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Nonsmooth convex optimization to estimate the
Covid-19 reproduction number space-time evolution

with robustness against low quality data
Barbara Pascal Member, IEEE, Patrice Abry, Fellow, IEEE, Nelly Pustelnik Member, IEEE, Stéphane Roux, Rémi
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Abstract—Daily pandemic surveillance, often achieved through
the estimation of the reproduction number, constitutes a critical
challenge for national health authorities to design counter-
measures. In an earlier work, we proposed to formulate the
estimation of the reproduction number as an optimization prob-
lem, combining data-model fidelity and space-time regularity
constraints, solved by nonsmooth convex proximal minimizations.
Though promising, that first formulation significantly lacks
robustness against the Covid-19 data low quality (irrelevant
or missing counts, pseudo-seasonalities,. . . ) stemming from the
emergency and crisis context, which significantly impairs accu-
rate pandemic evolution assessments. The present work aims
to overcome these limitations by carefully crafting a functional
permitting to estimate jointly, in a single step, the reproduction
number and outliers defined to model low quality data. This func-
tional also enforces epidemiology-driven regularity properties for
the reproduction number estimates, while preserving convexity,
thus permitting the design of efficient minimization algorithms,
based on proximity operators that are derived analytically.
The explicit convergence of the proposed algorithm is proven
theoretically. Its relevance is quantified on real Covid-19 data,
consisting of daily new infection counts for 200+ countries and for
the 96 metropolitan France counties, publicly available at Johns
Hopkins University and Santé-Publique-France. The procedure
permits automated daily updates of these estimates, reported
via animated and interactive maps. Open-source estimation
procedures will be made publicly available.

Index Terms—Covid-19, reproduction number, space-time evo-
lution, nonsmooth convex optimization, outlier robustness.

I. INTRODUCTION

Context. The ongoing COVID-19 pandemic has produced
an unprecedented health and economic crisis, urging for the
construction of efficient monitoring procedures of its spreading
across territories, a crucial step in designing sanitary, social
and economic policies by national authorities [1]. It is however
often not the value of the infection level per se that matters
to design pandemic counter-measures (lockdown,. . . ), but its
evolution along time and variations across territories. However,
in the context of the Covid-19 pandemic outburst and of
the sanitary crisis, collecting daily new infection counts, the
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basis material in any pandemic surveillance strategy, results in
low-quality data (missing samples, outliers, seasonalities. . . ).
Surprisingly, after 18 months of pandemic, the quality of the
data collected and made available by most national health au-
thorities in the world remains limited, which severely impairs
an accurate and timely pandemic evolution assessment, the
issue at the heart of the present work.
Related works. Pandemic surveillance has been envisaged
with several categories of tools from different fields of sci-
ences (cf. [2] for a review). Yet, it is classically performed
using compartmental models, elaborating on the classical
Susceptible-Infectious-Recovered reference. For realistic use
and to match social realities (social groups, contact, . . . ),
these models need to be refined (cf. e.g., [3, 4]), essentially
by increasing the number of compartments, which implies
increasing (in a quadratic way) the numbers of parameters to
be estimated. Parameter estimation is usually achieved within
Bayesian frameworks, maximizing the likelihood attached to
the models, at the expense of heavy computational burdens.
Such models are thus often used a posteriori (i.e., after the
epidemic) with consolidated and accurate datasets. The low
quality of the Covid-19 data collected by most national public
health authorities across the world significantly impairs the use
of such Bayesian schemes and thus the reliable estimations of
these parameters. This thus precludes the use of such models
for daily basis update of the pandemic evolution assessment.

Instead of compartmental models, epidemiologists mas-
sively use the so-called reproduction number, R, that measures
how many new individuals are on average infected by an
already contaminated person, a key marker of the pandemic
strength (cf. e.g., [5–9]). Estimated to around 3 during the
outburst of the Covid-19 pandemic [10, 11], it is also used
as a function of time RT to monitor the temporal evolution
of the pandemic. The strength of such a pandemic monitoring
is to be based on a single parameter to estimate R, while
accounting for the basic and universal pandemic propagation
mechanisms: The number of new infections, ZT , at day T ,
depends on RT and on the numbers of new infections mea-
sured at previous days, {ZT−1, ZT−2, ZT−3, . . .} weighted
by the so-called serial interval function Φ(t). The latter
quantifies the probability that someone found Covid-positive
today was actually contaminated several days ago [3, 8, 9, 12].
Following [9], RT can be estimated using a Bayesian scheme1.

1https://shiny.dide.imperial.ac.uk/epiestim/
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Instead, in an earlier work [13], we proposed an estimation
procedure of the spatio-temporal evolution of the reproduction
number, written as a nonsmooth convex optimization problem,
combining data-model fidelity with time and space regularity
constraints for the estimates of R to be pandemic realistic, and
solved by proximal algorithms [14–18]. Though promising,
that proximal-optimization based estimation significantly lacks
robustness against the low quality of the Covid-19 data, a
generic and crucial issue addressed in the present contribution.
Goals, contributions and outline. The overall goal of this
work is to devise an inverse problem-type convex-optimization
procedure to assess the spatio-temporal evolution of the repro-
duction number R, from daily new infection counts, measured
simultaneously on several connected territories, such as the
different counties of a same country. The proposed estimation
procedure is designed to be: i) robust to the poor quality
of Covid-19 data ; ii) efficiently applicable online to update
estimates, on a daily basis or whenever new data are available,
at moderate computational costs even for large datasets.

To that end, Section II recalls the pandemic model used
here [9], frames its classical estimation and related issues.
Section III describes the core methodological contributions
of the paper: i) It discusses the poor quality of the data and
proposes an extension of the original pandemic modelling that
handles poor quality data as outliers (cf. Section III-A) ; ii)
It proposes an original and theoretical design of a functional
whose minimization yields in a single step a joint estimation of
both the reproduction number and the outliers, by combining
the log-likelihood of the extended model as a data fidelity
term with temporal and spatial regularity constraints for
epidemiology-realistic estimates of R and sparsity constraints
for the outliers (cf. Section III-B). This functional is carefully
crafted to preserve convexity so that fast and efficient proximal
algorithms can be devised for minimization ; iii) The theoret-
ical properties of the functional and of its solution (existence,
unicity) are studied theoretically in Section III-C ; iv) This
permits to devise a proximal type iterative algorithm, with
explicit analytical derivation of the proximal operators, whose
convergence and stopping criterion are discussed theoretically
and practically (cf. Section III-D).

The relevance of the proposed estimation procedure to
assess the spatio-temporal evolution of the pandemic is illus-
trated on real Covid-19 data (daily counts of new infections)
made available by national public health authorities (such
as e.g., Santé-Publique-France, SPF) or collected by Johns
Hopkins University, described in Section IV.

Estimation performance are reported in Section V: i) First,
the role and choices of the hyperparameters balancing the
regularization terms and the data-model fidelity term are
discussed in detail (cf. Section V-A) ; ii) Second, the benefits
of the proposed strategy to estimate the temporal evolution
of RT at the level of a given country are illustrated by
comparisons against different estimation strategies, such as
a two-step procedure (outliers estimated and removed first,
followed by estimation of R) (cf. Section V-B) ; iii) Third,
the relevance of the space-time evolution of R estimated
across territories that are connected (shared borders, mas-
sive population commutations,. . . ), here the 96 départements

(counties) that organize administratively metropolitan France),
is illustrated and discussed precisely (cf. Section V-C).

The proposed procedure is efficient enough to permit the
automated daily updates of the estimates of RT for 200+ coun-
tries, for the 96 continental French départements of France
and for the 50 US states. Links to the resulting animated and
interactive maps of estimates are provided and open-source
estimation procedures will be made publicly available.

II. PANDEMIC MODEL AND ESTIMATION

A. Model
The pandemic model used here, focused on the reproduction

number R, was proposed in [9] and relies on two key ideas: i)
Conditionally to past counts Z1:T−1 , {Z1, . . . , ZT−1}, the
count of daily new infections, ZT , is modeled as a random
variable drawn from a Poisson distribution Poiss(pT ), ii)
whose parameter pT depends on the past counts Z1:T−1, on
the causal serial interval function ΦT and on the current RT :

P (ZT |Z1:T−1;RT ) ∼ Poiss

(
pT , RT ×

τφ∑
t=1

ΦtZT−t

)
(1)

The serial interval function Φt is a key element of the model
that accounts for the epidemiology evolution mechanisms, as
it models the random delays between the onset of symptoms
in a primary case and the onset of symptoms in secondary
cases, [3, 8, 9, 12]. For the Covid-19 pandemic and for
earlier pandemics of same types, it was shown that Φ can
be approximated as a Gamma function, with shape and rate
parameters 1.87 and 0.28, respectively, corresponding to mean
and standard deviations of 6.6 and 3.5 days, indicating a high
risk of infecting other persons from 3 to 10 days after the
symptoms have appeared [19–21]. It is assumed here that Φ
is known and follows this Gamma approximation.

B. Estimation
Given the analytic expression of the Poisson distribution

in Model (1), the log-likelihood lnP (ZT |Z1:T−1;R1:T ) =
ZT ln pT − pT − lnZT !, permits to compute the Maximum-
Likelihood Estimate,

R̂MLE
T = argmin(− lnP (ZT |Z1:T−1;R1:T )), (2)

in closed-form expression as: R̂MLE
T = ZT /

∑
t≥1 ΦtZT−t.

It can be interpreted as a ratio of moving averages, whose
size and shape are consistent with pandemic modeling (thus
with ΦT ). The R̂MLE

T computed from real Covid-19 data (cf.
Section IV) are displayed in Figs. 2 and 3 (middle plots)
and display a far too large variability along time to be of any
practical use in actual pandemic monitoring. Such variability
mostly stems from the low quality of the data. The goal of the
present work is thus to improve the estimation of R despite
the low quality of the available Covid-19 data.

III. ROBUST ESTIMATION: METHODOLOGY

A. Covid-19 data low quality and multivariate infection counts
Covid-19 daily new infection counts made available by

public health authorities are for most countries severely cor-
rupted, with missing samples, non meaningful negative counts
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followed by retrospective cumulated counts spread across
the following days,. . . . They also show pseudo-seasonality
effects, with significantly less counts on non working days.
Seasonality are however uneasy to model, as non working
days are not only week-ends but also additional day-offs
that depend on countries. Also, the way the pandemic has
been monitored along week-ends and non-working days has
significantly changed along time, even within a given country.
Therefore, rather than trying to devise necessarily ad-hoc and
parametric models for noise in Covid-19 data, we have instead
chosen to refer to these different types of data corruption
under the generic term of outlier, denoted OT , and we propose
to model observed daily new infection counts ZT still from a
Poisson distribution conditionally to past counts Z1:T−1, yet
with a Poisson parameter pT that depends both on the current
reproduction number RT and current outliers OT .

Additionally, when new infection counts are monitored
simultaneously for several connected territories, e.g., the coun-
ties or states of a given country, the observed daily counts
consist of D time series {Z(d)

t , t ∈ [1, T ], d ∈ [1, D]}, with
[1, T ] the integers {1, 2, . . . , T}. The pandemic spread on each
territory d is thus characterized by both a reproduction number
time series and an outlier time series {(R(d)

t , O
(d)
t ), t ∈

[1, T ]}, that must thus be estimated jointly for all territories.
These considerations lead to a first key contribution of

the present work: the modeling of corrupted daily infection
counts across territories by extending Model (1) to multivariate
daily new infection Poisson counts, each with an instantaneous
Poisson parameter p(d)

t , with (ΦZ)
(d)
t =

∑τΦ
u=1 ΦuZ

(d)
t−u:

P
(
Z

(d)
t |Z

(d)
1:t−1;R

(d)
t , O

(d)
t

)
(3)

∼ Poiss
(
p

(d)
t , R

(d)
t × (ΦZ)

(d)
t +O

(d)
t

)
.

B. Crafting the convex nonsmooth estimation functional

The goal is now to estimate jointly R = {R(d)
t , t ∈

[1, T ], d ∈ [1, D]} and O = {O(d)
t , t ∈ [1, T ], d ∈ [1, D]}

from {Z(d)
t , t ∈ [1, T ], d ∈ [1, D]}. The next original

contribution is thus to frame the estimation into an inverse
problem strategy, with a careful crafting of the functional to
minimize combining the negative log-likelihood of extended
Model (3) with positiveness and regularity constraints in time
and space on R and structure on O.

1) Negative log-likelihood function: The negative log-
likelihood associated to the extended Poisson Model (3) is
defined in a separable manner as

F (R,O|Z) ,
D∑
d=1

T∑
t=1

f(R
(d)
t , O

(d)
t |Z

(d)
t , (ΦZ)

(d)
t ), (4)

with f(r, o|z, (Φz)) ,

{
ι{(0,0)}(r, o) if z = Φz = 0,

dKL(z|r × (Φz) + o) otherwise.

The indicator function of the singleton {(0, 0)} permits to
force the (MLE) estimates of R and O to vanish when the
pandemic stops, i.e., when (ΦZ)

(d)
t = Z

(d)
t = 0,

ι{(0,0)}(r, o) =

{
0 if r = o = 0

∞ otherwise,
(5)

while the standard Kullback-Leibler divergence (KLD) is
defined as DKL(Z|P ) =

∑T
t=1

∑D
d=1 dKL(Z

(d)
t |P

(d)
t ), with

dKL(z|p) ,


z ln z

p + p− z if z > 0, p > 0

p if z = 0, p ≥ 0

∞ else.
(6)

2) Regularity and positivity constraints on R: Unlike
Model (1), from which a unique MLE estimate can be derived
(Eq. (2)), for Model (3) the extended likelihood (Eq. (4)) is no
longer strictly convex, thus does not have a unique maximum,
and hence requires additional constraints on the estimates of
R and O.
i) Time regularity: By nature and to be of any potential use
for actual pandemic monitoring, the estimated reproduction
numbers for a given territory must vary only slowly and
smoothly along time. Following [13], it has been chosen to
enforce piecewise linear time evolution of the estimate of the
reproduction numbers. Such a property ensures that, besides
an estimate of R at day t, one also gets an estimation of
a local trend, assessing whether the pandemic is growing or
decreasing. Following [22, 23], to favor piecewise linear tem-
poral evolution of the estimates, we penalize the `1-norm of the
multivariate time-domain Laplacian D2 : RD×T → RD×(T−2)

of the estimates of R:

‖D2R‖1 ,
D∑
d=1

T−1∑
t=2

|(D2R)
(d)
t |, (7)

with (D2R)
(d)
t , 1

2R
(d)
t−1 −R

(d)
t + 1

2R
(d)
t+1.

ii) Positivity: R is by nature positive. Yet, Eq. (4) indicates that,
per se, the proposed extended negative log-likelihood ensures
the positivity of p(d)

t = R
(d)
t × (ΦZ)

(d)
t + O

(d)
t but not of

R
(d)
t itself. Thus, to enforce the positivity of R(d)

t , an indicator
function is added in the constraints:

ι≥0(R) ,

{
∞ if ∃ t ∈ [1, T ], d ∈ [1, D], s.t.R(d)

t < 0
0 otherwise.

(8)

iii) Spatial regularity: When different territories d are con-
nected, it is natural to expect that their pandemic dynamics
are correlated and thus that the corresponding estimates of R
show some spatial regularity. Following [13], we use a graph,
with D vertices corresponding to the different territories and
E edges to connections between pairs of territories. We favor
piecewise constant spatial estimates of R̂1:D

t across territories
by penalizing the Graph Total Variation, defined as:

GTV(R) =

T∑
t=1

∑
d1∼d2

∣∣∣R(d1)
t −R(d2)

t

∣∣∣ , (9)

where
∑
d1∼d2

runs over vertices connected by an edge.
The Graph Total Variation can be rewritten as a composition

of a discrete difference operator and a sparsity-promoting `1-
norm, GTV(R) = ‖GR‖1, defining the linear operator G:

G :

{
RD×T → RE×T

R 7→
{
R

(d1)
t −R(d2)

t , t ∈ [1, T ], d1 ∼ d2

}
.

(10)
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3) Constraints on the outliers: The discussion in Sec-
tion III-A suggests that outliers have a sparse structure: They
occur with significant values only on specific days (sundays,
day-offs,. . . ) and are essentially negligible elsewhere. Sparsity
is classically enforced in inverse problem settings by con-
straining the `1-norm. We thus further propose to impose the
following constraint to the estimates of the outliers:

‖O‖1 ,
D∑
d=1

T∑
t=1

|O(d)
t |. (11)

4) Estimation as an optimization problem: Combining the
data-fidelity term of Eq. (4) and the penalizations of Eqs. (7),
(8), (9), and (11), we propose to obtain the estimates of R and
O by minimizing:

(R̂, Ô) ∈ Argmin
R,O∈RD×T

F (R,O|Z) + λT‖D2R‖1 + ι≥0(R)

+ λS‖GR‖1 + λO‖O‖1, (12)

with λT > 0, λS > 0 and λO > 0, regularization hyperpa-
rameters, balancing the strengths of the different constraints
one against the others and against the likelihood.

5) Reformulation of the optimization problem: To study
the theoretical properties of Problem (12), and to derive a
minimization algorithm, it is useful to recast Eq. (12) into a
generic formulation:

(R̂, Ô) = Argmin
R,O∈RD×T

F (R,O|Z) +H(L(R,O)), (13)

with L a linear operator and H a function enforcing constraints
promoting certain sparsity / non-negativity, defined as:

L :

{ (
RD×T

)2 → RD×(T−2) × RD×T × RE×T × RD×T
(R,O) 7→ (λTD2R,R, λSGR, λOO) ,

(14)

H(Q1, Q2, Q3, Q4) , ‖Q1‖1 + ι≥0(Q2) + ‖Q3‖1 + ‖Q4‖1.
(15)

C. Convexity, existence of a minimizer and uniqueness

Showing that Eq. (12) provides well-defined estimates of
R and O requires to prove the existence of a minimizer of
F (·) +H(L·). To that aim, preliminary results are necessary.

Lemma 1. The extended Kullback-Leibler data-fidelity term
F (Eq. (4)) is jointly convex with respect to the pair (R,O).

Proof. F being fully separable in time and space, it is suf-
ficient to demonstrate the joint convexity of f(r, o|z, (Φz))
with respect to the pair (r, o). If z = (Φz) = 0, the convexity
of f(r, o|z, (Φz)) w.r.t. (r, o) reduces to the convexity of the
indicator function of the convex set {(0, 0)}. Else, since the
one-component KLD dKL(z|p) is convex with respect to its
second argument [24], and (r, o) 7→ r× (Φz)+o being linear,
(r, o) 7→ f(r, o|z, (Φz)) is convex.

Corollary 1. The penalized Kullback-Leibler functional
(Eq. (12)) is jointly convex with respect to the pair (R,O).

Proof. First, Lemma 1 ensures the convexity of the data-
fidelity term F . Then, the function H , appearing in Eq. (13),

involves `1-norms and an indicator function which are convex,
thus it is convex and the composition of H with the linear
operator L is convex as well. As the sum of two convex terms,
the penalized Kullback-Leibler functional is convex.

Further, because the Kullback-Leibler data-fidelity term F
(Eq. (4)), as well as the indicator function in Eq. (8), may
take infinite values, the domain of the convex functional in
Eq. (12) is not the whole space

(
RD×T

)2
, but restricts to a

domain Ω of feasible variables, described in Lemma 2.

Lemma 2. The domain Ω of feasible points for Problem (12)
consists of pairs (R,O) such that, ∀u ∈ [1, t], ∀d ∈ [1, D]

(i) R
(d)
t (ΦZ)

(d)
t +O

(d)
t ≥ 0,

(ii) if Z(d)
t = (ΦZ)

(d)
t = 0 then R(d)

t = O
(d)
t = 0,

(iii) R
(d)
t ≥ 0.

It is convex and closed.

Proof. Conditions (i) and (ii) reflect the fact that the extended
Kullback-Leibler data-fidelity term F (Eq. (4)) must be finite
for feasible time series, while Condition (iii) stems from
the positivity constraint enforced by the indicator function in
Eq. (8). Further, each Condition (i) to (iii) defines a closed
convex set of feasible time series, the finite intersection of
closed convex sets being closed and convex as well, Ω is a
closed convex set.

Then, the existence of a minimizer can be proven.

Theorem 1. The penalized Kullback-Leibler functional in
Eq. (12) is lower bounded. Further, if (ΦZ)

(d)
t > 0 for all

t ∈ [1, T ], d ∈ [1, D], then the minimization problem of
Eq. (12) has, a least, one solution.

Proof. Since, for feasible points, the standard Kullback-
Leibler divergence, the indicator functions and the `1-norms
are nonnegative, the functional is lower bounded by zero.
Let ‖(R,O)‖2 ,

√
‖R‖22 + ‖O‖22 be the canonical norm on

the product space
(
RD×T

)2
. Let 1 (resp. 0) the multivariate

time series with all entries equal to 1 (resp. 0), (1,0) ∈ Ω is
a feasible point. Let

µ , F (1,0|Z) +H(L(1,0)) = F (1,0|Z) ≥ 0 (16)

As shown below, the functional F (·|Z) + H(L·) is coercive,
thus there exists α > 0 such that

‖(R,O)‖2 > α⇒ F (R,O|Z) +H(L(R,O)) > µ. (17)

Let ∆α be the closed ball of radius α in
(
RD×T

)2
for the

canonical norm ‖·‖2. Since the feasible set Ω is closed, the
intersection Ω ∩ ∆α is bounded and closed, hence compact
as a subset of a finite-dimensional Hilbert space. Further, the
functional F (·|Z) + H(L·) being continuous over Ω ∩∆α it
reaches its minimum over this set at some point (R̂, Ô) ∈ Ω∩
∆α. Then, since (1,0) ∈ Ω∩∆α, it follows that F (R̂, Ô|Z)+
H(L(R̂, Ô)) ≤ µ. From Eq. (17), if (R,O) ∈ Ω\∆α, then one
has F (R,O|Z) +H(L(R,O)) > µ, showing that the relative
minimum (R̂, Ô) on Ω ∩ ∆α is to be a global minimum on
the whole domain of feasible points Ω. To conclude the proof,
we need to compute α satisfying (17), which follows from:
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i) If ‖O‖1> C , µ/λO, then H(L(R,O)) ≥ λO‖O‖1> µ.
ii) Since ∀z ≥ 0, limp→∞ dKL(z|p) = ∞ there is a con-

stant c = c(Z) such that DKL(Z|Q) > µ as soon as
‖Q‖∞> c. Therefore, with c′ , minu,d(ΦZ)

(d)
t , as soon

as ‖O‖1≤ C and ‖R‖∞> (c + C)/c′, we have ‖R ×
(ΦZ) + O‖∞≥ c′‖R‖∞−‖O‖∞≥ c′‖R‖∞−‖O‖1> c,
and hence F (R,O|Z) ≥ µ.

In finite dimension, the equivalence of the norms yields con-
stants CO and CR such that, ‖O‖2 ≥ CO ⇒ ‖O‖1 ≥ C and
‖R‖2 ≥ CR ⇒ ‖R‖∞ ≥ (c+C)/c′. Finally, α ,

√
C2

O + C2
R

satisfies (17).

The regularizing functional in Eq. (12) not showing strict con-
vexity, investigating the uniqueness of its minimizer requires
further analysis, beyond the scope of this work. Nevertheless,
leveraging the strict convexity of the standard KLD in Eq. (4),
a uniqueness property for the estimate of the Poisson param-
eter p(d)

t is derived in Proposition 1, based on Lemma 3.

Lemma 3 ([14], Chapter 11). Let g : Rn → R, h : Rm → R
two proper, lower-semicontinuous, convex functions and B :
Rm → Rn a linear operator. Consider the following convex
minimization problem

x̂ ∈ Argmin
x∈Rm

g(Bx) + h(x). (18)

If g is strictly convex, then there exists ŷ ∈ Rn, such that for
any minimizer x̂ of (18), ŷ = Bx̂.

Proposition 1. Let (R̂, Ô) denote a solution of Problem (12).
Let P̂ , {p̂(d)

t , t ∈ {1, . . . T}, d ∈ {1, . . . D}}, then P̂ is
unique.

Proof. In the trivial situation when the daily counts are uni-
formly vanishing, i.e., Z = ΦZ ≡ 0, the unique minimizer
coincides with the unique feasible point and consists in esti-
mated reproduction numbers and outliers equal to zero at any
time and in any territory.
Otherwise, two situations are to be considered
(i) If Z and ΦZ never vanish simultaneously: In this case

F (R,O|Z) = DKL(Z|B(R,O)), with B : (R,O) 7→
R × (ΦZ) + O. Further, the standard Kullback-Leibler
divergence g(P ) = DKL(Z|P ) is strictly convex. Hence,
setting h = H(L·), Proposition 1 yields the result.

(ii) If there exist some times u and territories d s.t. Z(d)
t =

(ΦZ)
(d)
t = 0: For these times and territories, the esti-

mated instant Poisson parameter is forced to cancel by the
indicator function involved in Eq. (4). Then, restricting
to the indices for which Z and ΦZ are not vanishing
simultaneously, the data-fidelity term F is strictly convex
and the uniqueness of P̂ follows by the same reasoning.

D. Minimization via a proximal algorithm
From Corollary 1, the penalized Kullback-Leibler functional

is convex, and, from Theorem 1, it has at least one minimizer.
The `1-norm and the indicator functions in the objective
function make the overall functional non-smooth, preventing
from the use of standard gradient descent. Minimizing (12)
thus requires more advanced tools, handling nondifferentiable
functions, such as proximal algorithms.

1) Adjoint and proximal operators: Let L a bounded linear
operator L, its adjoint operator is denoted L∗ and its operator
norm is ‖L‖op = sup{‖LX‖2, ‖X|2 ≤ 1}. The convex
conjugate of the proper, lower-semicontinuous function H :
X → R, is defined as H∗(Y ) = supX∈X 〈Y,X〉−H(X) [25],
with X a Hilbert space. For τ ∈ R+ the proximal oper-
ator of τH at Y ∈ X reads by definition: proxτH(Y ) ,
arg minX∈X 1/2‖X − Y ‖2 + τH(X).

2) Primal-dual algorithmic scheme: In this work, we chose
to implement the Chambolle-Pock primal-dual minimization
scheme [26]. Making use of the compact reformulation in
Eq. (13), we perform here an explicit particularization of the
Chambolle-Pock algorithm detailed in Algorithm 1. From [26],
Algorithm 1 converges toward a minimizer of Problem (13),
if the descent parameters τ , σ satisfy

τσ‖L‖2op < 1. (19)

Therefore, the actual and practical use of Algorithm 1 and
enforcement of Condition (19), requires to evaluate, at least,
an upper bound of ‖L‖op.

Proposition 2. Let L be defined in Eq. (14), then

‖L‖2op ≤ max{λ2
T‖D2‖2op + λS‖G‖2op + 1, λ2

O}. (20)

Proof. By definition of the operator norm ‖·‖op, one has

‖L(R,O)‖22 (21)

= λ2
T‖D2R‖22 + ‖R‖22 + λ2

S‖GR‖22 + λ2
O‖O‖22

≤ (λ2
T‖D2‖2op + 1 + λ2

S‖G‖2op)‖R‖22 + λ2
O‖O‖22

≤ max{λ2
T‖D2‖2op + 1 + λ2

S‖G‖2op, λ
2
O}‖(R,O)‖22.

In practice, equal descent step sizes are chosen, so that they
saturate Condition (19), replacing the unknown ‖L‖op by its
upper bound derived at Proposition 2, leading to

τ = σ =
0.99√

max{λ2
T‖D2‖2op + λS‖G‖2op + 1, λ2

O}
. (22)

3) Closed-form expression of the proximal and adjoint
operators: For proximal algorithms, such as Algorithm 1, the
key ingredient to achieve an actual and fast implementation is
to derive a closed-form expression for each proximal operator
involved.
Proximal operator of the regularizing function: The dual
variable update in Algorithm 1 involves the proximal operator
of the convex conjugate of the penalty H defined in (15).
In practice, first, the proximal operator of H is computed,
and then, the proximal operator ofits convex conjugate H∗

is derived applying Moreau’s identity, which states that, for
σ > 0, proxσH∗(X) = X − σproxH/σ(X/σ). Then, function
H/σ being fully separable, both over its four entries and
over the components of each entry, its proximal operator can
be computed component-wise. These computations involve
two standard closed-form proximal operators: i) the proximal
operator of the absolute value, known as the soft-thresholding,
proxσ|·|(q) = max {|q| − σ, 0} q/|q|, and ii) the proximal op-
erator of the indicator function, which amounts to a projection:
proxι≥0

(q) = max {0, q}.
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Algorithm 1 Primal-dual minimization of the penalized
Kullback-Leibler (12) for the estimation of reproduction num-
bers and outliers.
Require: Infection counts: Z ∈ RD×T and (ΦZ) ∈ RD×T

Choose descent parameters: τ, σ > 0, precision: ε
Max. iterations: kmax, length of window: ksmooth

Initialization R[0] = Z, O[0] = 0,
Q[0] = L(R[0], O[0]), R

[0]
= R[0], O

[0]
= O[0]

Φ0 = F (R[0], O[0]|Z) +H(L(R[0], O[0])
Ψ0 = ε+ 1, Ψ0 = ε+ 1, k = 0
while Ψk ≥ ε and k < kmax do

Update the dual, primal and auxiliary variables

Q[k+1] = proxσH∗(Q[k] + σL(R
[k]
, O

[k]
))

(R[k+1], O[k+1]) = proxτF ((R[k+1], O[k+1])− τL∗Q[k+1])

(R
[k+1]

, O
[k+1]

) = 2(R[k+1], O[k+1])− (R[k], O[k])

Computation of the convergence criteria

Φk+1 = F (R[k+1], O[k+1]|Z) +H(L(R[k+1];O[k+1]))

Ψk+1 = |Φk+1 − Φk|/Φk
Ψk+1 = max {Ψ` : |k − ksmooth|+ ≤ ` ≤ k + 1} (23)

k ← k + 1
end while

Adjoint of the linear operator: Updating the primal variable
requires first to compute L∗ : RD×(T−2) ×RD×T ×RE×T ×
RD×T →

(
RD×T

)2
, which can be expressed in terms of the

adjoint operators of D2 and G, via

L∗ : (Q1, Q2, Q3, Q4) 7→ (λTD
∗
2Q1 +Q2 + λSG

∗Q3, λOQ4).
(24)

Proximal operator of the data-fidelity term: The extended
negative log-likelihood F of Eq. (4) being separable over
the times t ∈ [1, T ] and territories d ∈ [1, D], its proximal
operator can be computed in a component-wise manner. Each
term in (4) corresponds to the composition of a linear map
with the standard Kullback-Leibler divergence dKL(z|·), whose
proximal operator writes explicitly [24]:

proxτdKL(z|·)(p) = (p− τ +
√

(p− τ)2 + 4τz)/2. (25)

Proposition 3. For β , (Φz)2 + 1, a : (r, o) 7→ r× (Φz) + o,

proxτf(·,·|z,(Φz))(r, o) (26)

=

{
(0, 0), if z = (Φz) = 0

(r, o)− a∗β−1
(

I− proxτβdKL(z|·)

)
a(r, o), otherwise.

from which derives straightforwardly the proximal operator of
the global data-fidelity function F .

Proof. Since aa∗ = β > 0, the formula in Eq. (26) is obtained
applying Proposition 3.4 of [27].

4) Stopping criterion: The final step in the actual of an it-
erative algorithm is to choose a stopping criterion. Classically,
the convergence of Algorithm 1 is quantified by the decrease
of the normalized increments of the objective functional.

Fig. 1 shows that such increments (dashed blue curves) display
large and erractic fluctuations, thus precluding their use to
construct a reliable stopping criterion. Instead, and to provide
a robust convergence criterion, we propose to make use of
a nonlinearly smoothed normalized increments (solid black
curve in Fig. 1), obtained as a maximum over a sliding window
over the past ksmooth iterations, as detailed in Eq. (23). Hence,
in our concrete experiments, we set ksmooth = 500 and
Algorithm 1 is stopped whenever the smoothed increment
reaches a precision ε, set to 10−7, or when the number of
iterations exceeds a maximum of kmax iterations, set to 107.

Fig. 1: Stopping criterion. (Normalized) Objective function
increments and non linearly smoothed increments as functions
of the number of iterations in Algorithm 1 (computed from
new infections in France).

IV. COVID-19 DATA

To show the relevance and efficiency of the proposed pro-
cedure for the estimation of the evolution of the reproduction
number of the pandemic, two real Covid-19 datasets made
available by national health authorities are used, different in
nature and from different international repositories.

1) Dataset1: Country population level daily new infection
counts: Johns Hopkins University2 provides access to the cu-
mulated counts of daily new infections (together with deceased
and recovered persons), at the entire population level, on a per
country basis, for 200+ countries worldwide, since January
1st, 2020, hence, essentially since the earliest stages of the
Covid-19 pandemic3. In the present work, use will be made
of the daily new infection counts only, {Z1:T }, from Feb.,
15th, 2020 until until August, 31st, 2021, hence T = 586
days of pandemic.

2) Dataset2: French Counties hospital Level daily new
infection counts: Santé-Publique-France4, the French national
health authorities, provides several different datasets related to
the Covid pandemic in France. In the present work, use will
be made of the daily hospital-recorded new infection counts,
across France on a per département-basis5, départements
(or counties) consisting of the usual French administrative
granularity. These new infections counts are stacked into a
Z ∈ RT×D data matrix, for the 101 French départements,
and estimation of the reproduction number will be conducted
jointly for all départements. Such data are however available
only after March 19th, 2020 and analyzed until August, 31st,
2021, hence T = 531 days of pandemic.

2https://coronavirus.jhu.edu/
3https://raw.githubusercontent.com/CSSEGISandData/COVID-

19/master/csse covid 19 time series/
4https://www.santepubliquefrance.fr/
5https://www.data.gouv.fr/fr/datasets/

https://coronavirus.jhu.edu/
https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_data/csse_covid_19_time_series/
https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_data/csse_covid_19_time_series/
https://www.santepubliquefrance.fr/
https://www.data.gouv.fr/fr/datasets/
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V. ROBUST ESTIMATION FROM COVID-19 DATA

A. Hyperparameter tuning

One of the issue at hand for a practical use of Eq. 12 to
estimate jointly R and O lies in the selection of the hyperpa-
rameters, λT, λS, and λO that balance the contributions of the
regularizations terms one against the others as well as against
the data-model fidelity term. Such choices have significant
impacts on the achieved estimates. Accurate parameter tuning
is thus critical yet may prove time consuming notably when
this selection needs to be made for each of the 200+ countries
studied here, with possibly very different population sizes or
pandemic intensities.

Automated data driven selection of hyperparameters in
functional minimization has been addressed theoretically in
several different settings (cf. e.g. [28]) and references therein),
often relying on a Stein Unbiased Risk Estimator (SURE).
This is working well only for large size data, which is however
not the case for the Covid-19 pandemic.

Instead, in the present work, hyperparameter selection
was driven by the following dimensional analysis. Inspecting
Eq. 12 shows that the functional to minimize is covariant under
the change (Z,O;λT, λS, λO)→ (αZ,αO;αλT, αλS, λO) for
any α > 0, thus leading to identical minima. This led us to
propose to use one same set of hyperparameters (λT, λS, λO)
valid for all countries, irrespective of their population sizes or
pandemic intensities, by applying minimizations in 12 to αZ
instead of Z, where α are arbitrary multiplicative constants,
that may depend on each country. We found empirically that
setting systematically α to the empirical standard deviation of
the observed Z constitutes an efficient way to account both
for the population size and for the severity of the pandemic.
Precisely, λT = 3.5 is chosen as a universal (for all countries)
time constant, after inspections of numerous different countries
over the whole pandemic period, as a valid trade-off between
too small — that would lead to too much variability in the
estimation of R and would prevent the use of R to actually
assess the strength of the pandemic — and too large —
that would lead to too few variability hence preventing the
possibility of detecting changes in the pandemic dynamics
that may follow some sanitary policy decisions (lockdown,
vaccination). Further, λO is set to 0.025 to enable the outlier
term in the functional to be versatile enough to account for
pseudo-seasonal effects modeled as sparse irrelevant measures.
Finally, for different D = 96 territories, the connectivity
of the graph for metropolitan France contains 475 edges,
indicating that the time and space regularizations will have
comparable impacts when 96λtime ' 2 × 475λspace, which
frames the selection of λspace. Inspection of the results lead
to choose λspace = 0.002, thus corresponding to a mild spatial
regularization.

B. Temporal evolution for each country independently

Because Public Health Policies were not or weakly coor-
dinated across countries, even for closely intertwined spaces
such as Western European countries, population level daily
new infection counts (Dataset1, JHU) are first analyzed inde-

0

5

10

10
4

0

1

2

Fig. 2: France (six first months in 2021). Top: Z and Z−ÔO,
(black and red) ; Middle: R̂MLE , R̂O, R̂noO (black, red and
blue) ; Bottom: ÔO, ÔnoO (red and blue).

pendently for each country, that is, without spatial regulariza-
tion, or setting λS ≡ 0 in (12).

Estimates of the reproduction numbers and the outliers,
R̂O, ÔO are thus obtained for each country by applying (12)
to daily infection counts Z1:T , after normalisation by standard
deviations computed across the whole pandemic period, using
the same hyperparameters for all countries : (λT, λS, λO) =
(3.5, 0, 0.025).

To assess the relevance of the proposed one-step procedure,
R̂O, ÔO are compared against estimates obtained from a two-
step procedure developed in [13], R̂noO: First, a sliding-
median over a 7-day window is applied to Z1:T , and values that
depart from the window median by ±2.5 local (in-window)
standard deviation are replaced by the window median, yield-
ing estimates of outliers referred to as ÔnoO ; Second, an
estimate R̂noO of R is obtained by applying Eq. 12 with
(λT, λS, λO) = (3.5, 0,+∞), to the a priori denoised infection
counts after normalization by standard deviation.

Fig. 2 compares the estimates R̂MLE , (R̂O, ÔO) and
(R̂noO, ÔnoO), for France across the whole pandemic period,
and also focuses on a recent narrow period of time to ease
illustration and analysis. Fig. 2 shows that, for the pseudo-
seasonal effect related to new infection count under-reporting
due to non-working days, both procedures essentially correctly
detect and estimate the corresponding outliers. For the sub-
sequent working-day over-reporting performed by the French
public health authority, Fig. 2 clearly shows that the proposed
one-step procedure correctly accounts for such small outliers,
thus yielding a smooth and outlier-robust estimation of R,
while mis-reporting are missed by the two-step procedure,
that thus produces estimates with numerous discontinuities
irrelevant in terms of pandemic monitoring and clearly driven
by these mis-reporting. The period of early April 2021 is of
great interest, corresponding to a long week-end effect, with
a normal week-end, followed by an alternation of working
and non working days, resulting in anomalously low infec-
tion counts, followed by high counts (misreport correction),
during intertwined and following working days. The two-step
procedure yields for that period totally irrelevant estimates,
while the proposed one-step procedure remains satisfactorily
insensitive to such count misreports. These pseudo-seasonal or
long week-end effects are not specific to France and can be
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Fig. 3: Different countries. ,Top: Z and Z − ÔO (black
and red) ; Middle: (R̂MLE , R̂O, R̂noO) (black, red and blue) ;
Bottom: (ÔO, ÔnoO) (red and blue). Estimates (R̂O, ÔO) are
updated on a daily basis for 200+ countries across the world,
and made publicly available via interactive and animated maps
available (cf. Section VI).

observed across numerous other countries.
Fig. 3 further compares the estimates R̂MLE , (R̂O, ÔO) and

(R̂noO, ÔnoO) for several different countries. Fig. 3 clearly
shows that i) R̂MLE constitute a very irregular estimate of R
along time that cannot be used at all in practice ; ii) compared
to (R̂noO, ÔnoO), (R̂O, ÔO) better accounts for both outliers
and pseudo-seasonal effects and yields smooth and regular
along time and outlier-robust estimations of R. R̂O is thus far
more likely to represent the actual, less biased and realistic
assessment of the pandemic time evolution in a given country.
Estimates (R̂O, ÔO) are updated on a daily basis for 200+
countries across the world, and made publicly available via
interactive and animated maps (cf. Section VI).

C. Joint space-time Evolution for metropolitan France

Let us now consider multivariate daily infections counts,
Z ∈ RT×D, for the D = 96 départments of metropolitan
France, considered as the vertices of the graph G in Eq. 12,
with edges between départments sharing a terrestrial boundary.
Estimates (R̂O,S , ÔO,S) ∈ RT×D are obtained by applying
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Fig. 4: Estimates of Rt for départment Paris (Id=75) (right)
and départment Rhône (Id=69) (left): R̂O,S (accounting
for outliers and with spatial regularization, red), R̂noO,S

(not accounting for outliers but with spatial regularization,
magenta), R̂O,noS (accounting for outliers but without spatial
regularization, blue), R̂noO,noS (not accounting for outliers
and without spatial regularization, cyan).

Eq. 12 to Z ∈ RT×D, after standardization independently
per départment, with (λT, λS, λO) = (3.5, 0.002, 0.025) (cf.
Section V-A).

To illustrate the relevance of (R̂O,S , ÔO,S), they are com-
pared against estimates obtained without spatial regularization
and without accounting for outliers (R̂noO,noS , ÔnoO,noS)
((λT, λS, λO) = (3.5, 0,+∞)), without spatial regularization
but accounting for outliers (R̂O,noS , ÔO,noS) ((λT, λS, λO)
= (3.5, 0, 0.025)), with spatial regularization but without
accounting for outliers (R̂noO,S , ÔnoO,S) ((λT, λS, λO) =
(3.5, 0.002,+∞)).

These estimates are first compared as functions of time for
two départments in Fig. 4, which shows that estimates that do
not account for outliers are far too irregular for being useful
in pandemic monitoring, even with spatial regularization. To
the converse, R̂O,S that results from both accounting for
outliers and spatial regularization yields very regular estimates
likely to reflect a relevant assessment of the pandemic. The
proposed estimation procedure is of particular interest when
applied to territories with granularity level as is the case
for the French départments (with on average slightly less
than one million inhabitants) or during low activity phases
of the pandemic, such as early summer 2020 (days 95 to
155). Spatial regularization is of particular relevance for theses
two chosen départments. Indeed, départment Paris (Id=75)
corresponds to the city of Paris, thus a small territory yet
with massive connection to the surrounding départments :
estimates of R within Paris, can thus not notably differ from
those of these so-called Paris-Crown départments. The same
holds for départment Rhône (Id=69), of very small surface
(for historical reasons) yet acting, with the city of Lyon as a
massive transit hub, for a number of surrounding départments.

Further, the estimates of R are for continental France are
reported in Fig. 5) for three different days. Estimates of
R̂O,S with spatial regularization and accounting for outliers
(right most plots) permits a far clearer assessment of the
status of the pandemic across metropolitan France. Estimates
R̂noO,S and R̂noO,noS show far too much spatial variability
to be realistic estimates. Estimates R̂noO,S improve spatial
regularity, but still show significant variability induced by
data low quality. Estimates R̂O,S , with spatial regularization
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Fig. 5: Compared estimates of R(d)
t across metropolitan

France for three different days along the pandemic.

and accounting for outliers (right most plots), likely yield
the most likely and relevant estimates each day and permit
a far clearer assessment of the status of the pandemic across
the connected metropolitan France départements. March, 31st,
corresponds to the pandemic 1st-wave maximum and R̂O,S

shows a clear North-East/South-West gradient in the strength
of the pandemic ; March, 31st, 2021 corresponds to the
start of the third lockdown period, referred to as couvre-feu
(corfew) in France and R̂O,S shows that the pandemic was
significantly progressing uniformly across all France ; August,
31st, 2021 corresponds to the time of submission of this work
and shows that the pandemic is globally decreasing in France,
yet non uniformly and still active in large areas. Estimates
R̂O,S are updated automatically on a daily basis for the 96
continental France départements and made publicly available
via interactive and animated maps (cf. Section VI).

VI. CONCLUSION

The present work developed and assessed an inverse prob-
lem-type procedure to estimate the spatio-temporal evolution
of the Covid-19 reproduction number, R, robust to the low
quality of the pandemic data. The devised procedure relies first
on a detailed analysis of the data quality that suggested that
most count misreports, be they mild and seasonal (sundays,
week-end, days-off) or large and random (report failure), can
be efficiently accounted for as sparse outliers. Second, it is
based on devising carefully a functional that balances a data-
model fidelity term (Poisson distribution and outliers), and
regularity in time and space properties that R̂ needs to fulfill
to be of actual relevance in practical pandemic monitoring.
Fast and efficient algorithms were devised to minimize this
functional and their convergence was studied. Applied to
real Covid-19, the procedure was shown to yield meaningful
estimates of R, that thus provides a relevant assessment of
the spatio-temporal evolution of the pandemic that can be
involved as part of a decision strategy for designing Covid-
19 counter measures. Indeed, at a current time, the procedure

outputs estimates of R for the entire pandemic period, thus
permitting to assess a posteriori if and how the implementation
of a sanitary policy decision (lockdown, curfew,. . . ) impacted
the evolution of the pandemic. Also and importantly, while
the proposed procedure is not forecasting R, it is actually
implementing a nowcasting approach: Not only estimates of
R today are provided, but the imposed piecewise smoothness
constraints provide epidemiologist with a local trend around at
current time indicating whether the pandemic is progressing
or regressing. Spatial regularization also permits to robustly
assess homogeneity or heterogeneity of the pandemic across
related territories, thus permitting to decide on local or global
(nation-wide) measures.

Estimates are updated automatically on a daily basis for
200+ countries worldwide and for several related territories
(Counties in France, States in the USA). They are made
publicly available via downloadable text files or interactive and
animated maps6. Procedures will be made publicly available.

Future investigations to improve estimation and monitor-
ing include the construction of confidence intervals for the
estimates and automated data-driven selection of the hyperpa-
rameters, using adaptive strategy that adjust the variations and
phases of the pandemic.

We believe that the present work constitutes a significant
step forward toward the practical use of the proposed pro-
cedure permits an actual real-time and on-the-fly monitoring
of the Covid-19 pandemics. These tools are ready to be
put at work immediately at the outbreak of potential future
pandemics. Finally, the automated production of these daily
up-dates is also intended as a scientific tool to favor trans-
disciplinary scientific work against Covid-19 impact on the
society at large.
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