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Abstract Several papers have recently raised the occurrence of some problems with
between-group Principal Component Analysis (bgPCA). This method inflates the
differences between the groups, and can even display completely artificial differences
when none exist, for example when applied to random numbers tables with many
variables (columns) and few individuals (rows). Lately, cross-validation has been pro-
posed as a way to circumvent this problem. Here we present some tools and several
functions of the ade4 package for the R statistical software to compute a bgPCA,
test the presence of statistically significant groups, perform a cross-validation of this
analysis and compute associated statistics. We also describe how to use these func-
tions to avoid running into the spurious groups problem. Several examples, including
a real data set and random numbers tables, are used to validate this approach in var-
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ious experimental and numerical conditions. The integrated framework of the duality
diagram, as implemented in ade4, allows to extend this approach to other multivari-
ate analysis methods beyond principal component analysis, which could prove useful
in the case of other types of variables. The R code and the real data table used
to make the computations and graphs of this paper are available as supplementary
material.

Keywords Geometric morphometrics · Multivariate analysis · ade4 · Between-
group analysis · Spurious groups · Random permutation test · Leave-one-out
cross-validation

1 Introduction

In many fields, multivariate data are measured on individuals (samples, specimens,
populations, etc.) belonging to different groups. Researchers aim to check wether dif-
ferences exist between the groups and which variables mainly drive them. Canonical
Variate Analysis (CVA or DA, Discriminant Analysis) was extensively used, in the
context of geometric morphometrics (e.g., Debat et al., 2003; Leinonen et al., 2006;
Valenzuela-Lamas et al., 2011), to evidence differentiation among groups of individu-
als using multivariate data. However, a paper by Mitteroecker and Bookstein (2011)
alerted the community of geometric morphometrics on the fact that CVA may lead
to spurious results when the number of variables exceeded the number of individ-
uals. The same year, Kovarovic et al. (2011) and Viscosi and Cardini (2011) also
noted the paramount importance of carefully choosing the predictor variables and
the need to address the overfitting problem by cross-validation when using CVA. In
fact, some statisticians even recommended (without demonstration) that the number
of individuals should be at least equal to ten times the number of variables (Wein-
berg and Darlington, 1976). This is probably excessive, but the issue is becoming
more and more problematic with the raise of 3D data in morphometrics, that could
deliver hundreds and even thousands of shape variables (e.g., Harbers et al., 2020).
Evin et al. (2013) noted that performing CVA on principal components “may help
not only to maximize the cross-validated accuracy but also to reduce the noise in
the data, as well as the positive bias in classification accuracy when groups have
different sample sizes”. Hence, CVA remains quite popular, but it is now regularly
associated with a procedure of dimensionality reduction (Chiari and Claude, 2012;
Cucchi et al., 2017; Dianat et al., 2017; Harbers et al., 2020).

Between-Group Analysis (BGA) was first proposed, in two papers (in French) by
Dolédec and Chessel (1987; 1989), as an alternative to CVA when the number of vari-
ables exceeds the number of individuals. These papers explained how to disentangle
the variations in ecological data tables according to the categories of a qualitative
variable. In 2002, Culhane et al. (2002) used the ADE-4 software (Thioulouse et al.,
1997), a former standalone version of the ade4 package for R, to apply BGA to
microarray data sets. In the field of geometric morphometrics, the method soon ap-
peared, under the denomination of bgPCA (between-group Principal Component
Analysis), as an alternative to circumvent the problems of CVA when the number
of variables exceeded the number of individuals and the method is now increasingly
used (e.g., Almécija et al., 2013; Gunz et al., 2012; Ledevin and Koyabu, 2019;
Souquet et al., 2019). However, a series of papers by Cardini et al. (2019), Bookstein
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(2019) and Cardini and Polly (2020) have recently alerted morphometricians, and
biologists at large, about the fact that bgPCA, as CVA, can also exhibit spurious
groups, even when applied to randomly generated data without any group structure.

As noted by Cardini et al. (2019), “These are important problems for a method
mainly designed for the analysis of variation among groups when there are very large
numbers of variables and relatively small samples. In such cases, users are likely to
conclude that the groups they are comparing are much more distinct than they re-
ally are.” These authors use the mean overlap index, Oij to measure the dispersion
of bgPCA groups, and Cardini and Polly (2020) showed that a permutation test
of the global R2 (i.e., the part of total variance that is due to differences among
groups) associated to a cross-validation of bgPCA coordinates can help discard spu-
rious cases. Several packages, particularly Morpho for the R statistical software
(Schlager, 2017) and the MorphoJ software (Klingenberg, 2011), provide many
functions to apply (cross-validated) CVA and bgPCA to geometric morphometric
data sets and to perform associated permutation tests, particularly PERMANOVA,
with the adonis function of the vegan package for R (Oksanen et al., 2019).

In this paper, we propose a procedure for identifying, quantifying and overcoming
the spurious groups problem in BGA. We prefer to use the abbreviation BGA (for
Between-Group Analysis) instead of bgPCA (for between-group Principal Compo-
nent Analysis) because this procedure is not limited to Principal Component Anal-
ysis. It can be applied to any type of analysis available in the ade4 package and
thus deals with different types of data, not only quantitative variables. This pro-
cedure involves a permutation test of the global R2 (randtest function), the use of
cross-validated coordinates (new loocv function) and we propose a new measure of
the discrepancy between the original BGA and the cross-validated coordinates by
comparing their respective mean overlap indexes. We show that this discrepancy can
be seen as a “spuriousness index”. We use real and simulated data to show how these
different tools can be used to avoid misinterpretations of BGA outputs. The proce-
dure can be easily implemented using the functions randtest and loocv, available in
the ade4 package for R. The whole package is presented by Thioulouse et al. (2018),
with one chapter dedicated to BGA and DA. All the R scripts used in this paper to
draw figures and compute analyses and simulations are available as supplementary
material. They can be used to redo and check all the graphs and computations.

2 Material and Methods

2.1 Statistical tools

We propose the combination of different tools to avoid misinterpretations of BGA
outputs due to the presence of spurious groups. These tools are provided by the
ade4 package for R (Thioulouse et al., 2018) that offers the same between- and
within- group analyses as other geometric morphometric software (e.g., the Morpho
package). One advantage of ade4 implementation is its flexibility so that BGA
framework can be applied to the analysis of a table of quantitative variables (bgPCA),
qualitative variables (by multiple correspondence analysis) or contingency tables
(by correspondence analysis) and has been extended to many other types of more
complex methods devoted to the analysis of two or three tables (Franquet et al.,
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1995; Dray et al., 2015). See Thioulouse et al. (2018) for more details about these
analyses.

We used several functions of the ade4 (Thioulouse et al., 2018) and adegraph-
ics (Siberchicot et al., 2017) packages for R. The main functions used in the present
context are bca, for between class analysis (“class” and “group” have the same mean-
ing here) to compute between-group analyses, the randtest function, to perform ran-
domisation tests on the percentage of between-group variance, and the loocv function
to compute leave-one-out cross-validation. The s.class function allowed to display
groups on the BGA factor maps and on the cross-validated maps. All these func-
tions are generic (S3 class), which means that they can be applied to several types
of analyses, and that the suitable computation method will be automatically chosen.

2.1.1 Percentage of explained variation and permutation procedure

The randtest function performs a permutation test based on a criterion equal to
the percentage of total variation explained by between-group differences (R2). This
percentage is useful to assess the validity of BGA results: a low value means that
group separation should be considered with caution. A permutation procedure is
associated where the rows of the data table (individuals) are permuted and thus
randomly assigned to the groups and the R2 is recomputed for each permutation.
The simulated p-value of the test is equal to the proportion of permutations that
produces an R2 value higher (or equal) than the value computed for observed data.
This test is equivalent to the PERMANOVA test of the vegan package (adonis and
adonis2 functions) used for example by Cardini and Polly (2020) and it gives the
same results. But the randtest function is much faster (10 to 200 times faster) for
large data tables, because it is not distance-based and does not need to compute
distance matrices. Note that this procedure is based on a permutation of original
raw data and assumes that sampling units (individuals) are exchangeable and thus
independent. When there is a risk that spatial or phylogenetic autocorrelation occurs
between individuals, adapted procedures should be preferred such as randomization
of residuals as implemented in the RRPP package (Collyer and Adams, 2018) or
Moran’s Spectral Randomization (MSR, Wagner and Dray, 2015) available in the
adespatial package. In this paper, we consider only the case of independence be-
tween individuals but we provide R code in the supplementary material showing how
to run the testing procedure with both RRPP and adespatial when phylogenetic
dependence occurs.

2.1.2 Cross-validation

The loocv function implements a leave-one-out procedure: each row of the data table
(individual) is removed, one at a time. A BGA is computed on each of these new
tables, and the missing row is projected as additional element on this BGA outputs.
This allows to compute new coordinates for this individual, based on the group
means computed using all other individuals. If group means are really different (due
to real differences between groups), then these new cross-validated coordinates is
very close to the coordinates obtained in the BGA of the complete table. In this
case, the cross-validated factor map will look similar to the factor map of the original
analysis. Conversely, if group means are not really different, with just spurious group
on the BGA factor map coming from geometrical constraints linked to the size of
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vector subspaces (Rohlf, 2021), then the new coordinates will be different from the
coordinates obtained in the BGA of the complete table, and the cross-validated factor
map will not show spurious groups.

The loocv function is useful to get a visual confirmation of the result of the
permutation test. If the randtest permutation test is statistically significant, then
the cross-validated factor map should display the same groups as the original BGA
factor map. In the case where there is no real difference between groups (BGA
spurious groups), but the p-value of the test is anyway (just by chance) lower than
the chosen significance threshold, then the cross-validated factor map will not show
the spurious groups. This should prevent users from drawing false conclusions based
only on the p-value of the test. The loocv outputs include several statistics that can
be used to measure the discrepancy between BGA and the cross-validation.

2.1.3 The mean overlap index

The mean overlap index Ōij (Cardini et al., 2019) is equal to the average, for all
the pairs of groups, of the proportion of individuals in a group that are closer to the
mean of the other group. This index can be computed for the observed and also for
the cross-validated data sets. It can be computed for the full data space, for the full
BGA space (i.e., all axes) or for only some axes (for example the two axes used to
draw a factor map). In this paper, it is always computed in the full BGA space.

When the groups are very different, their means are very far apart and the groups
do not overlap, so Ōij will be equal to 0. Conversely, when there is no group structure,
they will completely overlap, and Ōij will be near to 0.5 because in this case any
individual is equally likely to be closest to any other group mean. This overlap index
can be computed for both the BGA (bgaŌij) and for the cross-validation (xvalŌij).

In the presence of spurious groups, the BGA mean overlap decreases (compared to
a BGA with no spurious group effect) and bgaŌij will be lower than xvalŌij . So the
difference (xvalŌij−bgaŌij) can be used as an index of spuriousness. This difference
varies between 0 (for xvalŌij = 0.5 and bgaŌij = 0.5, i.e. no spurious group effect)
and 0.5 (for xvalŌij = 0.5 and bgaŌij = 0, i.e. maximum possible effect). It can
therefore be expressed as a percentage of the maximum possible spurious group
effect:

∆Ōij = (xvalŌij − bgaŌij)/0.5 ∗ 100
These statistics are computed by the loocv function.

2.2 Simulation study

We design a simulation study to evaluate how the combined use of the procedures
described above can help to avoid misinterpretations of BGA outputs. We firstly
generate tables of random numbers using the rnorm function of R (R Core Team,
2020) to simulate data where no real groups exist but spurious groups can appear
when increasing the number of variables relative to the number of individuals. A real
data set on the house mouse was also analyzed and we added random variables to
evaluate how the different statistical tools perform when real groups exist but the
structure is degraded by random noise. In this second simulation, we considered ran-
dom variables without correlation structure (rnorm) or with a correlation structure
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fixed to the one computed on real house mouse data (using the mvrnorm function
of the MASS package).

2.2.1 Simulation with no group differences

We generated random numbers drawn from a normal distribution with mean equal to
0 and standard deviation equal to 1 using rnorm function. These numbers were then
arranged in tables with varying numbers of individuals (Ni) and variables (Nv).
Arbitrary (random) groups of rows were defined in these tables, so these groups
corresponded to no real structure. The number of groups (Ng) varies in the different
simulations.

In this simulation, we evaluated the performance of the R2 permutation test when
no differences exist between groups. We also checked how the statistics computed
by the loocv function (Ōij and ∆Ōij) changes when varying the total number of
individuals and variables.

2.2.2 Simulation with group differences

We used a real morphometric data set describing populations of the Western Euro-
pean house mouse (Mus musculus domesticus). This subspecies has been shown to
display geographic differentiation in its dental morphology, between continental pop-
ulations (Renaud et al., 2017b) but especially regarding insular populations (Renaud
et al., 2011, 2015, 2018). The sampling therefore included mice from the following lo-
cations: (1) the neighboring localities of Montpellier (N=13) and Frontignan (N=30),
in South-Eastern France along the Mediterranean coast; (2) the locality of Gardouch
(N=68) near Toulouse, in South Western France; (3) mice from Lombardy, Northern
Italy (N=40); (5) populations from various areas in Corsica (Fango, Bonifacio and
Bavella, for a total of N=63) in order to document insular differentiation. All mice
were trapped in a commensal context, except those of Frontignan that are character-
ized by their feral way of life (Renaud et al., 2017b). Details regarding the sampling
can be found in previous publications (Renaud et al., 2011, 2015, 2018).

The character used here to quantify this geographic differentiation is the shape
of the occlusal surface of the first upper molar (UM1). It was described using 64
points sampled at equal curvilinear distance along the outline, the first point being
located at the anterior-most part of the tooth. The points along the outline were
analyzed as sliding semi-landmarks (Bookstein, 1991, 1997; Cucchi et al., 2013).
Using this approach, the outline points are adjusted using a generalized Procrustes
superimposition (GPA) standardizing size, position and orientation, while retaining
the geometric relationships between specimens (Rohlf and Slice, 1990). During the
superimposition, semi-landmarks were allowed sliding along their tangent vectors
until their positions minimize the shape difference between specimens, the criterion
being bending energy (Bookstein, 1997). Because the first point was only defined on
the basis of a maximum of curvature at the anterior-most part of the UM1, some
slight offset might occur between specimens, introducing noise into the data set.
The first point was therefore considered as a semi-landmark allowed to slide between
the last and second points. Each molar tooth was therefore described by a set of
128 aligned coordinates. The GPA was performed using the R package geomorph
(Adams and Otarola-Castillo, 2013).
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The data table is available as supplementary material. As it contains the measure-
ments of 128 variables for 214 individuals, we assume that the numerical conditions
ensure that there is no risk of spurious groups in the analysis of this data table. We
expect that BGA applied on this data set allows to identify true differences between
the groups. We mimic the effect of spurious groups by adding to the house mouse
data several sets of 128 columns of random numbers. These sets of 128 columns were
generated in two ways:

– Numbers drawn from univariate normal distributions with means and standard
deviations equal to the means and standard deviations of the 128 variables of the
house mouse data set, with no covariance structure.

– Numbers drawn from a multivariate normal distribution with means and stan-
dard deviations equal to the means and standard deviations of the variables of
the house mouse data set and with the same covariance matrix.

These simulations allowed us to check the influence of the number of variables
and of the spurious group effect when slight real biological differences exist between
groups in the data set. We evaluated the performance of the R2 permutation test
to identify these differences, showed how factorial maps are affected by introducing
random variables and evaluated if the cross-validation provide better representation
of individuals in factorial maps.

3 Results

3.1 Simulation with no group differences

Figure 1 shows the factor map of the BGA (Figure 1A) and of the cross-validation
(Figure 1B) of a table of 360 random normal variables simulated for 50 individuals
belonging to five groups (10 individuals per group). On the left (Figure 1A), the BGA
factor map shows spurious groups, and on the right (Figure 1B), the cross-validated
factor map computed with the loocv function shows that the spurious groups effect
has been removed.

Note that the p-value of the randtest permutation test of this BGA was equal to
0.435. This means that the test was not tricked by the spurious groups appearing on
the BGA factor map. This permutation test is performed in the full data space and
it is not influenced by the group separation observed on Figure 1A. This separation
of the five groups occurs only in the BGA vector space. So when a BGA leads to a
non significant permutation test, all the other results should be discarded and the
factor maps should not even be drawn.

However, as for any statistical test, there is always a small probability to get
low p-values when doing many tests, even on a table of random numbers. In any
case, on 100 tests, it is expected that five will have a p-value less than 0.05, even if
the null hypothesis H0 (no difference between groups) is true. This corresponds to
Type I error and is not related to the spurious groups problem, but both can happen
simultaneously (see Supplementary Figure 1). In such situations, incautious users
could conclude that the five spurious groups visible on Figure 1A correspond to a
real structure of the data set. Several ways exist to avoid this problem

The first and most usual way is to use a lower significance threshold for the p-
value of the test. This is particularly appropriate here because the spurious groups
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d = 5

Cross-validation: Overlap index Oij = 0.35 - ΔOij = 70%

1 23
45

A B

Spurious groups: randtest p-value = 0.435
Explained variance ratio = 8% Overlap index Oij = 0

Fig. 1 Factor map of the BGA of a random numbers table (five groups, 10 individuals by
group, 360 variables). The five groups are represented by convex hulls surrounding the 10
individuals of each group. A: Factor map showing the spurious groups. The p-value of the
randtest permutation test is equal to 0.435 and the ratio of between-groups to total variance
is equal to 8%. The mean overlap index bgaŌij is equal to 0 (the five groups are completely
apart). B: Cross-validated factor map computed with the loocv function, showing that the
spurious group effect have been removed. The mean overlap index xvalŌij is equal to 0.35,
reflecting the large overlap of the five groups. The index of spuriousness ∆Ōij is equal to 70%
and the comparison of Figure 1A and 1B confirms the fact that BGA groups on Figure 1A are
not supported by cross-validation.

problem appears mostly for large data sets with hundreds or thousands of variables.
In this case, even tiny effects can be evidenced and may provide low p-values. Type
II error rate will be inflated, but the large size of these data sets should allow to
compensate for this problem. Choosing a significance threshold equal to 0.01, 0.005
or even 0.001 instead of 0.05 is therefore a good way to prevent misinterpretations.

Another way to prevent over-optimistic conclusions is to look at the percentage
of between-group variance. Here, it is equal to only 8%, and interpretations based
on such a low percentage of explained variance should be considered with caution,
particularly if the test is not statistically highly significant.

A third way is to use the cross-validation procedure and compare the BGA factor
map and the cross-validated factor map. The large difference between Figure 1A and
Figure 1B would allow to exclude any erroneous conclusion. The index of spuriousness
∆Ōij measures the discrepancy between the BGA and the cross-validation. The
high value observed here (70%) means that the separation of groups on Figure 1A
is probably spurious. The theoretical maximum of 100% would be obtained only for
groups completely separated in the BGA space and completely superimposed in the
cross-validation space.

3.2 Evaluation of the R2 permutation test

In order to test the validity of the randtest permutation test in different situations,
we varied the number of groups in the simulated data tables (Ng = 2, 3, 5, 10 and



BGA Spurious Groups Problem 9

30 groups), while keeping the total number of individuals (Ni) constant and equal
to 300 (i.e., respectively 150, 100, 60, 20 and 10 individuals per group). The number
of variables (Nv) was equal to 100, 300, 600, 1200, 1800, 2400 and 4800. Results are
summed up in Tables 1, 2 and 3.

Table 1 Number of randtest tests returning a p-value lower than 0.05 on 1000 tests, with
1000 permutations for each test. Columns: number of groups, rows: number of variables. The
mean number of significant tests under H0 is equal to 50 and the 95% interval of its theoretical
distribution is [37, 64].

Nv\Ng 2 3 5 10 30 Tot
100 41 61 48 43 50 243
300 53 44 62 48 59 266
600 55 54 53 41 50 253
1200 39 59 52 41 52 243
2400 49 59 49 44 41 242
4800 49 57 56 45 52 259
Total 286 334 320 262 304 1506

Table 2 Number of randtest tests returning a p-value lower than 0.01 on 5000 tests, with
1000 permutations for each test. Columns: number of groups, rows: number of variables. The
mean number of significant tests under H0 is equal to 50 and the 99% interval of its theoretical
distribution is [33, 69].

Nv\Ng 2 3 5 10 30 Tot
100 35 44 54 40 36 209
300 48 49 39 41 52 229
600 42 45 46 52 48 233
1200 34 42 43 46 47 212
2400 50 38 42 65 46 241
4800 56 50 41 40 48 235
Total 265 268 265 284 277 1359

These three tables show that the randtest permutation test always performed
as expected: the proportion of tests for which the p-value was lower than a given
threshold (0.05, 0.01, and 0.001) was always nearly equal to this threshold, in all the
tested situations, i.e., for all the numbers of individuals, groups, and variables. This
was true even in the worst situations (Ni/Nv ratio=0.06), which demonstrates that
this test has a correct level of Type I error and is thus not sensitive to the spurious
groups problem of BGA.

Another problem that can affect permutation tests concerns the minimum num-
ber of individuals that are needed to obtain the desired number of permutations
(generally 1000). If the number of individuals is too low, then the total number of
possible permutations will be less than 1000. In this case, the distribution of the cri-
terion might not be approximated satisfactorily, and the result of the test (p-value)
could be biased. The minimal number of individuals needed to have at least 1000
distinct permutations for the randtest function of the ade4 package is given in table
4. These numbers are relatively low and should not be an obstacle in usual studies.
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Table 3 Number of randtest tests returning a p-value lower than 0.001 on 10000 tests, with
10000 permutations for each test. Columns: number of groups, rows: number of variables. The
mean number of significant tests under H0 is equal to 10 and the 95% interval of its theoretical
distribution is [4, 17].

Nv\Ng 2 3 5 10 30 Tot
100 10 9 6 9 6 40
300 6 13 6 4 11 40
600 11 10 9 11 9 50
1200 9 15 7 7 10 48
2400 9 8 10 8 5 40
4800 10 8 11 4 9 42
Total 55 63 49 43 50 260

Table 4 Number of groups, number of individuals per group and total number of individuals
needed to have at least 1000 distinct permutations of the randtest test of the ade4 package.
This table was obtained by a simulation study.

Ng Ni/Ng Ni

2 12 24
3 6 18
4 4 16
5 4 20
6 3 18
7 3 21
8 3 24

3.3 Evaluation of the cross-validation procedure

We tested the validity of the loocv cross-validation procedure in several situations,
by doing the BGA and cross-validation of tables of random normal variables. The
number of groups in the simulated data tables was kept constant and equal to five.
The total number of individuals (Ni) was equal to 100, 200, 400 and 800. The number
of variables (Nv) was equal to 10, 20, 50, 100, 200, 350, and 500. Results are summed
up in Figure 2, that shows the variations of the mean overlap index for the BGA (full
symbols) and for the cross-validation (open symbols) when the number of variables
in the random numbers table increases, and for several values of the number of
individuals. The overlap index of BGA is directly a measure of the spurious group
effect: as groups are separating, the overlap index decreases.

Figure 2A shows that the number of variables has no influence on the mean
overlap index of cross-validation (curves with open symbols), demonstrating that
cross-validated factorial maps are not sensitive to the spurious group effect. The
mean overlap index of cross-validation slightly increases (from 0.31 to 0.37) as the
number of individuals increases from 100 to 800. This result was expected for random
number tables, because the probability of any individual being nearer to another
group increases with the number of individuals. The mean overlap index of the BGA
(curves with full symbols) decreases as the number of variables increases, because the
groups are more and more separated by the spurious groups effect in the BGA space.
For tables with only 100 individuals (brown curves and circles), the mean overlap
index of BGA decreases very fast when the number of variables increases, but the
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Fig. 2 Values of the mean overlap index for the BGA (full symbols) and for the corresponding
cross-validation (empty symbols) for increasing numbers of variables and individuals. The
number of groups is always equal to five and each point represents the mean of 100 simulations.
The number of variables (x-axis) varies from 10 to 500. A: The number of individuals (Ni) is
equal to 100 (brown curves and circles), 200 (blue curves and squares), 400 (red curves and
diamonds) and 800 (green curves and triangles). B: Dashed and dotted lines also correspond
to the overlap index computed for tables of random numbers (100 individuals), but these
particular tables were selected by an iterative procedure to give significant (p-value < 0.05,
dashed blue lines) and very significant (p-value < 0.01, dotted red lines) permutation tests of
the difference between groups.

decrease gets slower as the number of individuals increases. For tables with 500
variables, the mean overlap index of BGA stays very low even with 800 individuals
(green curves and triangles). This means that increasing the number of individuals
is not enough to overcome the spurious groups problem.

As a consequence of trends observed for the cross-validation mean overlap index
(xvalŌij) and the BGA mean overlap index (bgaŌij), the statistic ∆Ōij can be used
as a spuriousness index. For 800 individuals and 200 variables it is equal to 39% of
the maximum theoretical possible spurious group effect, and for 500 variables it is
equal to 57%. Hence, the values of the spuriousness index also depend on the number
of individuals and variables. For example, Figure 1 shows that it can reach 70% for
Ni/Nv = 50/360 .

Lastly, it is important to note that all trends reported above are also observed if
the R2 permutation test returns significant results (type I error, dotted and dashed
lines on Figure 2B). This shows that spurious groups can be detected by a high value
of ∆Ōij even when the permutation test is highly significant.

3.4 Simulation with group differences

When the number of variables is high and the groups are only slightly different it may
be difficult to disentangle the spurious group effect from the small true differences
between the groups. This situation was simulated by gradually adding several sets
of columns of random numbers to the house mouse data. These columns of random
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numbers were generated in two ways: with and without covariance structure. Our
aim was to check the ability of the BGA to recover the groups structure when random
noise is added to the data set, and to evaluate the capacity of cross-validation to
remove the spurious group effect while keeping the biological signal identifiable.

3.4.1 Analysis of the house mouse data

d = 0.05

House mouse BGA: randtest p-value = 0.0001
Explained variance ratio = 15%  Overlap index Oij = 0.13

Corsica

Front
Gardouch

LombMontp

d = 0.05

Cross-validation: Overlap index Oij = 0.15 - ΔOij = 3%

Corsica

Front
Gardouch

LombMontp

A B

Fig. 3 Factor map (first two axes) of the BGA on the house mouse data set (5 regions, 214
individuals, 128 variables). The percentages of projected inertia on the two axes are equal to
68% (axis 1, horizontal) and 19% (axis 2, vertical). The scale of the graph is given by the value
d in the upper right corner, it corresponds to the size of the background grid mesh. The five
regions are represented by convex hulls surrounding all the individuals of each region. A: factor
map of the BGA. The p-value of the R2 permutation test is equal to 0.0001, the percentage
of explained variance is equal to 15% and the mean overlap index bgaŌij is equal to 0.13. B:
cross-validated factor map using the loocv procedure. The mean overlap index xvalŌij is equal
to 0.15. The spuriousness index ∆Ōij is equal to 3% and reflects the good agreement between
Figure 3A and 3B, confirming the fact that BGA groups are fully supported by cross-validation.

Figure 3 shows the BGA of the house mouse data set. The R2 permutation test
is very highly significant (p-value < 0.0001) and the percentage of between-group
variance is equal to 15%. The cross-validated factor map (Figure 3B) is very similar
to the original one (Figure 3A), which suggests that the groups observed on Figure 3A
are not spurious. The values of the overlap index for the two figures are very similar
(0.13 and 0.15) and the spuriousness index ∆Ōij is thus very low (3%). This confirms
that the distinction between the five regions is well supported by cross-validation.
The null hypothesis of no difference between the five regions can be rejected with a
very low risk.

The first axis underlines the geographic differentiation between the two neigh-
boring localities of Montpellier and Frontignan (South-Eastern France along the
Mediterranean coast) on the left, opposed to the Gardouch locality (South Western
France) and the Corsica populations on the right. Mice from Lombardy (Northern
Italy) have an intermediate position. The second axis opposes Corsican populations
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(upward) to the mice from the Gardouch locality (downward), revealing the effect
of insular differentiation.

Given previous results, this structure was to be expected. Corsican mice display
first upper molar with an elongated anterior part (Renaud et al. 2011). In contrast,
among continental populations, the mice from Montpellier and Frontignan display a
particularly short and massive molar shape (Renaud et al. 2017).

3.4.2 Simulations with additional random variables

Figure 4 displays the results of adding columns of random numbers with no co-
variance structure to the house mouse data table. This figure can be compared for
reference to Figure 3 (BGA and cross-validation of the house mouse data table).
When columns of random numbers are added gradually (from A to D), the percent-
age of explained variance drops abruptly (from 15% to 4%, 3% and 2%) because of
the strong increase of the total variance due to higher number of random variables.
However, it has no effect on the significance of the R2 permutation test. The p-
value stays constant and equal to 0.0001, even for high number of random variables
(Ni/Nv = 214/2688). Hence, the permutation test stays extremely significant and
is still able to detect the differences between the five regions despite the columns of
random numbers that were added. The BGA overlap index drops from 0.13 for the
house mouse data to 0.06, 0.03, 0.01 and 0 respectively. The cross-validation overlap
index increases slowly from 0.15 to 0.17, 0.19 and 0.21. It is also computed in the
full BGA space. As a consequence, the spuriousness index (∆Ōij) increases from 3%
to 23%, 32%, 36% and 42%.

Figure 4D1 (BGA with 2688 variables) shows that the five regions are much more
separated than they are on Figure 3. This comes from the spurious groups effect,
and Figure 4D2 shows that this effect is adequately fixed by the cross-validation.
In fact on Figure 4D2 the five regions are even too close together compared to the
original data represented on Figure 3. Cross-validation seems to slightly over-correct
the spurious groups effect so that the relative positions of groups are less separated.

Figure 5 shows the values of the mean overlap index of BGA and of cross-
validation in several real and simulated situations. For tables of purely random
numbers (rnorm, brown curves and circles), the BGA mean overlap index decreases
because of the spurious groups effect and the cross-validation adequately fixes it. For
tables of purely random numbers but with the same correlation matrix as the mouse
data set (mvrnorm, purple curves and circles), the mean overlap index also decreases
but it stays much higher. When tables of random numbers are successively added
to the mouse data table, the spurious groups effect slowly decreases the BGA mean
overlap index (green curve and full circles). Cross-validation (green curve and empty
circles) fixes this and the mean overlap index is even higher than the one obtained for
the mouse data table alone (over-correction). When tables of random numbers with
the same correlation matrix as the mouse data table are successively added to the
mouse data table (orange curves and full circles), the BGA mean overlap index does
not decrease, even for 512 variables. And the cross-validation mean overlap index
(orange curves and empty circles) increases even more.

The decrease of the BGA overlap index clearly shows the apparition of the spu-
rious group effect that adds up to the real regions separation (also seen in Figure 4).
The cross-validation overlap index increases slightly, and shows the tendency of cross-
validation to overcompensate the spurious groups effect. The spuriousness index also
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Fig. 4 BGA (left) and cross-validation (right) factor maps of the house mouse data set with
added columns of random numbers with no covariance structure.
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Fig. 5 Mean overlap index of BGA (full circles) and of cross-validation (empty circles) for
several real and simulated situations. The result for the house mouse data table is indicated by
an arrow (BGA and cross-validation). All other points represent the mean of 100 simulations
for BGA and cross-validation, as in Figure 2.

increases, but it stays lower than the one obtained for purely random data. If sets of
128 columns of random numbers with the same covariance structure as the original
house mouse data table are added, the same patterns are observed but the values of
overlap indexes are higher than for independent random variables (Figure 5). This
comes from the fact that the random structures added by random number with no
group structure but with a fixed covariance matrix is higher than the variations
added by random number drawn from a univariate normal distribution.

Table 5 sums up the values of the spuriousness index (∆Ōij) in the four situations
described in Figure 5.

4 Discussion

Our results confirm the conclusions of the series of papers about spurious groups in
between-group PCA, Bookstein (2019), Cardini et al. (2019) and Cardini and Polly
(2020) and the influence of the number of variables. We also confirm the usefulness of
cross-validation to support BGA results and the need to use tests in the data space
to check the significance of the differences between groups. We propose to use the
randtest permutation test of the ade4 package for this, and the mean overlap index
Ōij computed by the loocv function to check out the result of the cross-validation
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Table 5 Values of the spuriousness index (∆Ōij) in the situations described in Figure 5. All
the tables have 214 individuals (rows) and a number of variables (columns) equal to 128, 256,
384 or 512. The situations are: rnorm = tables of purely random numbers, mvrnorm = tables
of purely random numbers but with the same correlation matrix as the mouse data table.
Mouse + rnorm = House mouse data table plus tables of random numbers. Mouse + mvrnorm
= House mouse data table plus tables of random numbers with the same correlation matrix
as the mouse data table. The 2% increase observed in the last three situations for identical
numbers of variables is linked to the cross-validation over-correction.

Situation\Variables 128 256 384 512
rnorm 47% 58% 62% 63%

mvrnorm 3% 7% 11% 13%
Mouse + rnorm 3% 9% 13% 15%

Mouse + mvrnorm 3% 11% 15% 16%

procedure. The case of unbalanced groups has not been tackled here, but similar
simulation strategies could be used for estimating this potential problem.

BGA is not the only method sensitive to the emergence of spurious groups on
factorial maps when the number of variables is higher than the number of individ-
uals. We have checked with the plsDA function of the DiscriMiner package for R
(Sanchez, 2013) that spurious groups also appear in PLS-DA (Partial Least Square
Discriminant Analysis, see for example Barker and Rayens, 2003). In the plsDA
function, a cross-validation procedure is available, and it is applied by default, which
prevents misinterpretation when using PLS-DA.

The spurious groups effect is a geometrical artifact that can appear in any su-
pervised method, even when the number of individuals is higher than the number
of variables. The recent paper by Rohlf (2021) explains very clearly this geometrical
effect in high dimension. Cross-validation and permutation tests can easily detect
this artifact in random numbers tables, but the problem still remains in real data
tables, where true groups can be mixed with spurious groups. In this case, the spu-
rious groups effect enlarges the differences between the real groups and it may be
hard to disentangle these two sources, even with the help of the cross-validation
procedure. This means that a careful selection of variables and having the highest
possible number of individuals is still indispensable. In special cases like data sets
from 3D methods, this is very difficult and even more caution should be taken in the
interpretation.

Concerning BGA, we have shown that when the randtest permutation test is
statistically significant, the mean overlap index could be used to measure the dis-
crepancy between BGA coordinates and cross-validation results. This is essential
to differentiate true groups from spurious groups, particularly on real data sets, in
situations where the number of individuals could be low and the between-group dif-
ferences weak. We also used the mean overlap index to evidence the influence of the
correlation structure between variables, by comparing the case of tables of random
numbers, with and without correlation structure, and the case of real data.

The covariance structure between "geomorphometric" variables is widespread. It
is partly due to the Procrustes approach itself, which scales, rotates and translates
data according to least squares methods, and therefore generates correlations among
aligned coordinates. The raise of semi-landmark data, being sampled along curves or
surfaces, further introduces covariation due to neighbouring effects. Nevertheless, the
covariance structure also partly describes biologically meaningful features, expressing
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constraints related to the geometry of the object, its function and development, and
the underlying standing genetic variation. As such, the covariance structure itself
can be the focus of evolutionary studies (Ackermann and Cheverud, 2000; Jamniczky
and Hallgrímsson, 2009; Renaud et al., 2017a). Because the main direction of within-
group variance corresponds to frequent variants in a population, between-population
evolution can be channeled along this phenotypic direction, constituting a line of least
resistance to evolution (Renaud and Auffray, 2013; Schluter, 1996).

This covariance structure will differently impact the PCA (and BGA) and the
CVA. The PCA, working on the total variance, will be influenced by the structure
of the within-group variance. As a consequence, the patterns of between-group dif-
ferentiation obtained in the space of PCA and BGA axes will tend to be very close
(Renaud et al., 2015) and to promote a picture of evolution favored along the line
of least resistance constituted by the direction of main within-group variance. In
contrast, the CVA, by standardizing within-group variance, will put the focus on
evolutionary divergence occurring in other directions. This can evidence changes in
more discrete, but still phylogenetically relevant traits (Renaud et al. 2015), although
the relationships between groups can be distorted. Since both methods (BGA and
CVA) can result in spurious groups, the choice between the two should depend on
the role attributed to within-group variance in the interpretation. The present study
further demonstrates that such covariance structure in the geomorphometric data
will tend to reduce the risk of spurious groups even with low number of individuals,
which is a reassuring message for the interpretation of biological data.

We checked that the randtest permutation test has good performances in terms
of Type I error and power, even in extreme situations (low number of individuals,
high number of variables, low p-value threshold). We also showed that the minimum
number of individuals needed to compute the test was low enough to be useful even
on small data sets. An important consequence is that the Ni/Nv ratio should not be
considered as an immutable constraint. BGA can be used when the number of indi-
viduals is low, even with a high number of variables, as long as the spurious group
effect is detected and controlled. In the case of non-independent individuals, par-
ticularly in the presence of phylogenetic or spatial autocorrelation, additional work
will be needed to compare the advantages of the RRPP and MSR procedures. The
R code provided in supplementary material shows that the RRPP procedure per-
forms better and is much faster, but MSR is more flexible and can be used in various
situations (e.g., controlling simultaneously for spatial and phylogenetic autocorrela-
tions in fourth-corner analysis in Braga et al. (2018) or for spatial autocorrelations
in Mantel test in Crabot et al. (2019)).

The loocv function can be used for detecting and controlling the spurious group
effect: it computes the cross-validation and provides cross-validated factor maps that
can be compared to the BGA factor maps. It also provides several statistics to esti-
mate the degree of confidence that can be granted to the BGA. More particularly,
the mean overlap index can be used as a measure of the discrepancy between BGA
and cross-validation, under the form of the spuriousness index. The integration of
these functions in the ade4 package allows to expand their use to other types of
data, particularly to qualitative variables (with Multiple Correspondence Analysis)
and to counts tables (with Correspondence Analysis), but also to mixed qualita-
tive/quantitative data sets (Hill & Smith Analysis), and to other methods including
those designed for the analysis of two or three tables.
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5 Conclusion
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High Spurious groups
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Fig. 6 Summed up scheme of the use of BGA proposed in the ade4 package.

The first aim of this paper was to propose to the morphometricians community
a set of tools to overcome the problem of spurious groups in BGA. These tools
are integrated in the ade4 package, and their use is summed up in Figure 6. The
first step in this approach should always be to use a permutation test of the BGA,
even before looking at graphical outputs. The randtest procedure of ade4 is easy to
compute and very fast, even on large data tables, but it assumes that the individuals
are independent. If this is not the case, an adapted procedure should be preferred,
such as randomization of residuals. The resulting p-value should be compared to a
sufficiently low threshold, at least 0.01 for large data sets. If it is higher than this
threshold, then this approach should be stopped and BGA output graphs should not
be considered. In this case, one should conclude that this data table does not allow
to exclude the hypothesis of no difference between groups.
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If the p-value of the permutation test is lower than the chosen threshold, then one
should look at the percentage of between-group variance and, if it is low, start a cross-
validation procedure to make sure that the groups evidenced by the BGA are real
groups. This second step is needed for two reasons. First, the test may be statistically
significant because of a mix of spurious groups effect and of real group differences.
In this case, distances between group means are inflated and the dispersion around
means is shrunk, leading to a false impression of large between-group differences. To
ensure an adequate interpretation of BGA graphs and particularly of group means
relative locations, one should try to evaluate the importance of both effects. The
second reason is that on 1000 tests, even if the null hypothesis of no difference
between the groups is true, the permutation test (like any other statistical tests) will
give approximately 10 p-values lower than 0.01. In this situation, the cross-validation
step will prevent drawing erroneous conclusions from the BGA outputs.

If the percentage of between-group variance is low, and if the cross-validation
map does not support the BGA groups (spuriousness index higher than e.g. 50%),
then the existence of these groups should be refuted. We hope that these tools will
prove useful to morphometricians and more widely to all the researchers who use
BGA.
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