, we can notice that H0 is 

systematically rejected when modalities 1 and 3 are at stake. Hence, choosing one of these two 

modalities has a significant impact on the result. When comparing modalities 5, 7, 10, and 20 

sets, H0 is systematically accepted and choosing between modalities 5, 7, 10, and 20 has no 

different impact on the delay. Thus, setting this modality at 5 also seems to be the best 

compromise in terms of delay.  

Finally, corresponding to the impact of myopia on the time calculation in Table 13, it can be 

noticed that H0 is rejected for all combinations except for the two modality pairs, 1-3 and 5-7. 

Table 11. ANOVA test results for reworks 

Myopia  1 3 5 7 10 20 

N
u

m
b

e
r
 o

f 
r
e
w

o
r
k

s 

1 - 0 0 0 0 0 

3  - 0 0 0 0 

5   - 0.1691 0.0457 0.1755 

7    - 0.4085 0.8351 

10     - 0.6017 

Table 12. ANOVA test results for delay/tardiness 

Myopia  1 3 5 7 10 20 

C
u

m
u

la
ti

v
e
 

d
e
l

a
y
/

ta
r

d
in

e
ss

 

1 - 0 0 0 0 0 
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3  - 0.0148 0.0079 0.0001 0.0100 

5   - 0.8122 0.1562 0.9441 

7    - 0.2431 0.7420 

10     - 0.0996 

 

 

 

Table 13. ANOVA test results for time calculation 

Myopia  1 3 5 7 10 20 

T
im

e
 c

a
lc

u
la

ti
o
n

 

1 - 0.1296 0 0 0 0 

3  - 0 0 0 0 

5   - 0.4788 0 0 

7    - 0 0 

10     - 0 

 

5. Conclusions and outlooks 

In this work, we have demonstrated the interest of using a hybrid manufacturing control system 

based on a predictive schedule and the AHP multicriteria decision method as a decision support 



 

tool in the context of a company suffering from a high rework rate. The consideration of the 

number of batches that participate in the decision (social myopia) is proven to be important and 

has a considerable impact on the quality and calculation time. The AHP method is used 

dynamically when disturbances occur or when the smart batches using the embedded NN 

algorithm estimate a high risk of non-quality. The analysis of myopia allows us to consider an 

evolutionary number of batches participating in the decisions, depending on the quality of the 

results. The real number of batches in the queue of the workstation should be considered. 

Even if the simulation results show interesting improvement of different KPIs, there are still 

many issues and complementary scenarios to explore. Future work might, for example, use a 

larger dataset from the company to evaluate the behavior of the shop floor over a longer period. 

Furthermore, harvesting more data from the simulations could lead to a self-adapting pairwise 

comparison matrix constructed by an active learning approach. In addition to costs, the profiles 

of the high gloss and matt loads in the case study should be analyzed. Further, complements 

should be provided to the model to make it even more realistic. For instance, the consumption 

speed of the two output queues should be added to the model. To go further, a complementary 

study of the weight to give to each criterion must be led with the company experts after the 

application practical feedback. The fact that other workstations also feed them and that 

different types of reworks with different process times may occur (from simple correction to 

total reproduction) should also be considered. 
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