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COMPUTATION OF OPTIMAL TRANSPORT WITH FINITE VOLUMES

Andrea Natale1 and Gabriele Todeschi2,*

Abstract. We construct Two-Point Flux Approximation (TPFA) finite volume schemes to solve the
quadratic optimal transport problem in its dynamic form, namely the problem originally introduced
by Benamou and Brenier. We show numerically that these type of discretizations are prone to form in-
stabilities in their more natural implementation, and we propose a variation based on nested meshes in
order to overcome these issues. Despite the lack of strict convexity of the problem, we also derive quan-
titative estimates on the convergence of the method, at least for the discrete potential and the discrete
cost. Finally, we introduce a strategy based on the barrier method to solve the discrete optimization
problem.

Mathematics Subject Classification. 65N08, 35A15, 65K10, 49M29, 90C51.

Received January 13, 2021. Accepted August 1, 2021.

1. Introduction

The theory of optimal transport provides a robust way to define an interpolation between probability measures
which takes into account the geometry of the space where they are defined. This theory is built around the
problem of finding the optimal way of reallocating one given density into another, minimizing a total cost
of displacement in space. The fundamental nature of such a problem is responsible for the surprising links
between optimal transport (and its generalizations) and physical models, most notably in fluid dynamics or
via the theory of gradient flows, but also of its many applications in social sciences or biology (see, e.g., [28]
and references therein). Nowadays, several numerical methods are available to solve optimal transport problems
and in particular to compute the associated interpolations between measures. However, only few of these can
actually be generalized to more complex settings which are relevant for numerical modelling, and moreover their
numerical analysis is often neglected.

In this work we consider the numerical discretization of one of the most classical optimal transport problems
in which the cost of displacement per unit mass is given by the square of the Euclidean distance. In particular,
we consider finite volume discretizations of the so-called dynamical formulation of such a problem, following
the approach originally proposed by Benamou and Brenier [3]. This formulation has inspired some of the first
numerical methods for optimal transport, but it is still one of the most general, since it can be adapted easily to
very complex settings. We will focus on three main aspects. Firstly, we will expose some numerical issues related
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2 Inria Paris, Project team Mokaplan, Université Paris-Dauphine, PSL Research University, UMR CNRS 7534-Ceremade, 75016
Paris, France.
*Corresponding author: gabriele.todeschi@inria.fr

c○ The authors. Published by EDP Sciences, SMAI 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/m2an/2021041
https://www.esaim-m2an.org
https://orcid.org/0000-0002-8662-8960
mailto:gabriele.todeschi@inria.fr
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0


1848 A. NATALE AND G. TODESCHI

to the stability of finite volumes methods that have been considered for this problem, and we propose a strategy
based on nested meshes to overcome these. Secondly, we provide quantitative estimates on the convergence of the
proposed methods to smooth solutions of the problem. Finally, we tackle the issue of the efficient computation
of numerical solutions by applying and analyzing a classical interior point strategy adapted to our setting.

1.1. Dynamical formulation

Consider a convex and compact domain Ω. Given two densities 𝜌𝑖𝑛, 𝜌𝑓 : Ω → [0,+∞) with the same total
mass, we consider the problem of finding a time-dependent density 𝜌 : [0, 1]×Ω → [0,+∞) and a time-dependent
momentum 𝐹 : [0, 1]× Ω → R𝑑 solving

inf
𝜌,𝐹

ℬ(𝜌, 𝐹 ) (1.1)

where 𝜌 and 𝐹 satisfy the continuity equation{︃
𝜕𝑡𝜌+∇ · 𝐹 = 0, in [0, 1]× Ω,
𝐹 · 𝑛𝜕Ω = 0, on [0, 1]× 𝜕Ω,

(1.2)

with the further initial and final conditions 𝜌(0, ·) = 𝜌𝑖𝑛, 𝜌(1, ·) = 𝜌𝑓 . The functional ℬ(𝜌, 𝐹 ) is defined as
follows:

ℬ(𝜌, 𝐹 ) =
∫︁ 1

0

∫︁
Ω

𝐵(𝜌(𝑡, ·), 𝐹 (𝑡, ·)) d𝑡, (1.3)

with 𝐵 : R× R𝑑 → [0,+∞] defined by

𝐵(𝑝,𝑄) :=

⎧⎪⎨⎪⎩
|𝑄|2
2𝑝 if 𝑝 > 0,

0 if 𝑝 = 0, 𝑄 = 0,
+∞ else.

(1.4)

Problem (1.1) selects the density interpolation between 𝜌𝑖𝑛 and 𝜌𝑓 which minimizes the total kinetic energy
among all the non-negative solutions of the continuity equation (1.2). Note that the problem is written in the
variables density-momentum rather than density-velocity, in order to obtain a convex formulation.

Problem (1.1) admits a dual formulation:

sup
𝜑

∫︁
Ω

𝜑(1, ·) 𝜌𝑓 −
∫︁

Ω

𝜑(0, ·) 𝜌𝑖𝑛, (1.5)

where the potential 𝜑 : [0, 1]× Ω → R satisfies the Hamilton–Jacobi equation

𝜕𝑡𝜑+
1
2
|∇𝜑|2 ≤ 0, in [0, 1]× Ω. (1.6)

Note that 𝜑 can be seen as the Lagrange multiplier of the continuity equation constraint (1.2). Problems (1.1)–
(1.5) coincide and their solution can be explicitly characterized as the solution to the system of primal-dual
optimality conditions, namely: {︃

𝜕𝑡𝜌+∇ · (𝜌∇𝜑) = 0,
𝜕𝑡𝜑+ 1

2 |∇𝜑|
2 ≤ 0,

(1.7)

where 𝐹 = 𝜌∇𝜑 is the optimal momentum and with the additional boundary conditions 𝜌∇𝜑 · 𝑛𝜕Ω = 0 on 𝜕Ω,
𝜌(0, ·) = 𝜌𝑖𝑛, 𝜌(1, ·) = 𝜌𝑓 . It is possible to show that the Hamilton–Jacobi equation can be saturated in problem
(1.5) (using, e.g., the Hopf formula to characterize the solutions to the Hamitlon–Jacobi equation [2]), i.e., the
inequality can be replaced by the equality, and consequently also in system (1.7) by strong duality.
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Adapting appropriately the definitions above, problem (1.1) provides a notion of interpolation between 𝜌𝑖𝑛 and
𝜌𝑓 when these latter are arbitrary probability measures. In this case the solution 𝜌 is itself a curve of probability
measures which is generally denoted as Wasserstein interpolation (or geodesic), see, e.g., [28]. Moreover the
minimum of the cost (1.3) coincides with half of the Wasserstein-2 distance squared between 𝜌𝑖𝑛 and 𝜌𝑓 . More
precisely, for a primal-dual solution (𝜑, 𝜌) to system (1.7), this is given by:

𝑊 2
2 (𝜌𝑖𝑛, 𝜌𝑓 )

2
=
∫︁ 1

0

∫︁
Ω

|∇𝜑(𝑡, ·)|2

2
𝜌(𝑡, ·) d𝑡 =

∫︁
Ω

𝜑(1, ·)𝜌𝑓 −
∫︁

Ω

𝜑(0, ·)𝜌𝑖𝑛.

1.2. Discretization

In the original work of Benamou and Brenier [3], problem (1.1) was discretized on regular grids using centered
finite differences. Later in [26], Papadakis et al. introduced a finite difference discretization using staggered grids,
which are better suited for the discretization of the continuity equation. Similar finite differences approaches
have been used also in more recent works [9, 23]. Note that the use of regular grids can be beneficial for the
efficient solution of the scheme, but is not adapted to complex domains. Several finite elements approaches have
been considered in order to construct schemes able to handle more general unstructured grids [4, 5, 22, 24]. In
particular in [24] the authors proposed a 𝐻(div)-conforming finite element discretization that preserves at the
discrete level the conservative form of the problem, in the same spirit of [26].

Another approach to discretize problem (1.1) is to use finite volumes, which is a natural choice given the
conservative form of the constraint (1.2) and allows one to use unstructured grids. In [11], Erbar et al. con-
sidered a discretization of problem (1.1) on graphs, which can be written under the formalism of Two-Point
Flux Approximation (TPFA) finite volumes [19]. They proved the Gamma-convergence of the discrete problem
towards a semi-discrete version of (1.1), discrete in space and continuous in time. In [19], Gladbach et al. proved
a convergence result for this semi-discretization towards the continuous problem. Combining these two results,
it is possible to obtain a global convergence result, under conditions on the ratio between the temporal and
spatial step sizes. Carrillo et al. proved the Gamma-convergence without conditions on the step sizes but only for
sufficiently regular and strictly positive solutions [9]. They used a centered finite difference discretization, which
coincide with TPFA finite volumes on cartesian grids. Finally, in [21] Lavenant proved the weak convergence of
discrete solutions (reconstructed as space-time measures) of a large class of time-space discretizations of (1.1),
unconditionally with respect to time and space steps and without assuming any regularity, and applied this
result to the discretization studied in [11]. The same result has been applied for example to the discretizations
proposed in [22,24].

Our starting point in this work is the finite volume discretization presented in [11,21]. We observe numerically
that for this discretization the density interpolation can exhibit oscillations which prevent strong convergence of
the numerical solution, even when the exact interpolation is smooth. The same phenomenon has been observed
by Facca and coauthors in [15,16] when dealing with finite elements discretizations for the 𝐿1 optimal transport
problem, which is closely related to (1.1). Our strategy to overcome this issue is inspired by these last works
and consists in enriching the space of discrete potentials. We will show numerically that such a modification
attenuates the oscillations and favors a stronger convergence.

Note that with this modification, the convergence result in [21] cannot be applied straightforwardly. However,
we will derive quantitative estimates for the convergence of the discrete Wasserstein distance and the discrete
potential, which hold both in the enriched and original non-enriched case, in the case of smooth and strictly
positive solutions. Even if such results are only partial as they do not apply to the density, they are still
surprising given that the problem is not strictly convex. Moreover, we are not aware of similar estimates for the
discretizations mentioned above. With these results at hand, it is possible to deduce again the weak convergence
of the discrete density and momentum.
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1.3. Numerical solution

A typical approach for solving discrete versions of the dynamical formulation (1.1) is to apply first order
primal dual methods. This goes back to the original paper of Benamou and Brenier [3], who proposed to use
an Alternating Direction Method of Multipliers (ADMM) approach applied to the augmented Lagrangian of
the discrete saddle point problem. Later [26] considered different proximal splitting methods and recasted the
previous algorithm into the same framework. Nowadays, these approaches are frequently used [4,5,9,22,24]. In
fact, they are robust and can take care automatically of the positivity of the density thanks to the definition of
the function ℬ. Nevertheless, they are not easy to apply to arbitrary discretizations of the problem (especially
on unstructured grids). More importantly, they are efficient only as far as high accuracy is not mandatory and
uniform grids are used.

In the present work, we apply the so called barrier method, an instance of the wider class of interior point
methods [7, 17, 20, 27]. The problem is perturbed by adding to the functional a strictly convex barrier function
which repulses the density away from zero. In this way it reduces to an equality-constrained minimization
problem, where the minimizer is automatically greater than zero and the objective functional is locally smooth
around it, and which can be effectively solved using a Newton scheme. The perturbation introduced by the
barrier function can be tuned by multiplying it by a positive coefficient 𝜇 and the original solution is recovered
via a continuation method for 𝜇 going to zero. The final algorithm is robust and can be easily generalized to
similar problems (e.g., we have already applied it successfully in [25] for the solution of Wasserstein gradient
flows).

A similar strategy has been applied by Achdou and coauthors [1] (although in the context of mean field
games), perturbing the Lagrangian associated to the problem with the Dirichlet energies of the density and the
potential. Such a perturbation does not ensure the positivity of the solution and this forces the use of a monotone
discretization. Using a barrier function allows us to consider more general discretizations, with higher accuracy
in space. The idea of using a regularization term to deal directly with the positivity constraint has been also
explored in [23], where the authors used the Fischer information as penalization term, but without considering
a continuation method. In particular, the problem is solved for a fixed (small) value of the perturbation’s
parameter, leading to diffusive effects.

1.4. Structure of the paper

In Section 2, we present the finite volume discretization of (1.1): we set the notation for the partition of the
domain Ω, introduce the discrete operators and then define the discrete optimal transport problem. In Section 3,
we derive quantitative estimates on the convergence of the discrete distance and the discrete potential towards
their continuous counterparts, under special hypotheses. In Section 4, we present the barrier method, the strategy
we employ to solve the discrete optimization problem as a sequence of simpler perturbed problems. We conclude
with the presentation of few numerical results in order to assess the reliability of the scheme and verify the
convergence results, in Section 5.

2. Finite Volume discretization

2.1. The discretization of Ω

We assume the domain Ω ⊂ R𝑑 to be polygonal if 𝑑 = 2 or polyhedral if 𝑑 = 3, and we consider an
admissible discretization for TPFA finite volumes ([13], Def. 9.1). Cartesian grids, Delaunay triangulations or
Voronöı tessellations are typical examples of admissible meshes in this sense. We denote such a discretization as(︀
𝒯 ,Σ, (x𝐾)𝐾∈𝒯

)︀
, namely the ensemble of the set of polyhedral control volumes 𝐾, the set of faces 𝜎 and the set

of cell centers x𝐾 . The set Σ is composed of boundary faces Σext = {𝜎 ⊂ 𝜕Ω} and internal faces 𝜎 ∈ Σ = Σ∖Σext.
We denote by Σ𝐾 = Σ𝐾 ∩ Σ the internal faces belonging to 𝜕𝐾. The cell-centers (x𝐾)𝐾∈𝒯 ⊂ Ω are such that,
if 𝐾,𝐿 ∈ 𝒯 share a face 𝜎 = 𝐾|𝐿, then the vector x𝐿 − x𝐾 is orthogonal to 𝜎 and has the same orientation as
the normal 𝑛𝐾,𝜎 to 𝜎 outward with respect to 𝐾.
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Figure 1. Exemplification of the notation of a triangular cell (left) and its subdivision (right).

We denote the Lebesgue measure of 𝐾 ∈ 𝒯 by 𝑚𝐾 . For each internal face 𝜎 = 𝐾|𝐿 ∈ Σ, we denote 𝑚𝜎 its
(𝑑− 1)-dimensional Lebesgue measure and we refer to the diamond cell as the polyhedron whose edges join x𝐾

and x𝐿 to the vertices of 𝜎. Denoting by 𝑑𝜎 = |x𝐾 − x𝐿|, the measure of the diamond cell is then equal to
𝑚𝜎𝑑𝜎/𝑑. We denote by 𝑑𝐾,𝜎 the Euclidean distance between the cell center x𝐾 and the midpoint of the edge
𝜎 ∈ Σ𝐾 . In Figure 1 the notation is exemplified for a triangular element.

We will need to distinguish between two different admissible discretizations of Ω, where one is obtained as a
subdivision of the other. We denote by

(︀
𝒯 ′,Σ′, (x𝐾′)𝐾′∈𝒯 ′

)︀
the coarse mesh and by

(︀
𝒯 ,Σ, (x𝐾)𝐾∈𝒯

)︀
the fine

one, and we require that
∀𝐾 ∈ 𝒯 , ∃𝐾 ′ ∈ 𝒯 ′ such that 𝐾 ⊆ 𝐾

′
.

In practice we will consider two specific instances of this construction. The first is the trivial case where the
two meshes coincide. The second holds at least in two dimensions and can be defined as follows. First, we take
as coarse mesh a Delaunay triangulation, with cell centers x𝐾′ the circumcenters of each cell 𝐾 ′. We further
require that all the triangles are acute, so that all the cell centers x𝐾′ lie in the interior of the corresponding cell
𝐾 ′. Then, we define the fine mesh by dividing each triangular cell 𝐾 ′ into three quadrilaterals by joining x𝐾′ to
the three midpoints of the edges 𝜎′ ∈ Σ

′
𝐾′ . We take again as cell centers x𝐾 of the fine mesh the circumcenters

of each cell 𝐾. This construction is illustrated in Figure 1. Note that the partition obtained in this way is indeed
admissible.

2.2. Discrete spaces and operators

We introduce two discrete spaces defined on the two meshes, P𝒯 ′ = R𝒯 ′ and P𝒯 = R𝒯 , each one endowed
with its own weighted scalar product,

⟨·, ·⟩𝒯 : (𝑎, 𝑏) ∈ [P𝒯 ]2 ↦→
∑︁
𝐾∈𝒯

𝑎𝐾𝑏𝐾𝑚𝐾 ,

and similarly for ⟨·, ·⟩𝒯 ′ . Note that P𝒯 ′ ⊆ P𝒯 , and we denote by ℐ the canonical injection operator, which is
given explicitly by

ℐ : P𝒯 ′ → P𝒯 , (ℐ𝜌)𝐾 = 𝜌𝐾′ , ∀𝐾 ⊂ 𝐾 ′.

In the case where the two discretizations of Ω coincide, ℐ is just the identity operator. We will denote by ℐ*
the adjoint of ℐ, i.e., ⟨ℐ*·, ·⟩𝒯 ′ = ⟨·, ℐ·⟩𝒯 . We further introduce two discrete spaces defined on the finer mesh:
the space PΣ = RΣ, defined on the diamond cells, endowed with the scalar product

⟨·, ·⟩Σ : (𝑢,𝑣) ∈ [PΣ]2 ↦→
∑︁
𝜎∈Σ

𝑢𝜎𝑣𝜎𝑚𝜎𝑑𝜎,
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and the space of discrete conservative fluxes,

F𝒯 =
{︀
𝐹 = (𝐹𝐾,𝜎, 𝐹𝐿,𝜎)𝜎∈Σ ∈ R2Σ : 𝐹𝐾,𝜎 + 𝐹𝐿,𝜎 = 0

}︀
, (2.1)

endowed with the scalar product

⟨·, ·⟩F𝒯 : (𝐹 ,𝐺) ∈ [F𝒯 ]2 ↦→
∑︁
𝜎∈Σ

(𝐹𝐾,𝜎𝐺𝐾,𝜎 + 𝐹𝐿,𝜎𝐺𝐿,𝜎)
𝑚𝜎𝑑𝜎

2
·

We denote by ‖ · ‖𝒯 , ‖ · ‖𝒯 ′ , ‖ · ‖Σ and ‖ · ‖F𝒯 the norms associated with the inner products defined above. We
denote 𝐹𝜎 = |𝐹𝐾,𝜎| = |𝐹𝐿,𝜎| and we will use the convention |𝐹 | = (𝐹𝜎)𝜎∈Σ ∈ PΣ and (𝐹 )2 = (𝐹 2

𝜎 )𝜎∈Σ ∈ PΣ, for
𝐹 ∈ F𝒯 . Moreover, we define the element-wise multiplication by ⊙. In particular, given 𝐹 ,𝐺 ∈ F𝒯 and 𝑢 ∈ PΣ,
we define 𝐹 ⊙𝐺,𝑢⊙ 𝐹 ∈ F𝒯 by

[𝐹 ⊙𝐺]𝐾,𝜎 := 𝐹𝐾,𝜎𝐺𝐾,𝜎, [𝑢⊙ 𝐹 ]𝐾,𝜎 := 𝑢𝜎𝐹𝐾,𝜎.

We now introduce the discrete differential operators. The discrete divergence div𝒯 : F𝒯 → P𝒯 is defined by
(div𝒯 𝐹 )𝐾 := div𝐾(𝐹 ) where

div𝐾𝐹 :=
1
𝑚𝐾

∑︁
𝜎∈Σ𝐾

𝐹𝐾,𝜎𝑚𝜎.

The discrete gradient ∇Σ : P𝒯 → F𝒯 is defined by ⟨∇Σ𝑎,𝐹 ⟩F𝒯 = −⟨𝑎,div𝒯 𝐹 ⟩P𝒯 . In particular we also have
(∇Σ𝑎)𝐾,𝜎 = ∇𝐾,𝜎(𝑎) where

∇𝐾,𝜎𝑎 :=
𝑎𝐿 − 𝑎𝐾

𝑑𝜎
·

Moreover, as for the discrete conservative fluxes, we define ∇𝜎𝑎 := |∇𝐾,𝜎𝑎|.
We also need to introduce a reconstruction operator from cells to diamond cells ℛΣ : P𝒯 → PΣ, which will be

required to construct the discrete energy. We require that the operator ℛΣ be a concave function (component-
wise), positively 1-homogeneous and positivity preserving. In practice, we will consider two weighted means, ℒΣ

and ℋΣ, which correspond respectively to a linear and a harmonic mean, and are defined as follows:

(ℒΣ𝑎)𝜎 =
𝑑𝐾,𝜎

𝑑𝜎
𝑎𝐾 +

𝑑𝐿,𝜎

𝑑𝜎
𝑎𝐿, (ℋΣ𝑎)𝜎 =

𝑑𝜎𝑎𝐾𝑎𝐿

𝑑𝐾,𝜎𝑎𝐿 + 𝑑𝐿,𝜎𝑎𝐾
, (2.2)

for any 𝑎 ∈ P𝒯 . We denote by dℛΣ[𝑎] : P𝒯 → PΣ the differential of ℛΣ with respect to 𝑎, evaluated at a given
𝑎 ∈ P𝒯 . Clearly, if ℛΣ = ℒΣ, we simply have dℛΣ[𝑎] = ℒΣ. Moreover, we denote by (dℛΣ[𝑎])* the adjoint of
dℛΣ[𝑎], with respect to the two different scalar products. For the two reconstructions we consider, this operator
is given by either ℒ*Σ or (dℋΣ[𝑎])*, which are defined by

(ℒ*Σ𝑢)𝐾 =
∑︁

𝜎∈Σ𝐾

𝑢𝜎
𝑚𝜎𝑑𝐾,𝜎

𝑚𝐾
, ((dℋΣ[𝑎])*𝑢)𝐾 =

∑︁
𝜎∈Σ𝐾

(ℋΣ[𝑎])2𝜎
𝑎2

𝐾

𝑢𝜎
𝑚𝜎𝑑𝐾,𝜎

𝑚𝐾
, (2.3)

for any 𝑢 ∈ PΣ. Finally, for any fixed 𝑎 ∈ P𝒯 ′ , we define the reconstruction operator on the coarse grid
ℛ𝒯 ′ [𝑎] : PΣ → P𝒯 ′ by

ℛ𝒯 ′ [𝑎] := ℐ* ∘ (dℛΣ[ℐ(𝑎)])*. (2.4)

Remark 2.1. The space of discrete conservative fluxes and the reconstruction operator introduced above take
only into account the interior edges. This is sufficient for our purposes due to the zero flux boundary conditions.
In particular, since the flux should be zero at the boundary the reconstruction of the density on the exterior
edges is not needed for the construction of the scheme.
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2.3. Discrete problem

Consider a discretization of the time interval [0, 1] in 𝑁 + 1 subintervals of constant length 𝜏 = 1
𝑁+1 , and let

𝑡𝑘 := 𝑘𝜏 for all 𝑘 ∈ {0, . . . , 𝑁 + 1}. We denote the time evolution of a discrete density by 𝜌 := (𝜌𝑘)𝑁+1
𝑘=0 , where

𝜌𝑘 := (𝜌𝑘
𝐾′)𝐾′∈𝒯 ′ . Similarly we denote by 𝐹 := (𝐹 𝑘)𝑁+1

𝑘=1 the time evolution of a discrete momentum, where
𝐹 𝑘 := (𝐹 𝑘

𝐾,𝜎, 𝐹
𝑘
𝐿,𝜎)𝜎∈Σ.

Given a couple (𝜌,𝐹 ) ∈ [P𝒯 ′ ]𝑁+2 × [F𝒯 ]𝑁+1, we define the discrete equivalent of the functional (1.3),
ℬ𝑁,𝒯 : [P𝒯 ]𝑁+2 × [F𝒯 ]𝑁+1 → R+, as follows:

ℬ𝑁,𝒯 (𝜌,𝐹 ) :=

{︃∑︀𝑁+1
𝑘=1 𝜏

∑︀
𝜎∈Σ𝐵

(︁(︁
(ℛΣ ∘ ℐ)

(︁
𝜌𝑘+𝜌𝑘−1

2

)︁)︁
𝜎
, 𝐹 𝑘

𝜎

)︁
𝑚𝜎𝑑𝜎 if 𝜌𝑘

𝐾′ ≥ 0,

+∞ else,
(2.5)

where 𝐵 is defined in equation (1.4). Since ℛΣ is assumed to be concave, the function (2.5) is convex and lower
semi-continuous.

Note that on each subinterval [𝜏(𝑘 − 1), 𝜏𝑘], the time integral of the kinetic energy is discretized using the
midpoint rule. This implies that a given 𝐹 𝑘

𝜎 needs to vanish only if the reconstruction of (𝜌𝑘 + 𝜌𝑘−1)/2 on
the same edge vanishes. Approximating the integral with a left/right-endpoint approximation would be more
restrictive in this sense (see [21] for more details on this choice of time discretization). At each time step, the
kinetic energy is discretized on the diamond cells of the finer grid. The measure of each diamond cell is taken 𝑑
times. This is done in order to compensate the unidirectional discretization of the vector field 𝐹 and therefore
obtain a consistent discretization (see, e.g., Lem. 3.1). Indeed, each 𝐹𝜎 is meant as an approximation of |𝐹 ·𝑛𝜎|
and encodes then the information of 𝐹 only along the direction 𝑛𝜎. This choice is also linked to the definition
of inflated gradient (see [10,12] for more details on this construction).

Remark 2.2. Note that (2.5) is not simply the discretization of (1.3) on the diamond cells, in which case the
functional would take the value +∞ whenever the time-space reconstruction of the density is negative on some
diamond cell. The functional in (2.5) takes the value +∞ whenever the density is negative on some cell 𝐾 ′ ∈ 𝒯 ′,
which is a stronger condition.

Given two discrete densities 𝜌𝑖𝑛,𝜌𝑓 ∈ P+
𝒯 ′ , with the same total discrete mass

∑︀
𝐾′∈𝒯 ′ 𝜌

𝑖𝑛
𝐾′𝑚𝐾′ =∑︀

𝐾′∈𝒯 ′ 𝜌
𝑓
𝐾′𝑚𝐾′ , we consider the following discrete version of problem (1.1):

inf
(𝜌,𝐹 )∈𝒞𝑁,𝒯

ℬ𝑁,𝒯 (𝜌,𝐹 ) (2.6)

where 𝒞𝑁,𝒯 ⊂ [P𝒯 ′ ]𝑁+2×[F𝒯 ]𝑁+1 is the convex subset whose elements (𝜌,𝐹 ) satisfy both the discrete continuity
equation

ℐ
(︂
𝜌𝑘 − 𝜌𝑘−1

𝜏

)︂
+ div𝒯 𝐹 𝑘 = 0, ∀𝑘 ∈ {1, . . . , 𝑁 + 1}, (2.7)

and the initial and final conditions
𝜌0 = 𝜌𝑖𝑛, 𝜌𝑁+1 = 𝜌𝑓 . (2.8)

The continuity equation is discretized in time using the midpoint rule (𝐹 is indeed staggered in time with
respect to 𝜌). Moreover, given the definition of the discrete space of conservative fluxes and the operator div𝒯 ,
(2.7) is to be understood with zero flux boundary conditions in space. Hence equations (2.7) and (2.8) imply
that the total discrete mass is preserved. In the following, we explicitly enforce the constraint (2.8), i.e., we
identify 𝜌0 and 𝜌𝑁+1 with 𝜌𝑖𝑛 and 𝜌𝑓 , respectively.

We derive now the first order optimality conditions for problem (2.6), which are necessary and sufficient
conditions for a solution. We consider the minimization on 𝜌 to be taken only among non-negative densities.
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The Lagrangian associated with the constrained optimization problem (2.6) is given by

ℒ𝑁,𝒯 (𝜑,𝜌,𝐹 ) = ℬ𝑁,𝒯 (𝜌,𝐹 ) +
𝑁+1∑︁
𝑘=1

𝜏

⟨
𝜑𝑘, ℐ

(︂
𝜌𝑘 − 𝜌𝑘−1

𝜏

)︂
+ div𝒯 𝐹 𝑘

⟩
𝒯
, (2.9)

where the potential 𝜑 ∈ [P𝒯 ]𝑁+1 is the Lagrange multiplier for the continuity equation constraint. The station-
arity condition of ℒ𝑁,𝒯 with respect to 𝐹 gives

𝐹 𝑘 = (ℛΣ ∘ ℐ)
(︂
𝜌𝑘 + 𝜌𝑘−1

2

)︂
⊙∇Σ𝜑

𝑘, ∀𝑘 ∈ {1, . . . , 𝑁 + 1}, (2.10)

so that the Lagrangian reduces to

−𝜏
2

𝑁+1∑︁
𝑘=1

⟨
(ℛΣ ∘ ℐ)

(︂
𝜌𝑘 + 𝜌𝑘−1

2

)︂
,
(︁
∇Σ𝜑

𝑘
)︁2
⟩

Σ

+
𝑁+1∑︁
𝑘=1

𝜏

⟨
𝜑𝑘, ℐ

(︂
𝜌𝑘 − 𝜌𝑘−1

𝜏

)︂⟩
𝒯
. (2.11)

A stationary point of (2.11) must then satisfy the conditions:⎧⎪⎪⎪⎨⎪⎪⎪⎩
ℐ
(︂
𝜌𝑘 − 𝜌𝑘−1

𝜏

)︂
+ div𝒯

(︂
(ℛΣ ∘ ℐ)

(︂
𝜌𝑘 + 𝜌𝑘−1

2

)︂
⊙∇Σ𝜑

𝑘

)︂
= 0,

ℐ*
(︃
𝜑𝑘+1 − 𝜑𝑘

𝜏

)︃
+

1
4
ℛ𝒯 ′

[︂
𝜌𝑘 + 𝜌𝑘−1

2

]︂(︁
∇Σ𝜑

𝑘
)︁2

+
1
4
ℛ𝒯 ′

[︂
𝜌𝑘+1 + 𝜌𝑘

2

]︂(︁
∇Σ𝜑

𝑘+1
)︁2

≤ 0,
(2.12)

where 𝑘 ∈ {1, . . . , 𝑁 + 1} for the discrete continuity equation, 𝑘 ∈ {1, . . . , 𝑁} for the discrete Hamilton–Jacobi
equation, and where by equation (2.4), the linear operator ℛ𝒯 ′

[︁
𝜌𝑘+𝜌𝑘−1

2

]︁
: PΣ → P𝒯 ′ is defined by

ℛ𝒯 ′
[︂
𝜌𝑘 + 𝜌𝑘−1

2

]︂
= ℐ* ∘

(︂
dℛΣ

[︂
ℐ
(︂
𝜌𝑘 + 𝜌𝑘−1

2

)︂]︂)︂*
.

If ℛΣ = ℒΣ, then this operator does not depend on 𝜌 and in particular we will drop such dependency in the
notation by settingℛ𝒯 ′ = ℐ*∘ℒ*Σ. We emphasize that the discrete no flux boundary conditions are automatically
enforced by the definition of the discrete fluxes (see also Rem. 2.1).

The inequality in the second condition derives from the fact that the minimization in 𝜌 is taken over non-
negative values, and the equality holds where 𝜌𝑘 does not vanish. Hence, we can write the full system of
optimality conditions using a slack variable 𝜆 ∈ [P+

𝒯 ′ ]
𝑁 :⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ℐ
(︂
𝜌𝑘 − 𝜌𝑘−1

𝜏

)︂
+ div𝒯

(︂
(ℛΣ ∘ ℐ)

(︂
𝜌𝑘 + 𝜌𝑘−1

2

)︂
⊙∇Σ𝜑

𝑘

)︂
= 0,

ℐ*
(︃
𝜑𝑘+1 − 𝜑𝑘

𝜏

)︃
+

1
4
ℛ𝒯 ′

[︂
𝜌𝑘 + 𝜌𝑘−1

2

]︂(︁
∇Σ𝜑

𝑘
)︁2

+
1
4
ℛ𝒯 ′

[︂
𝜌𝑘+1 + 𝜌𝑘

2

]︂(︁
∇Σ𝜑

𝑘+1
)︁2

= 𝜆𝑘,

𝜌𝑘
𝐾′ ≥ 0, 𝜆𝑘

𝐾′ ≤ 0, 𝜌𝑘
𝐾′𝜆𝑘

𝐾′ = 0,

(2.13)

where 𝑘 ∈ {1, . . . , 𝑁 + 1} for the discrete continuity equation and 𝑘 ∈ {1, . . . , 𝑁} for the other conditions. Note
that system (2.13) is a discrete version of the system of optimality conditions (1.7) holding at the continuous level.
In particular, the continuity equation is discretized on the fine grid whereas the Hamilton–Jacobi equation on
the coarse one. Using a discretization that preserves the monotonocity of the discrete Hamilton–Jacobi operator
it is possible to show that the value zero for 𝜆 is optimal (see [8] for a problem closely related to (2.6)), i.e.,
the discrete Hamilton–Jacobi equation can be saturated. However this is not the case for the discretizations we
consider since they do not preserve the monotonicity.
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Remark 2.3. If the two discretizations of Ω coincide, ℐ becomes the identity and we recover the finite volumes
discretization already considered in [21], which is a fully discrete version of the continuous-time discrete optimal
transport problem studied in [19].

Remark 2.4. Existence of a (finite) solution (𝜌,𝐹 ) is not difficult to obtain, as the minimization in 𝜌 is taken
over a compact set and one can show that |𝐹 | is uniformly bounded for any minimizing sequence (by the same
arguments as in the proof of Thm. 4.1 below). The uniqueness of the solution, which is guaranteed for the
continuous problem (1.1) as soon as the initial (or final) density is absolutely continuous with respect to the
Lebesgue measure, is not evident. System (2.13) is not guaranteed in general to have a unique solution. In
particular, where the density vanishes, the potential and the positivity multiplier are clearly non unique. The
potential is however uniquely defined, up to a global constant, if the density solution is unique and everywhere
strictly positive.

Given a solution (𝜌,𝜑) to system (2.13), we can construct the associated momentum 𝐹 by equation (2.10) so
that (𝜌,𝐹 ) is a minimizer of problem (2.6). Then, we define the discrete Wasserstein distance 𝑊𝑁,𝒯

(︀
𝜌𝑖𝑛,𝜌𝑓

)︀
by

𝑊 2
𝑁,𝒯

(︀
𝜌𝑖𝑛,𝜌𝑓

)︀
2

:= ℬ𝑁,𝒯 (𝜌,𝐹 ). (2.14)

More precisely, replacing (2.10) in (2.14), the discrete Wasserstein distance can be computed using the following
expression:

𝑊 2
𝑁,𝒯

(︀
𝜌𝑖𝑛,𝜌𝑓

)︀
2

=
𝜏

2

𝑁+1∑︁
𝑘=1

⟨
(ℛΣ ∘ ℐ)

(︂
𝜌𝑘 + 𝜌𝑘−1

2

)︂
,
(︁
∇Σ𝜑

𝑘
)︁2
⟩

Σ

. (2.15)

In the case of the linear reconstruction, i.e., taking ℛΣ = ℒΣ, one can also easily express the dual to problem
(2.6) in terms of the potential 𝜑, as in the continuous case, i.e., problem (1.5). In fact, in this case, replacing
the second condition of system (2.13) into the Lagrangian (2.11) we obtain the following problem:

sup
𝜑∈�̃�𝑁,𝒯

⟨
ℐ*𝜑𝑁+1 − 𝜏

4
ℛ𝒯 ′

(︁
∇Σ𝜑

𝑁+1
)︁2

,𝜌𝑓 ⟩𝒯 − ⟨ℐ*𝜑1 +
𝜏

4
ℛ𝒯 ′

(︀
∇Σ𝜑

1
)︀2
,𝜌𝑖𝑛

⟩
𝒯

(2.16)

where ℛ𝒯 ′ = ℐ* ∘ ℒ*Σ and 𝒦𝑁,𝒯 ⊂ [P𝒯 ]𝑁+1 is the convex subset of potentials 𝜑 verifying

ℐ*
(︃
𝜑𝑘+1 − 𝜑𝑘

𝜏

)︃
+

1
4
ℛ𝒯 ′

(︂(︁
∇Σ𝜑

𝑘
)︁2

+
(︁
∇Σ𝜑

𝑘+1
)︁2
)︂
≤ 0.

3. Convergence to the continuous problem

In this section, we provide quantitative estimates for the convergence of the action and the discrete potential 𝜑
towards their continuous counterparts, in the case of solutions with smooth strictly positive densities. Note that
we restrict ourselves to the case of the linear reconstruction operator, i.e., we take ℛΣ = ℒΣ. As a consequence
of Remark 2.3, these results are also valid for the finite volume discretization considered in [21].

First of all, we introduce some additional notation. Let 𝐹 ,𝐺 ∈ [F𝒯 ]𝑁+1 and 𝜌 ∈ [P+
𝒯 ′ ]

𝑁+2. We define the
following weighted inner products:

⟨𝐹 ,𝐺⟩𝜌 := 𝜏

𝑁+1∑︁
𝑘=1

⟨
𝐹 𝑘,𝐺𝑘

⟩
𝜌𝑘+𝜌𝑘−1

2

, (3.1)

where ⟨
𝐹 𝑘,𝐺𝑘

⟩
𝜌𝑘

:=
∑︁
𝜎∈Σ

(︀
𝐹 𝑘

𝐾,𝜎𝐺
𝑘
𝐾,𝜎 + 𝐹 𝑘

𝐿,𝜎𝐺
𝑘
𝐿,𝜎

)︀ (︀
(ℛΣ ∘ ℐ)𝜌𝑘

)︀
𝜎

𝑚𝜎𝑑𝜎

2
·
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We will denote by ‖ · ‖𝜌 and ‖ · ‖𝜌𝑘 the (semi-)norms associated with these (semi-)inner products.
We will consider two sampling operators: one for the density Π𝒯 ′ : 𝐿1(Ω) → P𝒯 ′ , which performs an average

on each cell, and one for the potential Π𝒯 : 𝐶0(Ω) → P𝒯 , which evaluates the function at the cell center. More
precisely, given 𝑓 ∈ 𝐿1(Ω) and 𝑔 ∈ 𝐶0(Ω), we define

(Π𝒯 ′𝑓)𝐾′ :=
1

𝑚𝐾′

∫︁
𝐾′
𝑓 d𝑥, (Π𝒯 𝑔)𝐾 := 𝑔(x𝐾),

for all 𝐾 ′ ∈ 𝒯 ′ and 𝐾 ∈ 𝒯 . For any time dependent functions 𝜌 ∈ 𝐶0([0, 1], 𝐿1(Ω)) and 𝜑 ∈ 𝐶0([0, 1] × Ω) we
define Π𝒯 ′𝜌 := (Π𝒯 ′𝜌(𝑡𝑘, ·))𝑁+1

𝑘=0 and

Π𝒯 𝜑 :=

(︃
1
𝜏

∫︁ 𝑡𝑘

𝑡𝑘−1
Π𝒯 𝜑(𝑠, ·)d𝑠

)︃𝑁+1

𝑘=1

.

We will denote by ℎ the maximum cell diameter of the fine mesh, i.e., ℎ := max𝐾∈𝒯 diam(𝐾). We will assume
two regularity conditions on the fine mesh. Firstly, there exists a constant 𝜁, which does not depend on ℎ, such
that

diam(𝐾) ≤ 𝜁𝑑𝜎 ≤ 𝜁2diam(𝐾), ∀𝜎 ∈ Σ𝐾 , ∀𝐾 ∈ 𝒯 ; (3.2)
dist(x𝐾 ,𝐾) ≤ 𝜁 diam(𝐾), ∀𝐾 ∈ 𝒯 . (3.3)

Secondly, there exists a constant 𝜂ℎ > 0 only depending on ℎ, with 𝜂ℎ → 0 for ℎ→ 0, such that∑︁
𝜎∈Σ𝐾

𝑚𝜎𝑑𝐾,𝜎𝑛𝐾,𝜎 ⊗ 𝑛𝐾,𝜎 ≤ 𝑚𝐾 (1 + 𝜂ℎ) Id, ∀𝐾 ∈ 𝒯 . (3.4)

The latter condition is essentially a specific instance of the asymptotic isotropy condition in [19] (see Def. 1.3).
When the cell centers x𝐾 are chosen as the circumcenters of the associated cell (as in the particular examples of
meshes described in Sect. 2.1), a stronger property holds, which has been referred to as center of mass condition
[19] or superadmissibility [14], and which reads as follows:∑︁

𝜎∈Σ𝐾

𝑚𝜎𝑑𝐾,𝜎𝑛𝐾,𝜎 ⊗ 𝑛𝐾,𝜎 = 𝑚𝐾Id. (3.5)

However, for generality of the discussion, in the following we will only require (3.4) and therefore we will keep
the dependence on 𝜂ℎ explicit.

The following lemma collects some consistency properties of the projection Π𝒯 . In particular, point (3) below
shows that the asymptotic isotropy condition implies the consistency of the quadratic term in the discrete
Wasserstein distance (2.15), and justifies our discretization of the functional ℬ𝑁,𝒯 .

Lemma 3.1. The following properties hold:

(1) for any 𝜓 ∈ 𝐶0(Ω), max𝐾∈𝒯 |(Π𝒯 𝜓)𝐾 | ≤ ‖𝜓‖𝐶0 ;
(2) for any 𝜓 ∈ 𝐶0,1(Ω), there exists a constant 𝐶 > 0 only depending on 𝜓 and 𝜁 such that

max
𝐾∈𝒯

‖ (Π𝒯 𝜓)𝐾 − 𝜓‖𝐶0(𝐾) ≤ 𝐶ℎ;

(3) for any 𝜓 ∈ 𝐶1,1(Ω), there exists a constant 𝐶 > 0 only depending on 𝜓 and 𝜁 such that(︀
ℒ*Σ|∇ΣΠ𝒯 𝜓|2

)︀
𝐾
≤
(︀
Π𝒯 |∇𝜓|2

)︀
𝐾

+ 𝐶 (ℎ+ 𝜂ℎ) ,

for all 𝐾 ∈ 𝒯 , where ℒΣ is the linear reconstruction operator and 𝜂ℎ is defined as in (3.4).
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Proof. The first two points follow easily from the definition of Π𝒯 and the regularity condition (3.3). For (3),
observe that, by definition of the linear reconstruction operator,

(ℒ*Σ|∇𝜎Π𝒯 𝜓|2)𝐾 =
∑︁

𝜎∈Σ𝐾

|∇𝜎Π𝒯 𝜓|2
𝑚𝜎𝑑𝐾,𝜎

𝑚𝐾
· (3.6)

Then, using the definition of the operator Π𝒯 and the regularity condition (3.2),

∇𝜎Π𝒯 𝜓 =
⃒⃒⃒⃒
𝜓(x𝐾)− 𝜓(x𝐿)

𝑑𝜎

⃒⃒⃒⃒
=

1
𝑑𝜎

⃒⃒⃒⃒∫︁ 1

0

d
d𝑠
𝜓((1− 𝑠)x𝐾 + 𝑠x𝐿)d𝑠

⃒⃒⃒⃒
≤ |∇𝜓(𝑥𝐾) · 𝑛𝐾,𝜎|+ 𝐶ℎ.

Replacing this into (3.6), neglecting higher order terms, and using the asymptotic isotropy assumption (3.4),
we obtain the desired bound. �

Proposition 3.3 below is an adaptation to our setting of standard approximation results for elliptic problems.
It quantifies the consistency of the projection Π𝒯 ′ in terms of the associated potential. As in [19], we will use it
to construct an admissible competitor for the discrete problem. Before proving the result, we state the following
classical finite-volume version of the Poincaré inequality.

Lemma 3.2 (Discrete mean Poincaré inequality, [13], Lem. 10.2). There exists a constant 𝐶 > 0, only depending
on Ω, such that for all admissible meshes 𝒯 , and for all 𝜓 ∈ P𝒯 , the following inequality holds:⃦⃦⃦⃦

⃦𝜓 − 1
|Ω|

∑︁
𝐾∈𝒯

𝜓𝐾𝑚𝐾

⃦⃦⃦⃦
⃦
𝒯

≤ 𝐶 ‖∇Σ𝜓‖F𝒯 .

Proposition 3.3. Suppose that 𝜌, 𝜕𝑡𝜌 ∈ 𝐿∞([0, 1], 𝐶0,1(Ω)), with 𝜌 ≥ 𝜀 > 0, and let 𝜑 ∈ 𝐿∞([0, 1], 𝐶1,1(Ω)) be
a solution of

−div (𝜌∇𝜑) = 𝜕𝑡𝜌, ∇𝜑 · 𝑛𝜕Ω = 0 on 𝜕Ω. (3.7)

Let 𝜌 = Π𝒯 ′𝜌 and let 𝜑 be a solution of

−div𝒯

(︂
(ℒΣ ∘ ℐ)

(︂
𝜌𝑘 + 𝜌𝑘−1

2

)︂
⊙∇Σ𝜑

𝑘

)︂
= ℐ

(︂
𝜌𝑘 − 𝜌𝑘−1

𝜏

)︂
·

Then, there exists a constant 𝐶 > 0 depending only on 𝜑, 𝜌, 𝜀, 𝜁 and Ω, such that

‖∇Σ𝜑‖2𝜌 ≤
∫︁ 1

0

∫︁
Ω

𝜌|∇𝜑|2 d𝑥d𝑡+ 𝐶(ℎ+ 𝜏 + 𝜂ℎ), (3.8)

with 𝜂ℎ defined as in (3.4).

Proof. First, we integrate equation (3.7) over the time-space cell [𝑡𝑘−1, 𝑡𝑘] × 𝐾 and divide it by 𝜏𝑚𝐾 . This
yields

−div𝐾𝑢
𝑘 =

1
𝑚𝐾𝜏

∫︁
𝐾

∫︁ 𝑡𝑘

𝑡𝑘−1
𝜕𝑡𝜌d𝑡d𝑥. (3.9)

where 𝑢 ∈ [F𝒯 ]𝑁+1 is defined by

𝑢𝑘
𝐾,𝜎 :=

1
𝜏𝑚𝜎

∫︁
𝜎

∫︁ 𝑡𝑘

𝑡𝑘−1
(𝜌∇𝜑) · 𝑛𝐾,𝜎 d𝑡d𝑠.

We define 𝑒 ∈ [F𝒯 ]𝑁+1 and 𝑟 ∈ [P𝒯 ]𝑁+1 by

𝑒𝑘
𝐾,𝜎 = 𝑢𝑘

𝐾,𝜎 − ((ℒΣ ∘ ℐ)
𝜌𝑘 + 𝜌𝑘−1

2
)𝜎∇𝜎(Π𝒯 𝜑)𝑘,
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and denoting by 𝐾 ′ the cell in 𝒯 ′ such that 𝐾 ⊂ 𝐾 ′,

𝑟𝑘
𝐾 :=

1
𝑚𝐾𝜏

∫︁
𝐾

∫︁ 𝑡𝑘

𝑡𝑘−1
𝜕𝑡𝜌 d𝑡 d𝑥− 1

𝑚𝐾′𝜏

∫︁
𝐾′

∫︁ 𝑡𝑘

𝑡𝑘−1
𝜕𝑡𝜌d𝑡d𝑥.

Then

−div𝒯

(︂
(ℒΣ ∘ ℐ)

(︂
𝜌𝑘 + 𝜌𝑘−1

2

)︂
⊙∇Σ

(︁
𝜑𝑘 −

(︀
Π𝒯 𝜑

)︀𝑘)︁)︂
= 𝑟𝑘 − div𝒯 𝑒𝑘.

Multiplying both sides by
(︁
𝜑𝑘 −

(︀
Π𝒯 𝜑

)︀𝑘)︁
we obtain⃦⃦⃦

∇Σ

(︁
𝜑𝑘 −

(︀
Π𝒯 𝜑

)︀𝑘)︁⃦⃦⃦2

𝜌𝑘+𝜌𝑘−1
2

=
⟨
𝑟𝑘 − div𝒯 𝑒𝑘,

(︁
𝜑𝑘 −

(︀
Π𝒯 𝜑

)︀𝑘)︁⟩
𝒯
.

Using the discrete Poincaré inequality of Lemma 3.2 and the lower bound on 𝜌, this implies⃦⃦⃦
∇Σ

(︁
𝜑𝑘 −

(︀
Π𝒯 𝜑

)︀𝑘)︁⃦⃦⃦
𝜌𝑘+𝜌𝑘−1

2

≤ 𝐶
(︀
‖𝑟𝑘‖𝒯 + ‖𝑒𝑘‖F𝒯

)︀
,

where 𝐶 > 0 is a constant only depending on the lower bound 𝜀 and the domain. By the regularity of 𝜑 and 𝜌,
and the estimate (3.2), we then obtain⃦⃦⃦

∇Σ

(︁
𝜑𝑘 −

(︀
Π𝒯 𝜑

)︀𝑘)︁⃦⃦⃦
𝜌𝑘+𝜌𝑘−1

2

≤ 𝐶(ℎ+ 𝜏), (3.10)

where now 𝐶 depends also on 𝜌 and 𝜑.
In order to get an estimate on the energy, we observe that 𝜑𝑘 minimizes the functional

𝜓 ∈ [P𝒯 ]𝑁+1 ↦−→ ‖∇Σ𝜓‖2𝜌𝑘+𝜌𝑘−1
2

−
⟨
ℐ
(︂
𝜌𝑘 − 𝜌𝑘−1

𝜏

)︂
,𝜓

⟩
𝒯
,

which implies the inequality⃦⃦⃦
∇Σ𝜑

𝑘
⃦⃦⃦2

𝜌𝑘+𝜌𝑘−1
2

≤
⃦⃦⃦
∇Σ

(︁(︀
Π𝒯 𝜑

)︀𝑘)︁⃦⃦⃦2

𝜌𝑘+𝜌𝑘−1
2

+
⟨
ℐ
(︂
𝜌𝑘 − 𝜌𝑘−1

𝜏

)︂
,
(︁
𝜑𝑘 −

(︀
Π𝒯 𝜑

)︀𝑘)︁⟩
𝒯
.

Using again the discrete Poincaré inequality of Lemma 3.2 and the lower bound on 𝜌, as well as its regularity,
we get ⃦⃦⃦

∇Σ𝜑
𝑘
⃦⃦⃦2

𝜌𝑘+𝜌𝑘−1
2

≤
⃦⃦⃦
∇Σ

(︁
Π𝒯 (𝜑)𝑘

)︁⃦⃦⃦2

𝜌𝑘+𝜌𝑘−1
2

+ 𝐶
⃦⃦⃦
∇Σ

(︁
𝜑𝑘 −

(︀
Π𝒯 𝜑

)︀𝑘)︁⃦⃦⃦
𝜌𝑘+𝜌𝑘−1

2

.

Hence, using (3.10), we obtain
‖∇Σ𝜑‖2𝜌 ≤

⃦⃦
∇Σ

(︀
Π𝒯 𝜑

)︀⃦⃦2

𝜌
+ 𝐶(ℎ+ 𝜏).

Finally, using Jensen’s inequality and then Lemma 3.1, we find

⃦⃦
∇ΣΠ𝒯 𝜑

⃦⃦2

𝜌
≤

𝑁+1∑︁
𝑘=1

∫︁ 𝑡𝑘

𝑡𝑘−1
‖∇Σ (Π𝒯 𝜑(𝑡, ·)) ‖2𝜌𝑘+𝜌𝑘−1

2

d𝑡

≤
𝑁+1∑︁
𝑘=1

∫︁ 𝑡𝑘

𝑡𝑘−1

⟨
ℐ 𝜌

𝑘 + 𝜌𝑘−1

2
,Π𝒯 |∇𝜑(𝑡, ·)|2

⟩
𝒯

d𝑡+ 𝐶(ℎ+ 𝜂ℎ)

=
𝑁+1∑︁
𝑘=1

∑︁
𝐾∈𝒯

∫︁ 𝑡𝑘

𝑡𝑘−1

∫︁
𝐾

𝜌
(︀
𝑡𝑘, ·
)︀

+ 𝜌
(︀
𝑡𝑘−1, ·

)︀
2

|∇𝜑 (𝑡,x𝐾) |2 d𝑥d𝑡+ 𝐶 (ℎ+ 𝜂ℎ)

≤
∫︁ 1

0

∫︁
Ω

𝜌|∇𝜑|2 d𝑥d𝑡+ 𝐶 (ℎ+ 𝜏 + 𝜂ℎ) ,

which concludes the proof. �
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We are now ready to state the two main convergence results of this section, which provide quantitative
estimates for the convergence rates of the discrete action and the discrete potential.

Theorem 3.4 (Convergence of the action). Suppose that 𝜑 : [0, 1]×Ω → R is an optimal potential for the dual
Wasserstein problem from 𝜌𝑖𝑛 to 𝜌𝑓 and that 𝜌 : [0, 1] × Ω → [0,+∞) is the associated interpolation. Then,
denoting 𝜌𝑖𝑛 := Π𝒯 ′𝜌𝑖𝑛 and 𝜌𝑓 := Π𝒯 ′𝜌𝑓 , and taking 𝜂ℎ as in (3.4), the following holds:

(1) if 𝜑 ∈ 𝐶1,1([0, 1]× Ω), there exists a constant 𝐶 > 0 only dependent on 𝜑 and 𝜁 such that

𝑊 2
𝑁,𝒯

(︀
𝜌𝑖𝑛,𝜌𝑓

)︀
≥𝑊 2

2

(︀
𝜌𝑖𝑛, 𝜌𝑓

)︀
− 𝐶 (ℎ+ 𝜏 + 𝜂ℎ) ;

(2) if 𝜑 ∈ 𝐿∞([0, 1], 𝐶1,1(Ω)) and 𝜌, 𝜕𝑡𝜌 ∈ 𝐿∞([0, 1], 𝐶0,1(Ω)), with 𝜌 ≥ 𝜀 > 0, there exists a constant 𝐶 > 0
depending only on 𝜌, 𝜑, 𝜀, 𝜁 and Ω such that

𝑊 2
𝑁,𝒯

(︀
𝜌𝑖𝑛,𝜌𝑓

)︀
≤𝑊 2

2

(︀
𝜌𝑖𝑛, 𝜌𝑓

)︀
+ 𝐶 (ℎ+ 𝜏 + 𝜂ℎ) .

Proof. For the first point, we first observe that by Lemma 3.1 and the regularity of 𝜑, Π𝒯 𝜑 verifies

ℐ*
(︃(︀

Π𝒯 𝜑
)︀𝑘+1 −

(︀
Π𝒯 𝜑

)︀𝑘
𝜏

)︃
+
𝜏

4
ℛ𝒯 ′

(︂(︀
∇Σ(Π𝒯 𝜑)𝑘

)︀2
+
(︁
∇Σ

(︀
Π𝒯 𝜑

)︀𝑘+1
)︁2
)︂
≤ 𝐶 (ℎ+ 𝜏 + 𝜂ℎ) .

Then, define 𝜑 by 𝜑𝑘 :=
(︀
Π𝒯 𝜑

)︀𝑘 − 𝐶
(︀
𝑡𝑘 + 𝑡𝑘−1

)︀
(ℎ+ 𝜏 + 𝜂ℎ) /2, for 𝑘 ∈ {1, . . . , 𝑁 + 1}. Then 𝜑 is admissible

for the dual problem (2.16), hence

𝑊 2
𝑁,𝒯

(︀
𝜌𝑖𝑛,𝜌𝑓

)︀
2

≥
⟨
ℐ*𝜑𝑁+1 − 𝜏

4
ℛ𝒯 ′

(︁
∇Σ𝜑

𝑁+1
)︁2

,𝜌𝑓

⟩
𝒯 ′
−
⟨
ℐ*𝜑1 +

𝜏

4
ℛ𝒯 ′

(︀
∇Σ𝜑

1
)︀2
,𝜌𝑖𝑛

⟩
𝒯 ′
.

Replacing back the definition of 𝜑 and using the fact that |∇𝜎𝜑
1| and |∇𝜎𝜑

𝑁+1| are uniformly bounded by a
constant depending only on 𝜑, we get

𝑊 2
𝑁,𝒯

(︀
𝜌𝑖𝑛,𝜌𝑓

)︀
2

≥
∫︁

Ω

𝜑(1, ·)𝜌𝑓 −
∫︁

Ω

𝜑(0, ·)𝜌𝑖𝑛 − 𝐶(ℎ+ 𝜏 + 𝜂ℎ).

For the second point it suffices to observe that the couple (𝜌, 𝜑) satisfies (3.7). Then, defining 𝜌 and 𝜑 as
in the statement of Proposition 3.3, we can construct an admissible competitor (𝜌,𝐹 ) for the discrete optimal
transport problem by defining the momentum 𝐹 ∈ [F𝒯 ]𝑁+1 as in equation (2.10). Since, by definition,

𝑊 2
𝑁,𝒯

(︀
𝜌𝑖𝑛,𝜌𝑓

)︀
≤ 2ℬ𝑁,𝒯 (𝜌,𝐹 ) = ‖∇Σ𝜑‖2𝜌,

we obtain the desired estimate using (3.8). �

The issue of convergence of the discrete solution (𝜌,𝐹 ) towards its continuous counterpart has been treated
in detail in [21] for a general class of discretizations. These include the finite volume schemes considered here,
in the case where the two domain decompositions coincide so that ℐ is the identity operator (see Rem. 2.3). For
this case, one has that the discrete density 𝜌 can be lifted to a measure on [0, 1]× Ω converging weakly to the
exact optimal transport interpolation with mesh refinement.

It is not difficult to show that the second point of Theorem 3.4 implies a similar convergence result, for
smooth positive solutions, also when the two discretizations of the domain do not coincide (e.g., this is a direct
consequence of Thm. 2.18 in [21]). Besides this weak convergence result, Theorem 3.4 also implies the following
quantitative estimate for the convergence of the potential, although in a norm dependent on the discrete solution
itself.
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Theorem 3.5 (Convergence of the potential). Suppose that 𝜑 : [0, 1] × Ω → R is an optimal potential for the
dual Wasserstein problem from 𝜌𝑖𝑛 to 𝜌𝑓 and that 𝜌 : [0, 1] × Ω → [0,+∞) is the associated interpolation.
Let (�̃�, �̃�) be the discrete solution associated with the boundary conditions 𝜌𝑖𝑛 := Π𝒯 ′𝜌𝑖𝑛 and 𝜌𝑓 := Π𝒯 ′𝜌𝑓 . If
𝜑 ∈ 𝐶1,1([0, 1] × Ω) and 𝜌, 𝜕𝑡𝜌 ∈ 𝐿∞([0, 1], 𝐶0,1(Ω)), with 𝜌 ≥ 𝜀 > 0, there exists a constant 𝐶 > 0 depending
only on 𝜌, 𝜑, 𝜀, 𝜁 and Ω, such that

‖∇Σ�̃�−∇ΣΠ𝒯 𝜑‖2�̃� ≤ 𝐶(ℎ+ 𝜏 + 𝜂ℎ),

for 𝜂ℎ defined as in (3.4).

Proof. Consider the quantity

ℰ𝑁,𝒯 (�̃�, �̃�|𝜑) :=
1
2
‖∇Σ�̃�−∇ΣΠ𝒯 𝜑‖2�̃�. (3.11)

Expanding the square in (3.11) we obtain

ℰ𝑁,𝒯 (�̃�, �̃�|𝜑) = ℬ𝑁,𝒯 (�̃�, �̃� ) +
1
2
‖∇ΣΠ𝒯 𝜑‖2�̃� − ⟨∇Σ�̃�,∇ΣΠ𝒯 𝜑⟩�̃�, (3.12)

where �̃� is given by equation (2.10). The second term in (3.12) can be written as follows

1
2
‖∇ΣΠ𝒯 𝜑‖2�̃� =

1
2

𝑁+1∑︁
𝑘=1

∫︁ 𝑡𝑘

𝑡𝑘−1

⟨
ℒ*Σ|∇ΣΠ𝒯 𝜑(𝑠, ·)|2 −Π𝒯 |∇𝜑(𝑠, ·)|2, ℐ

(︃
�̃�𝑘 + �̃�𝑘−1

2

)︃⟩
𝒯

d𝑠

−
𝑁+1∑︁
𝑘=1

∫︁ 𝑡𝑘

𝑡𝑘−1

⟨
Π𝒯 𝜕𝑡𝜑(𝑠, ·), ℐ

(︃
�̃�𝑘 + �̃�𝑘−1

2

)︃⟩
𝒯

d𝑠

= 𝐼1 −
𝑁+1∑︁
𝑘=1

⟨
Π𝒯 𝜑

(︀
𝑡𝑘, ·
)︀
−Π𝒯 𝜑

(︀
𝑡𝑘−1, ·

)︀
, ℐ

(︃
�̃�𝑘 + �̃�𝑘−1

2

)︃⟩
𝒯

.

(3.13)

The third term in (3.12) can be written as follows

−
⟨
∇Σ�̃�,∇ΣΠ𝒯 𝜑

⟩
�̃�

=
𝑁+1∑︁
𝑘=1

∫︁ 𝑡𝑘

𝑡𝑘−1

⟨
div𝒯

(︃
(ℒΣ ∘ ℐ)

(︃
�̃�𝑘 + �̃�𝑘−1

2

)︃
⊙∇Σ𝜑

𝑘

)︃
,Π𝒯 𝜑(𝑠, ·)

⟩
𝒯

d𝑠

= −
𝑁+1∑︁
𝑘=1

∫︁ 𝑡𝑘

𝑡𝑘−1

⟨
ℐ

(︃
�̃�𝑘 − �̃�𝑘−1

𝜏

)︃
,Π𝒯 𝜑(𝑠, ·)

⟩
𝒯

d𝑠

= 𝐼2 −
⟨︀
ℐ�̃�𝑁+1,Π𝒯 𝜑(1, ·)

⟩︀
𝒯 +

⟨︀
ℐ�̃�0,Π𝒯 𝜑(0, ·)

⟩︀
𝒯

+
𝑁∑︁

𝑘=1

⟨
Π𝒯 𝜑

(︀
𝑡𝑘, ·
)︀
−Π𝒯 𝜑

(︀
𝑡𝑘−1, ·

)︀
, ℐ

(︃
�̃�𝑘 + �̃�𝑘−1

2

)︃⟩
𝒯

,

(3.14)

where

𝐼2 :=
𝑁∑︁

𝑘=1

∫︁ 𝑡𝑘

𝑡𝑘−1

⟨
Π𝒯 𝜕𝑡𝜑(𝑠, ·)−Π𝒯

𝜑
(︀
𝑡𝑘+1, ·

)︀
− 𝜑

(︀
𝑡𝑘, ·
)︀

𝜏
, ℐ�̃�𝑘−1,𝑘(𝑠)

⟩
𝒯

d𝑠

and �̃�𝑘−1,𝑘(𝑠) is the linear interpolation between �̃�𝑘−1 and �̃�𝑘, i.e., �̃�𝑘−1,𝑘(𝑠) := �̃�𝑘−1
(︀
𝑡𝑘 − 𝑠

)︀
/𝜏 +

�̃�𝑘 (𝑠− 𝑡𝑘−1) /𝜏 .
Adding and subtracting 𝑊 2

2 (𝜌𝑖𝑛, 𝜌𝑓 )/2 =
∫︀
Ω
𝜑(1, ·)𝜌𝑓 −

∫︀
Ω
𝜑(0, ·)𝜌𝑖𝑛 from the right-hand side of (3.12), sub-

stituting (3.13) and (3.14), and rearranging terms we obtain

ℰ𝑁,𝒯

(︁
�̃�, �̃�|𝜑

)︁
=
𝑊 2

𝑁,𝒯
(︀
𝜌𝑖𝑛,𝜌𝑓

)︀
2

−
𝑊 2

2

(︀
𝜌𝑖𝑛, 𝜌𝑓

)︀
2

+ 𝐼1 + 𝐼2 + 𝐼3, (3.15)
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where
𝐼3 :=

∫︁
Ω

𝜑(1, ·)𝜌𝑓 −
∫︁

Ω

𝜑(0, ·)𝜌𝑖𝑛 −
⟨︀
ℐ*Π𝒯 𝜑(1, ·),𝜌𝑓

⟩︀
+
⟨︀
ℐ*Π𝒯 𝜑(0, ·),𝜌𝑖𝑛

⟩︀
,

since 𝜌0 = Π𝒯 ′𝜌𝑖𝑛 and 𝜌𝑁+1 = Π𝒯 ′𝜌𝑓 . Finally, we estimate 𝐼1 and 𝐼3 using Lemma 3.1, 𝐼2 using the regularity
of 𝜑, and the remaining term using the second point in Theorem 3.4. �

Remark 3.6. It is easy to construct solutions to the optimality conditions (1.7), and therefore to problem (1.1),
satisfying the assumptions of Theorem 3.4 or 3.5. In fact, given any smooth compactly-supported initial potential
𝜑0 : Ω → R, there exists 𝛿 > 0 such that the map 𝑥 ↦→ 𝑇𝑡(𝑥) := 𝑥 + 𝑡∇𝜑0(𝑥) is a differmorphism for 𝑡 ∈ [0, 𝛿],
and 𝜑(𝑡, ·) = 𝜑0 ∘𝑇−1

𝑡 is a smooth solution to the Hamilton–Jacobi equation. Moreover, given a strictly positive
and smooth initial density 𝜌0, the density 𝜌(𝑡, ·) = (𝜌0/det(∇𝑇𝑡)) ∘ 𝑇−1

𝑡 solves the continuity equation with
velocity ∇𝜑(𝑡, ·), and it is also smooth and strictly positive for 𝑡 ∈ [0, 𝛿]. Then, the curve 𝑡 ↦→ (𝜌(𝑡𝛿, ·), 𝛿𝜑(𝑡𝛿, ·))
solves the optimality conditions (1.7) on the time interval [0, 1]. On the other hand, even in the case where 𝜌0

and 𝜌1 are smooth and strictly positive the interpolation may not even be strictly positive as shown in [29].

Remark 3.7. The quantity ℰ𝑁,𝒯 (�̃�, �̃�|𝜑) defined in equation (3.11) is the discrete 𝐻1 semi-norm of the error
weighted by the discrete solution �̃�. Note that this can also be seen as a discretization of the modulated energy
(or relative entropy) of the kinetic energy, interpreted as a convex function of (𝜌, 𝐹 ). In Section 5 we will use a
similar quantity in order to evaluate numerically the convergence rate of the scheme.

4. Primal-dual barrier method

We introduce now the primal-dual barrier method, the discrete optimization technique we use to deal with
the uniqueness, smoothness and positivity issues and effectively solve problem (2.6). The method consists in
perturbing the discrete problem with a barrier function which forces the density to be positive. Here we show
that the solutions of such perturbed problem converge to the ones of the original problem, when the perturbation
vanishes, therefore justifying the use of a continuation method. Finally, we will detail the implementation of the
algorithm commenting on the choice of the parameters involved.

The most classical barrier function used when dealing with positivity constraints is the logarithmic barrier,
− log 𝜌. In order to write the perturbed problem, we first define precisely the barrier,

𝐽(𝑥) =

{︃
− log(𝑥) if 𝑥 > 0,
+∞ if 𝑥 ≤ 0,

so that it is convex and lower semi-continuous. We define the barrier function as 𝒥𝑁,𝒯 (𝜌) =∑︀𝑁
𝑘=1 𝜏

∑︀
𝐾∈𝒯 ′ 𝐽(𝜌𝑘

𝐾′)𝑚𝐾′ and the perturbed version of problem (2.6) is therefore:

inf
(𝜌,𝐹 )∈𝒞𝑁,𝒯

ℬ𝑁,𝒯 (𝜌,𝐹 ) + 𝜇𝒥𝑁,𝒯 (𝜌). (4.1)

Thanks to the strict convexity of the function 𝒥𝑁,𝒯 on [P+
𝒯 ′ ∖ {0}]𝑁 , the solution (𝜌𝜇,𝐹 𝜇) is now unique.

Proceding as in Section 2.3, 𝜌𝜇 can be characterized as solution to the system of optimality conditions⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ℐ
(︂
𝜌𝑘 − 𝜌𝑘−1

𝜏

)︂
+ div𝒯

(︂
(ℛΣ ∘ ℐ)

(︂
𝜌𝑘 + 𝜌𝑘−1

2

)︂
⊙∇Σ𝜑

𝑘

)︂
= 0,

ℐ*
(︃
𝜑𝑘+1 − 𝜑𝑘

𝜏

)︃
+

1
4
ℛ𝒯 ′

[︂
𝜌𝑘 + 𝜌𝑘−1

2

]︂(︁
∇Σ𝜑

𝑘
)︁2

+ℛ𝒯 ′
[︂
𝜌𝑘+1 + 𝜌𝑘

2

]︂(︁
∇Σ𝜑

𝑘+1
)︁2

= −𝑠𝑘,

𝜌𝑘 ⊙ 𝑠𝑘 = 𝜇,

(4.2)

where 𝑘 ∈ {1, . . . , 𝑁 + 1} for the continuity equation and 𝑘 ∈ {1, . . . , 𝑁} for the other conditions, and where
(𝜇)𝐾′ = 𝜇. The variable 𝑠 ∈ [P𝒯 ′ ]𝑁 , (𝑠𝑘)𝐾′ = 𝜇

𝜌𝑘
𝐾′

, has been introduced in order to decouple the optimization
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in 𝜌 and 𝑠, and it highlights the connection with system (2.13). In particular, system (4.2) can be seen as a
perturbation of (2.13), where 𝜌𝑘

𝐾′ and 𝑠𝑘
𝐾′ = −𝜆𝑘

𝐾′ are automatically forced to be positive and the orthogonality
is relaxed. In this way, the solution (𝜑𝜇,𝜌𝜇, 𝑠𝜇) is now unique, up to an additive constant for the potential, and
the problem is smooth.

As it is classical in interior point methods (see, e.g., [7]), if we regard (𝜌𝜇,𝐹 𝜇) as an approximate solution
to problem (2.6), we can derive an explicit estimate on how far it is from optimality. Given a solution (𝜌,𝐹 ) of
the original problem, and defining �̃� ∈ [P𝒯 ′ ]𝑁 by (�̃�𝑘)𝐾′ = − 𝜇

𝜌𝑘
𝐾′

, we have

ℬ𝑁,𝒯 (𝜌,𝐹 ) = sup
𝜑

inf
𝜌≥0,𝐹

ℒ𝑁,𝒯 (𝜑,𝜌,𝐹 )

≥ inf
𝜌≥0,𝐹

ℒ𝑁,𝒯 (𝜑𝜇,𝜌,𝐹 ) +
𝑁∑︁

𝑘=1

𝜏
⟨
�̃�

𝑘
,𝜌𝑘
⟩
𝒯 ′

= ℒ𝑁,𝒯 (𝜑𝜇,𝜌𝜇,𝐹 𝜇) +
𝑁∑︁

𝑘=1

𝜏
⟨
�̃�

𝑘
, (𝜌𝜇)𝑘

⟩
𝒯 ′

= ℬ𝑁,𝒯 (𝜌𝜇,𝐹 𝜇)− 𝜇
𝑁

𝑁 + 1
|Ω|,

(4.3)

where we used the fact that (𝜌𝜇,𝐹 𝜇) is optimal for ℒ𝑁,𝒯 (𝜑𝜇,𝜌,𝐹 ) +
∑︀𝑁

𝑘=1 𝜏
⟨
�̃�

𝑘
,𝜌𝑘
⟩
𝒯 ′

, which can be easily

verified by comparing the associated optimality conditions with (4.2). We have therefore

0 ≤ ℬ𝑁,𝒯 (𝜌𝜇,𝐹 𝜇)− ℬ𝑁,𝒯 (𝜌,𝐹 ) ≤ 𝜇
𝑁

𝑁 + 1
|Ω|. (4.4)

As a consequence of (4.4), the smaller the parameter 𝜇, the closer the perturbed solution is to the original one.

Theorem 4.1. The solution (𝜌𝜇,𝐹 𝜇) of problem (4.1) converges up to extraction of a subsequence to (𝜌,𝐹 )
solution of (2.6) for 𝜇→ 0.

Proof. Consider a sequence (𝜇𝑛)𝑛 ⊂ R+ converging to zero and the corresponding sequence (𝜌𝜇𝑛 ,𝐹 𝜇𝑛) of
solutions to problem (4.1). We first derive a bound on (𝜌𝜇𝑛 ,𝐹 𝜇𝑛), independent of 𝜇. The bound on 𝜌𝜇𝑛 derives
easily from the conservation of mass. To obtain a bound for the momentum 𝐹 𝜇𝑛 , for any 𝑏 ∈ [F𝒯 ]𝑁+1 with
|𝑏𝑘𝜎| ≤ 1 for all 𝜎 ∈ Σ, 𝑘 ∈ {1, . . . , 𝑁 + 1}, we observe that there exists a constant 𝐶 > 0 independent of 𝜇 such
that

𝑁+1∑︁
𝑘=1

𝜏
⟨

(𝐹 𝜇𝑛)𝑘, 𝑏𝑘
⟩

F𝒯
≤
√︁

2ℬ𝑁,𝒯 (𝜌𝜇𝑛 ,𝐹 𝜇𝑛)‖𝑏‖𝜌𝜇 ≤ 𝐶, (4.5)

where the weighted norm ‖·‖𝜌𝜇 is defined via (3.1). Note that the first inequality derives from a simple rescaling
argument with the term 𝜌𝑠 ∈ P𝑁+1

Σ , given by

𝜌𝑘
𝑠 =

√︂
(ℛΣ ∘ ℐ)

(𝜌𝜇𝑛)𝑘 + (𝜌𝜇𝑛)𝑘−1

2
,

and applying Cauchy–Schwarz. The second one is obtained using the inequality (4.4). Taking the sup with
respect to 𝑏 in (4.5) we obtain the bound on 𝐹 𝜇𝑛 .

The sequence (𝜌𝜇𝑛 ,𝐹 𝜇𝑛) is bounded hence we can extract a converging subsequence (still labeled with 𝜇𝑛

for simplicity) (𝜌𝜇𝑛 ,𝐹 𝜇𝑛) → (𝜌*,𝐹 *). Consider (𝜌,𝐹 ) minimizer of the unperturbed problem (2.6). Using
inequality (4.4) and taking the lim inf for 𝑛→ +∞, we obtain ℬ𝑁,𝒯 (𝜌*,𝐹 *) = ℬ𝑁,𝒯 (𝜌,𝐹 ), hence (𝜌*,𝐹 *) is a
minimizer for problem (2.6). �

Remark 4.2. If the solution (𝜌,𝐹 ) of the discrete problem (2.6) is unique, then the entire sequence (𝜌𝜇𝑛 ,𝐹 𝜇𝑛)
converges to it. In case it is not unique, for any solution (𝜌,𝐹 )

0 ≤ ℬ𝑁,𝒯 (𝜌𝜇𝑛 ,𝐹 𝜇𝑛)− ℬ𝑁,𝒯 (𝜌,𝐹 ) ≤ 𝜇𝑛 (𝒥𝑁,𝒯 (𝜌)− 𝒥𝑁,𝒯 (𝜌𝜇𝑛)) ,
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and therefore (𝜌𝜇𝑛 ,𝐹 𝜇𝑛) converges up to subsequence to a solution (𝜌*,𝐹 *) with minimal 𝒥𝑁,𝒯 . In case the
solution 𝜌* is strictly positive everywhere, the whole sequence (𝜌𝜇𝑛 ,𝐹 𝜇𝑛) converges again.

The strict positivity derives automatically from the definition of the barrier function, which attains the value
+∞ in zero. As a consequence, for every value of 𝜇 > 0 the objective function ℬ𝑁,𝒯 (𝜌,𝐹 )+𝜇𝒥𝑁,𝒯 (𝜌) is smooth
in a neighborhood of the solution (𝜌𝜇,𝐹 𝜇), ensuring a good behavior of the Newton scheme for the solution of
the system of equations (4.2). It is possible to derive a quantitative bound for the positivity of 𝜌𝜇 as follows.

Proposition 4.3. There exists a constant 𝐶 > 0 independent of 𝜇 such that the density 𝜌𝜇 solution to problem
(4.1) satisfies the following bound:

(𝜌𝜇)𝑘
𝐾′ ≥ 𝐶𝜇, ∀𝐾 ′ ∈ 𝒯 ′, ∀𝑘. (4.6)

Proof. Consider the solution (𝜌𝜇,𝐹 𝜇) to (4.1). We define the constant density 𝑐 ∈
[︀
P+
𝒯 ′
]︀𝑁

, 𝑐𝑘𝐾′ =(︀∑︀
𝐾∈𝒯 𝑚𝐾′

)︀−1. It can be easily checked that 𝑐 is solution to

min
𝜌∈[P𝒯 ′ ]𝑁

𝒥𝑁,𝒯 (𝜌) such that
∑︁

𝐾′∈𝒯 ′
𝜌𝑘

𝐾′𝑚𝐾′ = 1,∀𝑘.

From now on, with a slight abuse of notation, we consider 𝑐 to be complemented with the boundary conditions
𝜌𝑖𝑛,𝜌𝑓 . Thanks to the surjectivity of the divergence operator (to the space of discrete functions in [P𝒯 ]𝑁+1

with zero mean), we can find the momentum 𝐹 𝑐, with minimal ‖ · ‖𝑐 norm (defined via Eq. (3.1)), such that
(𝑐,𝐹 𝑐) ∈ 𝒞𝑁,𝒯 . Taking the admissible competitor

(︁
�̂�, �̂�

)︁
= (𝜖𝑐+ (1− 𝜖)𝜌𝜇, 𝜖𝐹 𝑐 + (1− 𝜖)𝐹 𝜇) , 𝜖 ∈ [0, 1], for

problem (4.1), it holds

𝜇 (𝒥𝑁,𝒯 (𝜌𝜇)− 𝒥𝑁,𝒯 (�̂�)) ≤ ℬ𝑁,𝒯

(︁
�̂�, �̂�

)︁
− ℬ𝑁,𝒯 (𝜌𝜇,𝐹 𝜇) . (4.7)

The right hand side of (4.7) is bounded: indeed, by convexity of ℬ𝑁,𝒯 , it holds

ℬ𝑁,𝒯

(︁
�̂�, �̂�

)︁
− ℬ𝑁,𝒯 (𝜌𝜇,𝐹 𝜇) ≤ 𝜖ℬ𝑁,𝒯 (𝜌𝑐,𝐹 𝑐) + (1− 𝜖)ℬ𝑁,𝒯 (𝜌𝜇,𝐹 𝜇)− ℬ𝑁,𝒯 (𝜌𝜇,𝐹 𝜇)

≤ 𝐶𝜖.
(4.8)

The left hand side of (4.7) can be bounded from below thanks to the convexity of 𝒥𝑁,𝒯 , by the following quantity

𝜇

𝑁∑︁
𝑘=1

∑︁
𝐾′∈𝒯 ′

𝐽 ′
(︀
𝜌𝑘

𝐾′

)︀ (︁
(𝜌𝜇)𝑘

𝐾′ − 𝜌𝑘
𝐾′

)︁
𝑚𝐾′𝜏 = 𝜇𝜖

𝑁∑︁
𝑘=1

∑︁
𝐾′∈𝒯 ′

𝐽 ′
(︀
𝜌𝑘

𝐾′

)︀ (︁
(𝜌𝜇)𝑘

𝐾′ − 𝑐𝑘𝐾′

)︁
𝑚𝐾′𝜏.

Hence, we obtain

𝜇𝜖

𝑁∑︁
𝑘=1

∑︁
𝐾′∈𝒯 ′

𝐽 ′
(︀
𝜌𝑘

𝐾′

)︀ (︀
(𝜌𝜇)𝑘

𝐾′ − 𝑐𝑘𝐾′

)︀
𝑚𝐾′𝜏 ≤ 𝐶𝜖. (4.9)

Simplifying 𝜖 in (4.9) and taking the limit for 𝜖→ 0, we obtain

𝑁∑︁
𝑘=1

∑︁
𝐾′∈𝒯 ′

(︃
𝑐𝑘𝐾′

(𝜌𝜇)𝑘
𝐾′

− 1

)︃
𝑚𝐾′𝜏 ≤ 𝐶

𝜇
=⇒ min

𝐾′
(𝑚𝐾′) 𝜏

𝑁∑︁
𝑘=1

∑︁
𝐾′∈𝒯 ′

𝑐𝑘𝐾′

(𝜌𝜇)𝑘
𝐾′

≤ 𝐶

𝜇
+ |Ω|𝑇,

which implies the result. �
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By Theorem 4.1 the solution of problem (4.1) provides an approximation to a solution (𝜑,𝜌) to problem
(2.13), although the smaller the parameter the more difficult it is to solve the problem using a Newton method.
The idea is then to use a continuation method, that is construct a sequence of solutions to problem (4.2) for a
sequence of coefficients 𝜇 decreasing to zero, using each time the solution at the previous step as starting point
for the Newton scheme. The resulting algorithm in shown in Algorithm 1. We denote by 𝜃 the rate of decay for
𝜇; by 𝜀0 and 𝜀𝜇 the tolerances for the solution to (2.13) and (4.2), respectively; and by 𝛿0 and 𝛿𝜇 the error in
the convergence towards solutions of the original and perturbed problem. The parameter 𝛿𝜇 can be taken to
be a norm of the residual of the system of equations (4.2) or of the Newton step 𝑑. Concerning 𝛿0, it is either
possible to choose a norm of the residual of the system of equations (2.13) or 𝛿0 = 𝜇 𝑁

𝑁+1 |Ω|, by virtue of (4.4),
whether the proximity to the minimizer or to the minimum is preferred.

Algorithm 1:
Given the starting point (𝜑0,𝜌0, 𝑠0) and the parameters 𝜇0 > 0, 𝜃 ∈ (0, 1), 𝜀0 > 0 ;
while 𝛿0 > 𝜀0 do

𝜇 = 𝜃𝜇 ;
while 𝛿𝜇 > 𝜀𝜇 do

compute Newton direction 𝑑 for (4.2);
compute 𝛼 ∈ (0, 1] such that 𝜌+ 𝛼𝑑𝜌 > 0 and 𝑠+ 𝛼𝑑𝑠 > 0;
update: (𝜑,𝜌, 𝑠) = (𝜑,𝜌, 𝑠) + 𝛼 (𝑑𝜑,𝑑𝜌,𝑑𝑠) ;
if 𝑛 > 𝑛max or 𝛼 < 𝛼min then

increase 𝜇 and repeat ;
end

end

end

Since any intermediate solution for 𝜇 ̸= 0 is not of interest, a very common approach in interior point methods
is to set a relatively big tolerance 𝜀𝜇, or even to do just one Newton step per value of 𝜇. Nonetheless, a small
tolerance 𝜀𝜇 avoids the density to get accidentally too close to the boundary of the feasibility domain, i.e., too
close to zero, which would imply a drop in the regularity of the specific problem at hand. For this reason we
consider 𝜀𝜇 = 𝜀0.

A line search technique is typically employed in order to ensure global convergence of the Newton scheme.
However, in many cases it leads to a non negligible cost by forcing the Newton scheme to do several steps
before reaching convergence. Instead of modifying the step size 𝛼, we adaptively control 𝜃 in order to force the
convergence. The Newton scheme is repeated with an increased 𝜃 (i.e., with an increased 𝜇) if it is not able to
converge in 𝑛max steps. The step size 𝛼 is chosen just to ensure that 𝜌 and 𝑠 do not become negative. Again, the
Newton scheme is repeated if 𝛼 needs to be smaller than 𝛼min. In particular, taking 𝛼min = 1 one only allows
full Newton steps.

There exist of course several optimization solvers that could tackle the solution of problem (2.6), most of
which are usually based on interior point strategies, especially for large scales. Nevertheless, the specificity of
the problem at hand, its non-linearity of course but more importantly its lack of smoothness, led us to develop
our own solver, in order to better handle it. Moreover, the solution of the sequence of linear systems requires
an ad-hoc strategy, as mentioned in Sections 5 and 6. Finally, we remark that in the particular case of the
linear reconstruction, the corresponding dual problem in (2.16) can be cast in the form of a second-order cone
program, which can be solved again using an interior point method in polynomial time. This does not apply
to the case of the harmonic reconstruction (or more general reconstructions) for which the dual problem has a
more complex structure.
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5. Numerical results

In this section, we assess the performance of the scheme using several two-dimensional numerical tests. In
particular, we demonstrate the numerical implications of enriching the space of discrete potential, both from a
qualitative and quantitative point of view. As already noted in Remark 2.3, considering the two subdivisions
of the domain to be the same and taking ℐ to be the identity operator, we recover the discretization presented
in [21]. We will refer to this case as the non-enriched scheme. Needless to say, the greater is the richness of the
space of discrete potentials the higher is the computational complexity.

For the construction of the enriched scheme we use the nested meshes described in Section 2.1. In particular,
the coarse mesh is given by a regular triangulation of the domain with only acute angles. Here, we will use the
first family of grids provided in [18], which discretize the domain Ω = [0, 1]2.

The code is implemented in MATLAB and is available online1. In particular, we exploit the built-in MATLAB
direct solver to solve the sequence of linear systems generated by Algorithm 1. For 𝜇→ 0 the Jacobian matrix
becomes ill-conditioned and the computation time, along with the memory consumption, rapidly increases
for this solver. Using an iterative method could be extremely beneficial in this sense. However, the design of
effective preconditioners is a delicate issue and should take into account the structure of the problem at hand
(see, e.g., the general survey [6]). Therefore, we do not explore the use of such techniques in this article. We
calibrated Algorithm 1 with the following parameters: 𝜃 = 0.2, 𝛼min = 0.1, 𝜖0 = 10−6 (𝜖0 = 10−8 for the
convergence tests), 𝜇0 = 1,𝜑0 = 0,𝜌0 = 𝑐 (𝑐 defined as in Prop. 4.3) and 𝑠0 satisfying 𝜌0 ⊙ 𝑠0 = 𝜇0. In
all the simulations performed in this section, but also more generally, the algorithm proved to be extremely
robust under this configuration. The Newton scheme rarely reaches a breakdown and, in case this happens, the
adaptive strategy on the parameter 𝜃 overcomes the issue. Notice only that for complex simulations the value
𝜇0 may be increased to ease the start of the Newton scheme. Finally, we stress that all our results are presented
in their piecewise-constant form on the grid, without any kind of interpolation.

5.1. Oscillations

In this section, we show that the discrete density obtained by using the non-enriched scheme can be very
oscillatory. We observed numerically that the oscillations are more severe in cases where there is high compression
of mass, i.e., when the corresponding continuous velocity field is not divergence free, and also more persistent
with refinement (this is also confirmed by the convergence tests shown below in Sect. 5.2). On the other hand,
this type of instability can be prevented using the enriched scheme, which eliminates the oscillations almost
entirely.

In order to illustrate this phenomenon, we consider the interpolation between the two densities

𝜌𝑖𝑛(𝑥, 𝑦) = cos (2𝜋 |x− x0|) +
3
2
, 𝜌𝑓 (𝑥, 𝑦) = − cos (2𝜋 |x− x0|) +

3
2
,

where x = (𝑥, 𝑦) and x0 = ( 1
2 ,

1
2 ). For ℎ′ = 0.0625 and #𝒯 ′ = 896, and for a number 𝑁+1 = 8 of time steps, we

compute the approximate Wasserstein interpolation between 𝜌𝑖𝑛 =
(︀
𝜌𝑖𝑛(x𝐾)

)︀
𝐾′∈𝒯 ′ and 𝜌𝑓 =

(︀
𝜌𝑓 (x𝐾)

)︀
𝐾′∈𝒯 ′ ,

by solving problem (2.6), in four different ways: with the enriched and the non-enriched schemes, both with
linear and harmonic reconstruction. The results are shown in Figure 2. The non-enriched scheme with linear
reconstruction exhibits severe oscillations which disappear using the enriched one. Oscillations are evident also
using the harmonic reconstruction. The enriched scheme with harmonic reconstruction provides the smoothest
solution.

It is worth mentioning that the non-enriched scheme does not exhibit oscillations for rectangular cartesian
grids. Indeed, oscillations do not appear either in other works based on finite differences [9,23,26], which coincide
with finite volumes on such simple grids.

1https://github.com/gptod/OT-FV.

https://github.com/gptod/OT-FV
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Figure 2. Midpoint between two sinusoidal functions. Non-enriched scheme in the top row,
enriched scheme in the bottom one. Linear reconstruction on the left, harmonic reconstruction
on the right.

5.2. Convergence test

We now quantify numerically the convergence rate for the potential, the Wasserstein distance and the density,
by considering specific smooth solutions (𝜑, 𝜌) to (1.1) with compact support, and with smooth initial and final
densities 𝜌𝑖𝑛 and 𝜌𝑓 . Note, however, that the convergence results of Section 3 are less general, since they require
strictly positive densities, and only apply to the linear reconstruction.

We compute the solutions to problem (2.6), with 𝜌𝑖𝑛 = (𝜌𝑖𝑛(x𝐾′))𝐾′∈𝒯 ′ ,𝜌
𝑓 = (𝜌𝑓 (x′𝐾))𝐾′∈𝒯 ′ , on a sequence

of admissible meshes
(︁
𝒯 ′,Σ′, (x𝐾′)𝐾′∈𝒯

)︁
, and with an increasing number of time steps. We consider four type

of errors: the error on the distance, the 𝐿1 error on the density curve, the weighted 𝐿2 error on the potential
and on its gradient on the whole trajectory. We define a discrete potential 𝜑 ∈ [P𝒯 ]𝑁+1 by sampling the
continuous solution, i.e., 𝜑𝑘

𝐾 = 𝜑(𝑡𝑘−1 + 𝜏
2 ,x𝐾), for 𝑘 ∈ {1, . . . , 𝑁 + 1}, and similarly for the density we

introduce 𝜌 ∈ [P𝒯 ]𝑁+1, with 𝜌𝑘
𝐾 = 𝜌(𝑡𝑘−1 + 𝜏

2 ,x𝐾), for 𝑘 ∈ {1, . . . , 𝑁 + 1}. Given the discrete solution (�̃�, �̃�),
the four errors are then computed as follows:

𝜖𝑊2 =
⃒⃒
𝑊
(︀
𝜌𝑖𝑛, 𝜌𝑓

)︀
−𝑊𝑁,𝒯

(︀
𝜌𝑖𝑛,𝜌𝑓

)︀⃒⃒
, 𝜖𝜑 =

𝑁+1∑︁
𝑘=1

𝜏

⟨(︁
𝜑𝑘

𝐾 − 𝜑𝑘
𝐾

)︁2

, ℐ

(︃
�̃�𝑘 + �̃�𝑘−1

2

)︃⟩
𝒯

,

𝜖∇𝜑 = ‖∇Σ�̃�−∇Σ𝜑‖�̃�, 𝜖𝜌 =
𝑁+1∑︁
𝑘=1

𝜏
∑︁

𝐾′∈𝒯 ′

⃒⃒⃒⃒
⃒𝜌𝑘

𝐾 − �̃�
𝑘
𝐾 + �̃�𝑘−1

𝐾

2

⃒⃒⃒⃒
⃒𝑚𝐾′ ,
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Table 1. Convergence test on the translation.

ℎ′ 𝑁 𝜖𝑊2 Rate 𝜖𝜑 Rate 𝜖∇𝜑 Rate 𝜖𝜌 Rate
Non-enriched scheme with linear reconstruction

0.250 1 3.109e-02 / 1.802e-02 / 2.153e-01 / 6.092e-01 /
0.125 3 3.375e-03 3.204 4.857e-03 1.892 9.574e-02 1.169 2.779e-01 1.132
0.062 7 1.190e-03 1.504 1.442e-03 1.752 3.947e-02 1.278 1.431e-01 0.958
0.031 15 2.351e-04 2.339 4.105e-04 1.813 1.550e-02 1.348 7.115e-02 1.008
0.016 31 2.874e-05 3.032 1.086e-04 1.919 5.708e-03 1.442 3.110e-02 1.194

Non-enriched scheme with harmonic reconstruction
0.250 1 4.897e-02 / 2.382e-02 / 1.825e-01 / 5.870e-01 /
0.125 3 9.950e-03 2.299 5.635e-03 2.080 7.503e-02 1.282 2.535e-01 1.211
0.062 7 4.009e-03 1.311 1.751e-03 1.686 3.393e-02 1.145 1.172e-01 1.114
0.031 15 1.168e-03 1.780 5.055e-04 1.792 1.433e-02 1.243 4.907e-02 1.256
0.016 31 3.074e-04 1.925 1.409e-04 1.843 6.040e-03 1.247 2.057e-02 1.254

Enriched scheme with linear reconstruction
0.250 1 3.880e-02 / 2.084e-02 / 2.231e-01 / 5.774e-01 /
0.125 3 3.714e-03 3.385 5.129e-03 2.023 9.375e-02 1.251 2.343e-01 1.301
0.062 7 1.457e-03 1.350 1.568e-03 1.710 4.303e-02 1.124 9.481e-02 1.305
0.031 15 3.551e-04 2.037 4.391e-04 1.836 1.935e-02 1.153 3.233e-02 1.552
0.016 31 6.712e-05 2.403 1.145e-04 1.939 8.719e-03 1.150 1.228e-02 1.397

Enriched scheme with harmonic reconstruction
0.250 1 4.512e-02 / 2.240e-02 / 1.999e-01 / 5.740e-01 /
0.125 3 6.907e-03 2.708 5.187e-03 2.111 8.270e-02 1.273 2.370e-01 1.276
0.062 7 2.852e-03 1.276 1.597e-03 1.699 3.975e-02 1.057 1.036e-01 1.193
0.031 15 8.292e-04 1.782 4.521e-04 1.821 1.857e-02 1.098 4.014e-02 1.369
0.016 31 2.116e-04 1.970 1.221e-04 1.889 8.802e-03 1.077 1.668e-02 1.266

where the weighted (semi-)norm ‖ · ‖�̃� is defined via (3.1).
We first consider the simple case of a pure translation. We consider the optimal transport problem between

the two following densities:

𝜌𝑖𝑛(𝑥, 𝑦) =
(︂

1 + cos
(︂

102𝜋

32
|x− x1|2

)︂)︂
1|x−x1|≤ 3

10
,

𝜌𝑓 (𝑥, 𝑦) =
(︂

1 + cos
(︂

102𝜋

32
|x− x2|2

)︂)︂
1|x−x2|≤ 3

10
,

where x1 =
(︀

3
10 ,

3
10

)︀
,x2 =

(︀
7
10 ,

7
10

)︀
. The density interpolation and the potential are simply given by

𝜌(𝑡, 𝑥, 𝑦) =
(︂

1 + cos
(︂

102𝜋

32
|x− x𝑡|2

)︂)︂
1|x−x𝑡|≤ 3

10
,

𝜑(𝑡, 𝑥, 𝑦) =
2
5
𝑥+

2
5
𝑦 − 4

25
𝑡,

where x𝑡 = (1 − 𝑡)x1 + 𝑡x2 =
(︀

3
10 + 2

5 𝑡,
3
10 + 2

5 𝑡
)︀
, and the Wasserstein distance is 𝑊2

(︀
𝜌𝑖𝑛, 𝜌𝑓

)︀
= 2

√
2

5 . Note in
particular that the associated velocity field is constant in space. The errors defined above and the respective
rates of convergence are shown in Table 1. In this case, all the considered errors converge with a rate of at least
one for both the enriched and non-enriched scheme and both type of reconstructions.
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Table 2. Convergence test on the compression.

ℎ′ 𝑁 𝜖𝑊2 Rate 𝜖𝜑 Rate 𝜖∇𝜑 Rate 𝜖𝜌 Rate
Non-enriched scheme with linear reconstruction

0.250 1 1.653e-02 / 4.734e-03 / 6.903e-02 / 2.288e-01 /
0.125 3 1.421e-03 3.540 1.471e-03 1.687 3.301e-02 1.064 1.285e-01 0.832
0.062 7 2.978e-04 2.255 4.651e-04 1.661 1.729e-02 0.933 1.859e-01 −0.532
0.031 15 4.850e-04 −0.704 1.466e-04 1.666 1.038e-02 0.736 2.193e-01 −0.238
0.016 31 2.030e-04 1.257 4.491e-05 1.706 6.351e-03 0.709 2.378e-01 −0.117

Non-enriched scheme with harmonic reconstruction
0.250 1 2.380e-03 / 2.785e-03 / 3.954e-02 / 2.666e-01 /
0.125 3 8.112e-03 −1.769 1.403e-03 0.989 2.384e-02 0.730 7.503e-02 1.829
0.062 7 2.805e-03 1.532 4.851e-04 1.532 1.162e-02 1.037 7.046e-02 0.091
0.031 15 6.207e-04 2.176 1.242e-04 1.966 5.419e-03 1.100 4.919e-02 0.518
0.016 31 1.652e-04 1.910 3.574e-05 1.797 2.690e-03 1.011 3.393e-02 0.536

Enriched scheme with linear reconstruction
0.250 1 1.746e-02 / 4.130e-03 / 6.212e-02 / 2.333e-01 /
0.125 3 2.093e-03 3.060 9.486e-04 2.122 2.725e-02 1.189 7.694e-02 1.600
0.062 7 2.436e-04 3.103 2.827e-04 1.747 1.274e-02 1.097 5.805e-02 0.406
0.031 15 1.538e-04 0.664 7.698e-05 1.876 5.834e-03 1.127 3.551e-02 0.709
0.016 31 5.447e-05 1.497 1.932e-05 1.994 2.751e-03 1.085 2.325e-02 0.611

Enriched scheme with harmonic reconstruction
0.250 1 7.281e-03 / 3.069e-03 / 4.756e-02 / 2.606e-01 /
0.125 3 2.609e-03 1.480 7.574e-04 2.019 2.332e-02 1.028 5.786e-02 2.171
0.062 7 1.626e-03 0.682 2.984e-04 1.344 1.112e-02 1.069 4.280e-02 0.435
0.031 15 2.752e-04 2.563 7.551e-05 1.983 5.378e-03 1.048 2.409e-02 0.829
0.016 31 6.788e-05 2.020 2.166e-05 1.802 2.700e-03 0.994 1.537e-02 0.648

We now consider a more challenging test, the optimal transport problem between the two densities

𝜌𝑖𝑛(𝑥, 𝑦) =
(︂

1 + cos
(︂

2𝜋
(︂
𝑥− 1

2

)︂)︂)︂
,

𝜌𝑓 (𝑥, 𝑦) =
1
𝑐

(︂
1 + cos

(︂
2𝜋
𝑐

(︂
𝑥− 1

2

)︂)︂)︂
1|𝑥− 1

2 |≤ 𝑐
2
,

where 𝜌𝑓 is the compression of a factor 𝑐 of 𝜌𝑖𝑛. The exact expression of the density interpolation is

𝜌(𝑡, 𝑥, 𝑦) =
1

𝑡(𝑐− 1) + 1

(︂
1 + cos

(︂
2𝜋

𝑡(𝑐− 1) + 1

(︂
𝑥− 1

2

)︂)︂)︂
1|𝑥− 1

2 |≤ 𝑡(𝑐−1)+1
2

,

whereas the exact potential is

𝜑(𝑡, 𝑥, 𝑦) =
1
2

𝑐− 1
𝑡(𝑐− 1) + 1

(︂
𝑥− 1

2

)︂2

.

The Wasserstein distance between the two densities is

𝑊2

(︀
𝜌𝑖𝑛, 𝜌𝑓

)︀
=

√︂
(𝜋2 − 6) (𝑐− 1)2

12𝜋2
·

The numerical results for 𝑐 = 0.3 are shown in Table 2. Again, in all the four cases, the Wasserstein distance
and the gradient of the potential converge, with the errors exhibiting at least a linear rate of convergence.
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Figure 3. Wasserstein interpolation between a cross distributed density and its rotation by
45∘. Time increases from left to right, from top to bottom.

However, the density does not seem to converge in the non-enriched scheme with linear reconstruction, whereas
it converges in the other cases.

It is noticeable from the convergence tests we performed how in the case of a pure translation the instability
tends to disappear with refinement, whereas with compression this depends on the reconstruction used: the
harmonic reconstruction seems to prevent the issue, the linear one does not. Our strategy of enriching the
discrete space of potentials alleviates the problem and enables to recover the convergence of the density.

5.3. Geodesic

To conclude, we consider the transport problem between a cross distributed density and its rotation by
45∘. We compute the discrete solution with the enriched scheme, using the harmonic reconstruction, with
ℎ′ = 0.0156,#𝒯 ′ = 14 336 and 𝑁 + 1 = 32 time steps. The approximate density interpolation is displayed in
Figure 3: as expected, each branch of the cross splits symmetrically in two parts which move towards the two
opposite branches of the rotated cross.
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6. Perspectives

In this article we considered TPFA discretizations of the dynamical formulation of the quadratic optimal
transport problem. In particular, we proposed a method based on nested meshes to deal with numerical insta-
bilities that occur when using this type of techniques. We also proved quantitative convergence estimates in the
case of smooth solutions and proposed the use of interior point techniques for the efficient numerical solutions
of the scheme. Several interesting questions remain open on all the three aspects of the problem we considered:

(1) As for the issue of the numerical instabilities, the origin of these remains unclear, although their appearance
is not surprising since the optimal transport interpolation does not imply any direct regularizing effect (e.g.,
the interpolation between two Dirac masses stays a Dirac). Our approach (together with previous works on
the 𝐿1 optimal transport problem [15,16]) points towards the existence of a hidden inf-sup type of condition,
analogous to the well-known ones for linear saddle point problems, which guaranties some regularity in the
interpolation.

(2) The convergence results we proposed are only partial as they require that the density is strictly positive and
also they do not apply to the density itself. Note, however, that the positivity requirement is only needed
for the approximation result on the continuity equation in Proposition 3.3, and this could be avoided using
for example the regularization technique used by Lavenant in [21]. Note also that the same type of inf-sup
condition needed for stability could also be used to derive convergence rates for the density.

(3) The interior point technique we proposed for the solutions of the discrete system of optimality conditions can
be made even more effective by using iterative methods for the solution of the linearized system. However,
this is possible only once appropriate preconditioners are available. The challenging nature of the problem,
which is mostly due to the interplay of the time and space discretization, implies that the design of such
preconditioners requires a dedicated study and must be adapted to the discrete problem itself.
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