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Introduction

The critical-pair completion (CPC) is an approach developed in the mid sixties that combines completion procedure and the notion of critical pair [START_REF] Buchberger | History and basic features of the critical-pair/completion procedure[END_REF]. It originates from theorem proving [START_REF] Robinson | A machine-oriented logic based on the resolution principle[END_REF], polynomial ideal theory [START_REF] Buchberger | An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal[END_REF], and the word problem [START_REF] Knuth | Simple word problems in universal algebras[END_REF][START_REF] Nivat | Congruences parfaites et quasi-parfaites[END_REF]. In the mid eighties, CPC has found original and deep applications in algebra to solve coherence problems [START_REF] Squier | A finiteness condition for rewriting systems[END_REF], or to compute homological invariants [START_REF] Squier | The word problem for finitely presented monoids and finite canonical rewriting systems[END_REF]. More recently, higher-dimensional extensions of the CPC approach were used for the computation of cofibrant replacements of algebraic and categorical structures [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF][START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF]. These constructions based on CPC are known for monoids, small categories, and algebras over a field. However, the extension of these methods to a wide range of algebraic structures is made difficult because of the interaction between the rewriting rules and the inherent axioms of the algebraic structure. For this reason, the higher-dimensional extensions of the CPC approach for a wide range of algebraic structures, including groups, Lie algebras, is still an open problem.

One of the main tools to reach confluence in CPC procedure for algebraic rewriting systems is the critical pair lemma, or critical branching lemma (CBL). Its proof is based on classification of the local branchings into orthogonal branchings, that is involving two rules that do not overlap, overlapping branchings involving two rules that overlap. A critical branching is a minimal overlapping application of two rules on the same redex. When the orthogonal branchings are confluent, if all critical branchings are confluent, then local confluence holds. Thus, the main argument to achieve CBL is to prove that orthogonal and overlapping branchings are confluent. For string and term rewriting systems, orthogonal branchings are always confluent, and confluence of critical branchings implies confluence of overlapping branchings. The situation is more complicated for rewriting systems on a linear structure.

The well known approaches of rewriting in the linear context consist in orienting the rules with respect to an ambient monomial order, and CBL is well known in this context. However, some algebras do not admit any higher-dimensional finite convergent presentation on a fixed set of generators with respect to a monomial order, [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF]. However, when the orientation of rules does not depend on a monomial order, as in [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF], the CBL requires additional assumptions, namely termination and positivity of reductions. A positive reduction for a linear rewriting system, as defined in [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF], is the application of a reduction rule on a monomial that does not appear in the polynomial context. For instance, consider the linear rewriting system on an associative algebra over a field K given in [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF] defined by rules α : xy → xz and β : zt → 2yt. It has no critical branching, but it has a non-confluent additive branching:

4xyt 4αt / / 4xzt 4xβ / / • • • 2xzt 2xβ / / xzt + xβ + + xyt + xzt αt + xzt / / xyt + xβ . . = xzt + 2xyt 3xyt αt + 2xyt 3 3 3αt / / 3xzt 3xβ / / 6xyt 6αt / / • • •
The dotted arrows correspond to non positive reductions. We note that the lack of termination is an obstruction to confluence of orthogonal branchings.

In this work we introduce an algebraic setting for the formulation of the CBL. We define the structure of algebraic polygraph modulo which formalizes the interaction between the rules of the rewriting system and the inherent axioms of the algebraic structure. We show a CBL for algebraic polygraphs modulo. We deduce from this result a CBL for rewriting systems on algebraic structures whose axioms are specified by term rewriting systems that are convergent modulo associativity and commutativity. Finally, we explicit our results in linear rewriting, and explain why termination is a necessary condition to characterize local confluence in that case.

In Section 2, we recall the categorical structure of cartesian polygraph introduced in [START_REF] Malbos | Cartesian polygraphic resolutions[END_REF]. In Section 3, we introduce the notion of algebraic polygraph modulo, and we refer the reader to [START_REF] Dupont | Coherent confluence modulo relations and double groupoids[END_REF] for a categorical interpretation of the given constructions. In Section 4, we present confluence property of algebraic polygraphs modulo from [START_REF] Dupont | Coherent confluence modulo relations and double groupoids[END_REF] and algebraic polygraphs modulo with respect a positive strategy σ. Finally, we state the algebraic critical branching lemma. This abstract is a short version of the preprint [START_REF] Chenavier | Confluence of algebraic rewriting systems[END_REF], where more detailed constructions and examples can be found.

Cartesian polygraphs

A signature is defined by a set P 0 of sorts and a set P 1 of operations on the free monoid over P 0 . We denote by s 0 (α) and t 0 (α) the arity and coarity of α ∈ P 1 . When s 1 , . . . , s k are sorts, we denote s = s 1 . . . s k their product in the free monoid over P 0 . We denote by P × 1 the free theory generated by a signature (P 0 , P 1 ). Its 1-cells, also called terms on the signature (P 0 , P 1 ) are defined inductively. The canonical projections x s i : s → s i are variables, and for any terms f : s → r and f : s → r in P × 1 , we denote by f, f : s → rr , the pairing of terms f, f . A (cartesian) 2-polygraph is a data made of a signature (P 0 , P 1 ), and a set P 2 equipped with two maps t 1 , s 1 : P 2 → P × 1 , satisfying the globular conditions s 0 s 1 = s 0 t 1 and t 0 s 1 = t 0 t 1 . An element α of P 2 is called a rule, and relates terms of same arity and coarity.

2.1. Two-dimensional theories. Recall that a 2-theory is a 2-category with an additional cartesian structure on its 1-cells and 2-cells [START_REF] Malbos | Cartesian polygraphic resolutions[END_REF]. We denote by P × 2 the free 2-theory generated by a cartesian 2-polygraph (P 0 , P 1 , P 2 ). Its underlying 1-category is the free theory P × 1 , and its 2-cells are defined inductively as follows. For α : f ⇒ f in P 2 and h ∈ P × 1 , there is a 2-cell αh : f h ⇒ f h in P × 2 , and for β : g ⇒ g in P × 2 , there is a 2-cell α, β : f, g ⇒ f , g .

Finally, there are 2-cells in P × 2 of the form

A[α] : A[f] ⇒ A[f ]
where A[ ] denotes an algebraic context of the form: k id k 1 , . . . , i , . . . , id k j : s → r, where k 1 , . . . , k j : s → r i and k : r → r belong to P × 1 , and i is the i-th element of the pairing. These 2-cells are required to satisfy exchange relations, see [START_REF] Malbos | Cartesian polygraphic resolutions[END_REF]. The source and target maps s 1 , t 1 extend to P × 2 and we denote a - and a + for s 1 (a) and t 1 (a). A ground term in P × 1 is a term with source 0. A 2-cell a in P × 2 is ground when a -is a ground term. An algebraic context A[ ] = f f 1 , . . . , i , . . . f |r| is called ground when the f i are ground terms.

The free (2, 1)-theory generated by a cartesian 2-polygraph (P 0 , P 1 , P 2 ), denoted by P 2 , is the free 2-theory P × 2 whose any 2-cell is invertible with respect the -composition. The 2-cells of the (2, 1)-theory P 2 corresponds to elements of the equivalence relation generated by P 2 .

Rewriting properties of cartesian polygraphs.

The algebraic contexts of a 2polygraph P can be composed as follows

AA [ ] := A[A [ ]]
. One defines a bi-context as B[ i , j ] := f id f 1 , . . . , i , . . . , j , . . . , id f k where the f k : s → r k and f : r → r are terms in P × 1 , and i (resp. j ) has to be filled by a term g i : s → r i (resp. g j : s → r j ). A 2-cell of the form A[αw] where A is an algebraic context, w is a term in P × 1 and α ∈ P 2 is called a P-rewriting step. A P-rewriting path is a non-identity 2-cell of P × 2 . Such a 2-cell can be decomposed as a -composition of rewriting steps

α = A 1 [α 1 w 1 ] . . . A k [α k w k ].

Algebraic polygraphs modulo

Let (P 0 , P 1 ) be a signature, and Q be a set of generating ground terms whose target is a sort in P 0 . We denote by P 1 Q the set of ground terms of the free theory (P 1 ∪ Q)

× . An algebraic polygraph is a data made of a 2-polygraph P, a family of set of constant 1-cells Q, and a cellular extension R of the set of ground terms P 1 Q , that is a set equipped with two source and target maps

R → P 1 Q . A R-rewriting step is a ground 2-cell in the free 2-theory R × of the form A[α] : A[f] → A[g],
where A[ ] is a ground context. A R-rewriting path is a finite or infinite sequence a 1 . . . a k . . . of R-rewriting steps a i . The size of a R-rewriting path a, denoted by |a|, is the number of rewriting steps needed to write a as a composition as above. The cellular extension P 2 defined on P × 1 extends to a cellular extension on the free 1-theory (P 1 ∪ Q)

× denoted by P 2 . We denote by P 2 Q the set of ground 2-cells in the free 2-theory

( P 2 )
× . The algebraic polygraph (P, Q, P 2 Q ) is called the algebraic polygraph of axioms. We denote by P Q the quotient of P 1 Q by the congruence generated by relations in P 2 Q .

Positive strategies.

Denote by f the image of a ground term f by the canonical projection π : P 1 Q → P Q . Let σ : P Q → Set be a map such that for any f ∈ P Q , σ(f) is a chosen non-empty subset of π -1 (f). Such a map is called a positive strategy with respect to (P, Q). A R-rewriting step a is called σ-positive if a -belongs to σ(a -), and a R-rewriting path a 1 . . . a k is called σ-positive if any of its rewriting steps is positive.

We will use positive strategies wrt a 2-polygraph P such that P 2 = P 2 ∪P 2 , with P 2 confluent modulo P 2 . For every 1-cell f in P Q , we set σ(f) = NF(f, P 2 mod P 2 ), where f ∈ π -1 (f), the set of normal forms of f for P 2 modulo P 2 . This is well-defined following [START_REF] Huet | Confluent reductions: abstract properties and applications to term rewriting systems[END_REF], since if f, f ∈ π -1 (f), then NF(f, P 2 mod P" 2 ) ≡ P" 2 NF(f , P 2 mod P" 2 ).

Algebraic polygraphs modulo.

Given an algebraic polygraph P = (P, Q, R) and a positive strategy σ on P, one denotes by P R P the cellular extension of P 1 Q whose elements are of the form e a e , where e and e are 2-cells in P 2 Q and a is a R-rewriting step such that e + = a -and a + = e -, see [START_REF] Dupont | Coherent confluence modulo relations and double groupoids[END_REF] for a detailed construction. A 2-cell e a e in P R P is called σ-positive if a is a σ-positive R-rewriting step. An algebraic polygraph modulo, APM for short, is a data (P, Q, R, S) made of an algebraic polygraph (P, Q, R), and a cellular extension S of P 1 Q such that R ⊆ S ⊆ P R P .

An algebraic polygraph (P, Q, R) is called quasi-terminating if for each sequence (f n ) ∈N of 1-cells of P 1 Q such that for each n ∈ N, there is a rewriting step f n → f n+1 , the sequence (f n ) ∈N contains an infinite number of occurrences of same 1-cell. An APM (P, Q, R, S) is called quasi-terminating if the algebraic polygraph (P, Q, S) is quasi-terminating. A 1-cell f of P 1 Q is quasi-irreducible if for any S-rewriting step f → g, there exists a S-rewriting sequence from g to f. A quasi-normal form of a 1-cell f in P 1 Q is a quasi-irreducible 1-cell f of P 1 Q such that there exists a S-rewriting sequence from f to f. For a quasi-terminating APM, any 1-cell f of P 1 Q admits at least a quasi-normal. A quasi-normal form strategy is a map s :

P 1 Q → P 1 Q sending a 1-cell f on a chosen quasi-normal f.
An algebraic rewriting system on (P, Q, R, S, σ) is a cellular extension S of P Q defined by

S = {a : a -⇒ a + | a ∈ S}. Let us consider the subset S σ of S defined by S σ = {a : a -⇒ a + | a is a σ-positive S-rule}. A S-rewriting step (resp. a S σ -rewriting step) is a 2-cell in S × (resp. S σ× ) of the form C[a] : C[a -] ⇒ C[a + ] , where C is a ground context of P 1 Q and C[a]
is a S-rewriting step (resp. σ-positive S-rewriting step). A S-rewriting path is a sequence of S-rewriting steps.

Confluence in algebraic polygraphs modulo

Let P = (P, Q, R, S) be an APM with a positivity strategy σ. A σ-branching of P is a triple such that |e| + |b| = 1. Note that the 2-cell b (resp. e) can be an identity 2cell of S × (resp of P 2 Q ), and in that case the σ-branching is of the form (a, e) (resp. (a, b)). Such a σ-branching is σ-confluent modulo if there exist σ-positive 2-cells a and b in S × and a 2-cell e of P 2 Q as depicted on the right. We say that the APM P is confluent modulo (resp. locally confluent modulo) if any σ-branching modulo (resp. local branching modulo) is confluent modulo.

f a / / e f a / / h e g b / / g b / / h 4.1.
Theorem (Newman lemma modulo for algebraic polygraphs modulo). Let P be a quasi-terminating APM, and σ be a positive strategy on P. If P is locally σ-confluent modulo, then it is σ-confluent modulo.

The proof of this result, and of Thm. 4.4 are based on the principle of double induction on the distance to the quasi-normal form, and are extensions to quasi-terminating setting of Huet's constructions based on double induction principle [START_REF] Huet | Confluent reductions: abstract properties and applications to term rewriting systems[END_REF] in the terminating setting. When all the reductions are positive, that is S(u) = π -1 (u) for any u, the quasi-termination assumption in Prop. 4.4 are not needed. In that case, the positive confluence is always satisfied.

A[a + ] A[a -] a o o a / / A[a + ] A[a + ] A[a -] = A[A [b -]] a o o b / / A[A [b + ]] Trivial Inclusion independant B[a -, b -] = B[a,b-] / / B[a + , b -] B[a -, b -] B[

Algebraic critical branching lemma.

Let A be an algebraic rewriting system on an APM P = (P, Q, R, S). The critical branchings of A are the projections of the critical σbranchings modulo of P of the form a 0 ), that is pairs (a, b) of S σ -rewriting steps such that there is a σ-branching modulo in P with source ( a -, b -). From Prop. 4.4, we deduce our main result.

4.6. Theorem. Let P = (P, Q, R, S) be an APM such that P R P is quasi-terminating and positively confluent. Let A be an algebraic rewriting system on P. Then A is locally confluent if and only if its critical branchings are confluent.

4.7. CBL for linear rewriting. Suppose that P contains the convergent 2-polygraph modulo AC that presents the theory of modules over commutative rings given in [START_REF] Hullot | A catalogue of canonical term rewriting systems[END_REF], denoted by RMod. If P 2 is the 2-polygraph of associativity and commutativity relations, and P 2 is RMod, then Thm. 4.6 corresponds to CBL for linear rewriting systems proved in [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF]. Indeed, given an APM (P, Q, R, S) with the σ-strategy defined in 3.1, one proves that the positivity confluence of S with respect to σ implies the factorization property of [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF]. This property means that any rewriting step a of S can be decomposed as a = b c -1 where b and c are either rewriting steps of S σ or identities. Finally, the quasi-termination assumption of P R P is equivalent to the termination assumption in [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF].

  (a, e, b) where a, b are σ-positive 2-cells of S × and e is a 1-cell of P 2 Q such that e -= a -and e + = b -. It is local if a is a S-rewriting step, b is a 2-cell of S × and e a 2-cell of P 2 Q

  Let d : P 1 Q → N maping a 1-cell f to the length d(f) of the shortest P R P -rewriting path from f to f, that we extend to a map on σ-branchings (a, e, b) by setting d(a, e, b) := d(a -) + d(b -). We define a well-founded order ≺ on the set of σ-branchings of P by (a, e, b) ≺ (a , e , b ) if d(a, e, b) < d(a , e , b ).

4. 2 .

 2 Classification of local σ-branchings modulo. The local σ-branchings modulo of S can be classified in the following families:

  a-,b] / / B[a -, b + ] B[a -, e -] B[a-,e] B[a,e-] / / B[a + , e -] B[a -, t 1 (e)] Orthogonal Orthogonal modulo together with symmetries on orthogonal σ-branchings modulo, for some σ-positive S-rewriting steps a, b, 2-cell e in P 2 Q , ground contexts A, A , and ground bi-contexts B, B . The remaining local σ-branchings modulo are called non-orthogonal σ-branchings modulo. We define an order relation on σ-branchings modulo of P = (P, Q, R, S) by setting (a, e, b) (A[a], A[e], A[b]) for a ground context A. A critical σ-branching modulo is a local σ-branching modulo P which is non trivial, non orthogonal and minimal wrt the order relation .

4. 3 . 4 . 4 .

 344 Positive confluence. An APM (P, Q, R, S) with a positive strategy σ is called σ-positively confluent if, for any S-rewriting step f, there exists a representing a -∈ σ(a -) of a -and two σ-positive S-reductions a and b of size at most 1 as in the following on the right. Theorem (Terminating critical branching theorem modulo). Let (P, Q, R, S) be a quasi-terminating and positively σ-confluent APM with a positive strategy σ. Then it is locally σ-confluent modulo if and only if the two following properties hold: a 0 ) any critical σ-branching modulo (a, b) made of S-rewriting steps is σ-confluent modulo. b 0 ) any critical σ-branching modulo (a, e), with a S-rewriting step and e is a 2-cell in P 2 Q of length 1, is σ-confluent modulo.