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 or Corot [4, p.158]:

Result: Let ߬ and ߝ be given: 1. Assume there exists ൫߬

Introduction

For real materials, the Riemann Problem has been considered in the pioneering work by R. Menikoff & B. Plohr [START_REF] Menikoff R | Riemann Problem for fluid flow of real materials[END_REF]. In particular, they show that when the isentropic curves in the (p,߬) plane are convex, then the Riemann problem may not have a solution, but it is unique. As we shall see, for water, we get convex isentropic curves . The main reason comes from the following diagram https://demonstrations.wolfram.com/TemperatureEntropyDiagramForWater/ This diagram shows that when one follows a given isentropic curve, the saturation line can be crossed only once: from the liquid to the diphasic domain or from the steam to the diphasic domain. Since the sound speed is higher in the liquid domain than in the diphasic domain and also higher in the steam domain than in the diphasic domain, we shall deduce that for water, isentropic curves are convex in the ሺ, ߬ሻ domain. The Van Der Waals model is the simplest EOS taking phase transition into account. However, people working far from the critical point don't use it since it is not sufficiently accurate. Of course, they could use the IAPSW97 EOS for water [START_REF] Wagner | International Steam Tables: Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97[END_REF]. This one is very accurate, but very costly as regards computing time. See more details in [START_REF] Quibel | Simulation of water-vapor two-phase flows with non-condensable gas[END_REF]. People rather use stiffened gas EOS for pure liquid water and another one for pure steam water. Then they apply thermodynamic laws to obtain an EOS in the diphasic domain, as explained in [START_REF] Després | Numerical Methods for Eulerian and Lagrangian Conservation Laws[END_REF][START_REF] Helluy | Simulation numérique des écoulements multiphasiques : de la théorie aux applications[END_REF]. This induces a computational cost, and this is the reason why people build look-up tables as in [START_REF] Quibel | Simulation of water-vapor two-phase flows with non-condensable gas[END_REF] or [START_REF] Saurel | A numerical study of cavitation in the wake of a hypervelocity underwater projectile[END_REF]. In the present paper, we use a modified stiffened gas EOS for both pure liquid and pure steam water, but, for the diphasic domain, we use a table provided by Faccanoni [6]. This table gives ܶ, ሺܶሻ, ߬ ሺܶሻ, ߬ ௩ ሺܶሻ, ߝ ሺܶሻ, ߝ ௩ ሺܶሻ, ݏ ሺܶሻ, ݏ ௩ ሺܶሻ

where ሺܶሻ is the saturation pressure, ߬ ሺܶሻ, .ݏ݁ݎ‪ሺ ߬ ௩ ሺܶሻሻ is the specific volume at saturation in the liquid (resp. steam) phase, ߝ ሺܶሻ, ߝ ௩ ሺܶሻ (resp. ݏ ሺܶሻ, ݏ ௩ ሺܶሻ)are similarly the specific energy (resp. entropy) at saturation. In §1 we show how to use our table to derive an EOS in the diphasic domain.

In §2, we show how to combine our diphasic EOS with a modified stiffened gas EOS in the pure liquid domain.

In §3, we show how to combine our diphasic EOS with a modified perfect gas EOS in the steam domain.

In §4 we address the solution of the Riemann problem with our combined EOS. We show that the isentropic curves, we obtain in the (p,߬) plane are convex, which, according to [START_REF] Menikoff R | Riemann Problem for fluid flow of real materials[END_REF], proves that the Riemann problem has a unique solution.

Like in [START_REF] Menikoff R | Riemann Problem for fluid flow of real materials[END_REF] we use a graphical method for solving the Riemann problem. Finally, we give some specific examples in connection with depressurization.

1 Equation of state for diphasic water.

Formalism

There are 99 lines in her table. For 1 ≤ ݅ ≤ 99, the table gives a value ܶ for the saturation temperature and the 7 values ሺܶ ሻ, ߬ ሺܶ ሻ, ߬ ௩ ሺܶ ሻ, ߝ ሺܶ ሻ, ߝ ௩ ሺܶ ሻ, ݏ ሺܶ ሻ, ݏ ௩ ሺܶ ሻ.

We have ܶ ଵ = 335 ܭ and ܶ ଽଽ = 629 ܭ which gives limits to our domain of validity. When ܶ = ሺ1 -ߠሻܶ ାଵ + ߠܶ we interpolate these values linearly so that e.g. ߬ ሺܶሻ = ሺ1 -ߠሻ߬ ሺܶ ାଵ ሻ + ߠ߬ ሺܶ ሻ Method A: to compute , ܶ and ,ݏ when ߬ and ߝ are given:

Let ݕ ఛ ሺܶሻ = ൫߬ -߬ ௩ ሺܶሻ൯ ቀ߬ ሺܶሻ -߬ ௩ ሺܶሻቁ ൗ ݕ ఌ ሺܶሻ = ൫ߝ -ߝ ௩ ሺܶሻ൯ ቀߝ ሺܶሻ -ߝ ௩ ሺܶሻቁ ൗ
To compute ܶ we just have to solve the equation ݕ ఛ ሺܶሻ = ݕ ఌ ሺܶሻ. This is a nonlinear equation with one unknown ܶ which can be easily solved by 

• finding ݅ such that ݕ ఛ ሺܶ ሻ > ݕ ఌ ሺܶ ሻ and ݕ ఛ ሺܶ ାଵ ሻ < ݕ ఌ ሺܶ ାଵ ሻ • solving a second-degree equation to find ߠ such that ൫߬ -߬ ௩ ሺܶሻ൯ ቀߝ ሺܶሻ -ߝ ௩ ሺܶሻቁ = ൫ߝ -ߝ ௩ ሺܶሻ൯ ቀ߬ ሺܶሻ -߬ ௩ ሺܶሻቁ (Indeed,
ఛ ሺܶሻ = ൫߬ -߬ ௩ ሺܶሻ൯ ቀ߬ ሺܶሻ -߬ ௩ ሺܶሻቁ ൗ ݕ ௦ ሺܶሻ = ൫ݏ -ݏ ௩ ሺܶሻ൯ ቀݏ ሺܶሻ -ݏ ௩ ሺܶሻቁ ൗ
The details are left to the reader. ∎ Method C: to compute ߝ, when ߬ and  are given: This is still easier:  being given, first we evaluate ܶ and then compute

ݕ * = ൫߬ -߬ ௩ ሺܶሻ൯ ቀ߬ ሺܶሻ -߬ ௩ ሺܶሻቁ ൗ So that ߝ = ݕ * ߝ ሺܶሻ + ሺ1 -ݕ * ሻ ߝ ௩ ሺ ܶሻ. ∎
First test of our equation of state.

We let ߝ = ݂ሺ߬, ݏሻ : a well-known result in thermodynamics (see e.g. [START_REF] Faccanoni | Étude d'un modèle fin de changement de phase liquide-vapeur[END_REF]) is that we should have

డ డఛ = - (1) 
To check that this is the case, we have selected ݏ = 4.4957 and 5.81494≤ ߬ ≤ 10.46689. We compute the derivative of ߝ w.r.t ߬ both by forward and backward difference. The curve "depsdtau1" is obtained by forward difference. The other one by backward difference. The results given in Fig. 1 show a rather good agreement that make us confident with the validity of our equation of state in the diphasic domain.

Second test of our equation of state.

We compute the same isentropic curve with both methods A and B With method B it is very easy to plot an isentropic curve.

With method A, we proceed by increment. ; for method A we take ݀߬ = -3 ݃݇/ܮ and we check that at the end of the curve (߬ = 3.21 ,)݃݇/ܮ we obtain ݏ = 2.653 ܬ݇ ݇݃ ܭ ⁄ ⁄ that is a relative error of 0.3%. Of course such an error decreases if we decrease ݀߬. 

Sound speed

We notice on Fig. 1 that, if we write  = ݂ሺ߬, ݏሻ, for fixed ,ݏ ݂ሺ߬, ݏሻ is a decreasing function of ߬, so that the sound speed exists: we have provided we use international units for each variable. When we select ߬, ߝ as the primitive thermodynamic variables, we use that

(3) ܿ = ߬ ඥ. ߲ ߲ߝ ⁄ -߲ ߲߬ ⁄
also, in international units.

In the following test we replace partial derivatives by finite differences, and we get the results given in Fig 3 for  = 12.9 .ܽܲܯ

Fig 3 Sound speed evaluated either with (2) or (3) as a function of the steam mass fraction x (There are 2 superposed curves)

We notice that the sound speed in a diphasic mixture is much lower than in the liquid phase, where it is of the order of 800 to 1200 m/s. This result is well known.

Equation of state for the liquid phase

For the pure liquid phase, we shall use a stiffened gas EOS. [START_REF] Faccanoni | Étude d'un modèle fin de changement de phase liquide-vapeur[END_REF] (4)

 = ߛ- ஶ + ሺߛ -1ሻሺߝ -ݍሻ/߬
However, in the standard stiffened gas model, ݍ is a constant, whereas here we shall require that  = ߛ- ஶ + ሺߛ -1ሻሺߝ -ݍሻ/߬ ሺሻ on the saturation line , ߬ ሺሻ, ߝ ሺሻ, which means that we shall select

ݍ = ݍሺሻ = ߝ ሺሻ -ሺ + ߛ ஶ ሻ߬ ሺሻ/ሺߛ -1ሻ)
This is necessary to define a continuous (but not differentiable) value of ߝ across the saturation line. More precisely, for a given point in the pure liquid domain ሺ߬, ሻ, we first determine a point ሺ߬ ,  ሻ on the saturation line such that, ( 5)

+ ஶ = ሺ +  ஶ ሻ ሺ߬ ߬ ⁄ ሻ ఊ ߬ = ߬ ሺ ሻ Then we compute ݍ = ߝ ሺ ሻ -ሺ + ߛ ஶ ሻ߬ /ሺߛ -1ሻ
And finally, we compute ߝ = ݂ሺ߬, ሻ by using (4). Note that there are some points ሺ߬, ሻ in the liquid domain for which we shall not be able to find ሺ߬ ,  ሻ. Let ሺ߬ ,  ሻ denote the smallest point on the saturation line in our table this will be the case for the points on the left of the isentropic curve + ஶ = ሺ +  ஶ ሻ ሺ߬ ߬ ⁄ ሻ ఊ . For these points we select ݍ = ݍ = ߝ ሺ ሻ -ሺ + ߛ ஶ ሻ߬ /ሺߛ -1ሻ

This gives an EOS which is incomplete in the sense of Menikoff-Plohr, but can be completed as indicated in [START_REF] Menikoff R | Riemann Problem for fluid flow of real materials[END_REF].

To evaluate an isentropic curve with such an EOS, we can proceed in the following way :

-We start from ሺ߬, ߝ, ሻ satisfying ߝ = ݂ሺ߬, ሻ -We introduce increments ሺ݀߬, ݀ߝ, ݀ሻ satisfying both -݀ߝ = ݂ ఛ ݀߬ + ݂ ݀ and -݀ߝ = ߬݀- We easily find a relation between ݀ and ݀߬, which allows to evaluate the isentropic curve by increment.

More explicitly, we have In what follows, we shall select  = 5.664 ܽܲܯ and ߬ = 1.3083 ݃݇/ܮ which correspond to saturated liquid water at ܶ = 545 ,ܭ and ݏ = 2.9935 kJ/kg/K. To define our equation of state we just have to select  ஶ and ߛ.

ሺ +  ஶ ሻ ߬ ఊ = ሺ +  ஶ ሻ ሺ߬ ሻ ఊ ߝ = ݍ + ൫ሺߛ+ ஶ ሻ߬൯ ሺߛ -1ሻ ⁄ (a) ߛሺ +  ஶ ሻ ߬ ఊିଵ ݀߬ + ߬ ఊ ݀ = ߛሺ +  ஶ ሻ ሺ߬ ሻ ఊିଵ ݀߬ + ሺ߬ ሻ ఊ ݀ (b) ݀߬ = ௗఛ ௗ బ ݀ (c) ݀ߝ = ݍ݀ + ൫ሺߛ+ ஶ ሻ ݀߬ + ߬ ݀൯ ሺߛ -1ሻ ⁄ (d) ݍ݀ = ௗఌ ௗ బ ݀ -൫ሺ + ߛ ஶ ሻ݀߬ + ߬ ݀ ൯/ሺߛ -1ሻ ( 
We have selected  ஶ = 186 ܽܲܯ and ߛ = 2.79, but other choices are possible (see [START_REF] Quibel | Simulation of water-vapor two-phase flows with non-condensable gas[END_REF]).

Our sub-saturated fluid will be initially at specific volume ߬ ଵ = 1.30098 .݃݇/ܮ We complement our isentropic curve in the two-phase mixture domain by using the second method described in §1. We get the result shown on Fig. 4.

Obviously the isentropic curve is continuous but there is a strong slope discontinuity between both parts. This corresponds to a strong discontinuity of the sound speed ܿ. Note that such an isentropic curve is convex. It has a slope discontinuity on the saturation line. But since the slope depends on ܿ ଶ and since ܿ decreases, the isentropic curve is globally convex. 3 Equation of state for the steam phase

For the pure steam phase, we also use ( 4), but with ߛ = 1.21 and  ஶ = 0 like for a perfect gas We have checked that with this choice of ߛ and  ஶ , on both sides of the steam saturation line the sound speed is slightly higher in the pure steam domain than in the diphasic domain. For example, at ߬ = ,݃݇/ܮ535.43  = 5.664 ܽܲܯ the isentropic curve is shown on Fig. 4 Note that for  > 5.664 ܽܲܯ we are in the pure steam domain and for  < 5.664 ܽܲܯ in the diphasic domain.

At the slope discontinuity we easily compute by ( 2) that ܿ = 486 ݏ/݉ on the pure steam side and ܿ = 449 ݏ/݉ on the diphasic side.

This proves that the isentropic curve is also convex as can be seen on Fig. 5 A second example is provided on Fig 6 : with the same choice of ߛ and  ஶ , the sound speed jumps from 460 m/s in the diphasic domain to 493 m/s, then, also in this case, the isentropic curve is convex. 

4: Solution of the Riemann problem with our equation of state

We shall first consider the case where we have the same fluid with two different states separated by a diaphragm which is to be removed at time ݐ = 0.

We then have ݑ ோ = ݑ = 0 and we shall assume that  ோ >  .

We anticipate that we shall have a 1-shock (propagating to the left) and a 3-rarefaction wave propagating to the right.

For ݐ > 0 we shall have an intermediate constant state ݑ * ,  * , itself subdivided in 2 parts separated by a contact discontinuity. On the left (resp. on the right) of the contact discontinuity, we shall have ߬ = ߬ ଵ (resp. ߬ = ߬ ଶ ).

We have 4 unknowns ݑ * ,  * , ߬ ଶ , ߬ ଵ , and we need 4 scalar equations. First, we shall use the fact that the following Riemann invariant is constant along a 3-rarefaction wave. We remind the reader that in Eulerian coordinates

߲ ݐ߲ ቆ ߬ ݑ ߝ ቇ + ൭ ݑ -߬ 0 ߬  ఛ ݑ ߬  ఌ 0 ߬ ݑ ൱ ߲ ݔ߲ ቆ ߬ ݑ ߝ ቇ = 0
Let us call λ ଵ , λ ଶ and λ ଷ the 3 eigenvalues of the matrix of this hyperbolic system. A well-known result is that

λ ଵ = ݑ -ܿ, λ ଶ = ,ݑ λ ଷ = ݑ + ܿ.

Riemann invariants:

We check that

ݎ ଷ = ൭ -߬ ܿ  ߬ ൱ is the eigenvector associated to λ ଷ indeed A function ܴ = ܴሺ߬, ,ݑ ߝሻ is a 3-Riemann invariant iff ∇ܴ. ݎ ଷ = 0 i-e -ܴ߬ ఛ + ܿ ܴ ௨ + ߬ ܴ ఌ = 0 Then ܴ = ݑ -݃ሺ߬ሻ is a 3-Riemann invariant iff ܿ = ߬ ݃ ᇱ ሺ߬ሻ or ݃ ᇱ ሺ߬ሻ = ܿ ߬ ⁄
As a second Riemann invariant we can choose the entropy ݏ which is constant in a rarefaction wave. Let ݏ ோ denote the entropy of the right state, we let

ܿ ோ ሺ߬ሻ = ܿሺ߬, ݏ ோ ሻ We can choose ݃ሺ߬ሻ =  ܿ ோ ሺߪሻ ߪ ⁄ ݀ߪ ఛ ఛ బ
We now get our first two equations:

(6) ݑ * -݃ሺ߬ ଶ ሻ -൫ݑ ோ -݃ሺ߬ ோ ሻ൯ = 0 (7)  * -݂ሺ߬ ଶ ሻ = 0
Remark : 1°/ By using Method B introduced in §1, we can tabulate the isentropic curve associated to ݏ ோ . More precisely, we compute a 5-column table such that we find ߬, , ,ݕ ܿ and ݃ in the 5 columns. So that we have tabulated values for ݃ሺ߬ሻ, but also for  = ݂ሺ߬ሻ By assuming linear interpolation, we can also evaluate ݃ ᇱ ሺ߬ሻ and ݂ ᇱ ሺ߬ሻ. 2°/ Knowing the velocity ݑ ோ ,for all values of ߬, we can compute ݑ = ݑሺ߬ሻ by using ݑሺ߬ሻ -݃ሺ߬ሻ -൫ݑ ோ -݃ሺ߬ ோ ሻ൯ = 0.

We still call "isentropic curve" the so obtained curve ߬ → ሼݑሺ߬ሻ, ሺ߬ሻሽ. ∎ uL, pL, τL uR, pR, τR

Hugoniot curves.

Now what happens along the 1-shock?

We have the Rankine-Hugoniot relations. Let ߪ denote the speed of the shock, we should have ( 8) 

ߩ ଵ ݑ ଵ -ߩ ݑ = ߪሺߩ ଵ -ߩ ሻ (9) ሺߩ ଵ ݑ ଵ ଶ +  * ሻ -ሺߩ ݑ ଶ +  ሻ = ߪሺߩ ଵ ݑ ଵ -ߩ ݑ ሻ ( 
Let ݆ = ߩ ሺߪ -ݑ ሻ = ߩ ଵ ሺߪ -ݑ ଵ ሻ,
The parameter ݆ is called the Lagrangian velocity of the shock. If ݆ < 0 we have a 1-shock, whereas with ݆ > 0 a 3-shock (and for ݆ = 0 we have a contact discontinuity).

We easily find ݆ = -ሾݑሿ/ሾ߬ሿ and ݆ = ሾሿ/ሾݑሿ so that ሾሿሾ߬ሿ + ሾݑሿ ଶ = 0 and ݆ ଶ = -ሾሿ/ሾ߬ሿ which proves that the Hugoniot curve is decreasing.∎ Fig. 7 Hugoniot curve and Isentropic curve starting from the same point ሼ߬ ,  ሽ. 

Convexity of the Hugoniot curves

An example is shown in [START_REF] Menikoff R | Riemann Problem for fluid flow of real materials[END_REF] where the Hugoniot curves both in the ሼ߬, ሽ plane and the ሼ,ݑ ሽ plane are not convex. This is not what we find here. We shall consider 2 examples: 1. a case where the Hugoniot curve is crossing the saturation curve on the steam side 2. a case where the Hugoniot curve is ending at the saturation curve on the liquid side

݈݁݉ܽݔܧ 1 ∶
On Fig. 8, we represent the Hugoniot curve starting from ሼ234.53 ,݃݇/ܮ 0.555 ܽܲܯሽcrossing the saturation line in ሼ34.53 ,݃݇/ܮ 5.664 ܽܲܯሽ.

The steam saturation line is in grey. The Hugoniot curve is made of a blue part (in the diphasic domain) and a red part (in the pure steam domain. We note that the curve is convex. That is (after some easy calculations) : We proceed as follows:

 = ߝ -ݍ - ߛ ஶ ߬ ߛ -1 - 1 2  ሺ߬ -߬ ሻ ߬ ߛ -
1. We build the isentropic curve starting from ߬ ோ ; ܲ ோ ; ݑ ோ 2. We build the Hugoniot curve starting from ߬ ; ܲ ; ݑ We notice that the rarefaction wave is made of 2 parts : the first one propagates rapidly (900 m/s) to the right and decreases the pressure from 15 MPa to 11.42 MPa, that is the saturation pressure located on the same isentropic curve as ሼ߬ ோ , ܲ ோ ሽ. The second part is relatively slow (~68 m/s) and decreases from 11.42 MPa to 3.48 MPa. We can say that there is a fast depressurization, which hardly decreases the volumic mass, followed by a slow depressurization.

Another Case

As we have seen above, the Hugoniot curve may stop at the liquid saturation line. This means that the solution of the Riemann problem may not exist. However it will be in extreme situations. I cannot happen for a shock tube where we have ݑ ோ = ݑ = 0 at least in the pressure domain that we consider here (0.0218 MPa ≤  ≤ 17.75 ܽܲܯ ). We give an example on We observe that even though the Hugoniot curve ends at ሼ1.3083 ,݃݇/ܮ 5.664 ܽܲܯሽ (see Fig 8). The intersection is far from the end. The reason is that the liquid water is hardly compressible, so that the velocity of the liquid does not increases very much in a rarefaction wave, while its pressure decreases a lot.

To build a Riemann Problem without any solution we should take ݑ ோ ≤ -400 ݏ/݉ at least, the other data being unchanged. 

Fig. 1 Fig 2 .

 12 Fig.1 pressure p vs -߲ߝ ߲߬ ⁄

Proposition 1 :

 1 e) ݀ߝ = ߬݀- The unknowns are ݀߬, ,݀ ݀߬ , ݀ , ݀ߝ, ݍ݀ and we have 5 equations. If we prescribe ݀߬ we can evaluate ݀ like the 5 other unknowns. Along an isentropic curve, we have ݀ = ݀߬ = ݍ݀ = 0 Proof : (a) gives ߛሺ +  ஶ ሻ ߬ ఊିଵ ݀߬ + ߬ ఊ ݀ = 0 i-e ߛሺ +  ஶ ሻ ݀߬ + ݀߬ = 0 (c) + (e) give ߬݀- = ൫ሺߛ+ ஶ ሻ ݀߬ + ߬ ݀൯ ሺߛ -1ሻ ⁄ i-e ሺߛ -1ሻ߬݀ + ߛ+‪ሺ ஶ ሻ ݀߬ + ߬ ݀ = 0 which is equivalent. ∎ It follows that in the ሺ߬, ሻ plane, the isentropic curves for our EOS satisfy (4bis) It also follows that the sound speed can be computed by the well known formula ܿ = ඥߛሺ+ ஶ ሻ߬

Fig 4

 4 Fig 4 Isentrope in a ߬,  diagram. The liquid part is shown in red. The diphasic part in blue.

Fig 5 Fig 6

 56 Fig 5 Isentropic curve crossing the steam saturation line at ߬ = ,݃݇/ܮ535.43  = 5.664 ܽܲܯ

10 )ଶ

 10 ሺߩ ଵ ܧ ଵ +  * ሻݑ * -ሺߩ ܧ +  ሻݑ = ߪሺߩ ଵ ܧ ଵ -ߩ ܧ ሻ where (noting ݑ ଵ = ݑ * ሻ ܧ ଵ Proceeding as DESPRÉS B. [5, p.155], we obtain : (11) ሺߝ ଵ -ߝ ሻ + ଵ ଶ ሺ ଵ +  ሻሺ߬ ଵ -߬ ሻ = 0 Since ߝ ଵ = ݂ሺ߬ ଵ ,  ଵ ሻ equation (11) defines a (so called Hugoniot) curve in the plane (߬, ሻ. We denote by  ଵ =  ுை ሺ߬ ଵ ሻ the relation we just obtained between  ଵ et ߬ ଵ . On Fig. 7 we compare the isentropic curve starting at ߬ = 234.535 ݃݇/ܮ ; ܲ = 0.555 ܽܲܯ ; ݑ = 0 and the Hugoniot curve starting at the same point. We notice that both curves are close to each other around the point ሼ߬ , ܲ ሽ, but this is a well-known result. Note that on Fig 7 the Hugoniot curve ends at a saturated steam state ሼ34.535 ݃݇/ܮ ,5.664 ܽܲܯሽ Remark 1:

Fig 8 Fig 9

 89 Fig 8 Hugoniot curve crossing the steam saturation line in ሼ 34.53 ,݃݇/ܮ 5.664 ܽܲܯሽ in ሼ߬, ሽ axes.

2 ∶

 2 curve starting from {߬ ܮ , ܮ } On Fig. 10, we represent the Hugoniot curve crossing the saturation line in ሼ߬ ௦௧ = 1,3083 ,݃݇/ܮ  ௦௧ = 5.664 ܽܲܯሽ. It starts from ሼ߬ = 234.54 ܮ ݇݃ ⁄ ,  = 0.555 ܽܲܯሽ The liquid saturation line is in red. The Hugoniot curve in the diphasic domain is in blue . It stops in ሼ߬ ௦௧ ,  ௦௧ ሽ which means that it cannot be extended in the pure liquid domain. In fact the points ሼ߬, ሽ in the liquid domain should satisfy ሺߝ -ߝ ሻ + 1 2 ሺ +  ሻሺ߬ -߬ ሻ = 0 ߝ = ݍ + ሺ + ߛ ஶ ሻ߬/ሺߛ -1ሻ)

Fig 11 :

 11 Fig 11 : Graphical solution to the Riemann Problem in a ሼ,ݑ ሽ diagram Computer solution of the Riemann Problem.

Fig 12

 12 Fig 12 Solution to the Riemann Problem at t=2.5 ms. Specific volume L/kg wrt x (m).

  Fig 15 Solution of the RP with ሼ߬ = 234.54 ܮ ݇݃ ⁄ ,  = 0.555 ܽܲܯሽ and ሼ߬ ோ = 1.2156 ܮ ݇݃ ⁄ ,  ோ = 17.75 ܽܲܯሽ

  

  see above, the functions where ߬ ሺܶሻ =, ߬ ௩ ሺܶሻ, ߝ ሺܶሻ and ߝ ௩ ሺܶሻ are all linear in ߠ ) • From the value of ߠ, compute ܶ (and similarly ) by ܶ = ሺ1 -ߠሻܶ ାଵ + ߠܶ • Let ݕ * denote the common value of ݕ ఛ ሺܶሻ and ݕ ఌ ሺܶሻ we let ݏ = ݕ * ݏ ሺܶ ሻ + ሺ1 -ݕ * ሻ ݏ ௩ ሺ ܶሻ∎ Method B: to compute , ܶ and ߝ, when ߬ and ݏ are given: In the same way, we solve ݕ ఛ ሺܶሻ = ݕ ௦ ሺܶሻ = ݕ * where ݕ

  If we start from ൫߬, ߝ, ሺ߬, ߝሻ൯ we move to ൫߬ + ݀߬, ߝ + ݀ߝ, ሺ߬ + ݀߬, ߝ + ݀ߝሻ൯ by choosing ݀ߝ = ߬݀- On Fig 2 we start from ߬ = 363.21 ,݃݇/ܮ with ݏ = 2.661 ܬ݇ ݇݃ ܭ ⁄ ⁄

  Fig 10 Hugoniot curve ending at the liquid saturation line in ሼ1.3083 ,݃݇/ܮ 5.664 ܽܲܯሽ in ሼ߬, ሽ axes. From the Hugoniot curve ߬ →  ுை ሺ߬ሻ we can deduce another Hugoniot curve in the plane ሼ,ݑ ሽ by ߬ → ሼݑ ுை ሺ߬ሻ ,  ுை ሺ߬ሻ ሽ with ݑ ுை ሺ߬ሻ = ݑ -ඥሺ߬ -߬ሻሺ ுை ሺ߬ሻ -ܲ ሻ To graphically solve the Riemann problem, we just have to find the intersection in the plane ሼ,ݑ ሽ of the isentropic curve starting from the state ሼ߬ ோ ,  ோ , ݑ ோ ሽ and the Hugoniot curve starting from the state ሼ߬ ,  , ݑ ሽ. Here is an example: we take ሼ1.4746 ܮ ݇݃ ⁄ , ,ܽܲܯ51 0 ݉/ݏሽ on the right and ሼ39 ܮ ݇݃ ⁄ , 0.893 ,ܽܲܯ 0 ݉/ݏሽ on the left. Here is what we get on Fig 11. The intersection is obtained for  * ≅ 3.48 ܽܲܯ and ݑ * ≅ -293 .ݏ/݉ This corresponds to ߬ ଶ ≅ 13.3 ܮ ݇݃ ⁄ on the isentrope and ߬ ଵ ≅ 5.2 ܮ ݇݃ ⁄ on the Hugoniot.

	1 And we see that the denominator vanishes for ߬ = ߬ * with ߬ * = + 1 2 ሺ߬ -߬ ሻ In our case ߬ = 39 ܮ ݇݃ ⁄ then ߬ * = 18,41 ܮ ݇݃ ⁄	ఊିଵ ఊାଵ	߬		
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Conclusion :

We have shown that, with a simple tabulated EOS for water in the diphasic domain, a stiffened gas EOS for pure liquid water and a perfect gas EOS for pure steam, we obtain both convex isentropic curves and convex Hugoniot curves so that the Riemann problem can be solved easily and its solution is unique. Its solution, however, may not exist in some extreme cases. We have given examples which are useful to understand the depressurization process in a tube.